• Aucun résultat trouvé

Cette étude a permis l’amélioration de la différenciation in vitro des lymphocytes B mémoires humains suite à leur expansion. Elle a également permis la caractérisation des plasmocytes générés et mis en lumière des éléments de la biologie de ces cellules centrales du système immunitaire humorale. Ces éléments tels que la réponse intracellulaire des plasmocytes générés peuvent permettre une comparaison de ces derniers avec les myélomes multiples et mener à une meilleure compréhension de cette maladie.

Nous avons pu constater que les interactions cellulaires entre CD27 et CD70 et entre CD40 et CD154 sont toutes deux importantes pour la différenciation de lymphocytes B mémoires in vitro. L’ensemble des résultats met en lumière un nouveau modèle intéressant pour la génération de plasmocytes en culture, soit l’activation et l’expansion cellulaire en présence de l’interaction CD154, leur différenciation rapide en précurseurs de plasmocytes avec l’interaction CD70. Nos observations indiquent toutefois que le microenvironnement actuel n’est pas adéquat pour la survie à long-terme. Les plasmocytes CD38hi générés pourraient donc être isolés et

mis dans un milieu de survie constitué de cellules stromales tel qu’illustré à la figure 7.1. Dans un tel contexte, les cellules pourraient devenir aptes à répondre aux molécules de survie telles qu’APRIL ou le CXCL12. D’ailleurs, l’utilisation de telles cellules-support a déjà fait ses preuves dans des systèmes de culture de lymphocytes B [92][132]. Ce modèle permettrait l’obtention de plasmocytes qui pourront par la suite être utilisés pour des patients immunosupprimés, en attendant la reconstitution de leur système immunitaire suite à une transplantation de cellules souches.

Figure 7.1 Modèle proposé pour l’évolution de la différenciation des lymphocytes B mémoires en plasmocytes in vitro. La première phase de la culture consiste en l’activation et l’expansion des lymphocytes

B en utilisant l’interaction CD40-CD154. La deuxième phase en interaction CD27-CD70 induit la différenciation cellulaire tandis que la troisième permet la survie des plasmocytes générés à travers l’interaction de ces cellules avec une lignée stromale. L’expression du marqueur CD31 débute avec la différenciation des lymphocytes B mémoires tandis que le CD39 est présent sur les cellules depuis leur mise en culture. Son expression diminue dans l’environnement de survie des plasmocytes sans toutefois disparaître complètement.

Références

1. LeBien, T.W. and T.F. Tedder, B lymphocytes: how they develop and function. Blood, 2008. 112(5): p. 1570-80.

2. Carsetti, R., The development of B cells in the bone marrow is controlled by the balance between

cell-autonomous mechanisms and signals from the microenvironment. J Exp Med, 2000. 191(1): p. 5-

8.

3. Shapiro-Shelef, M. and K. Calame, Regulation of plasma-cell development. Nat Rev Immunol, 2005.

5(3): p. 230-42.

4. Sukumar, S. and M.S. Schlissel, Receptor editing as a mechanism of B cell tolerance. J Immunol, 2011. 186(3): p. 1301-2.

5. Sims, G.P., et al., Identification and characterization of circulating human transitional B cells. Blood, 2005. 105(11): p. 4390-8.

6. Chung, J.B., M. Silverman, and J.G. Monroe, Transitional B cells: step by step towards immune

competence. Trends Immunol, 2003. 24(6): p. 343-9.

7. Carsetti, R., M.M. Rosado, and H. Wardmann, Peripheral development of B cells in mouse and man. Immunol Rev, 2004. 197: p. 179-91.

8. Pieper, K., B. Grimbacher, and H. Eibel, B-cell biology and development. J Allergy Clin Immunol, 2013. 131(4): p. 959-71.

9. Goodnow, C.C., Chance encounters and organized rendezvous. Immunol Rev, 1997. 156: p. 5-10. 10. Cancro, M.P., Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol

Rev, 2004. 197: p. 89-101.

11. Elgueta, R., V.C. de Vries, and R.J. Noelle, The immortality of humoral immunity. Immunol Rev, 2010.

236: p. 139-50.

12. Pape, K.A., et al., The humoral immune response is initiated in lymph nodes by B cells that acquire

soluble antigen directly in the follicles. Immunity, 2007. 26(4): p. 491-502.

13. Harwood, N.E. and F.D. Batista, The antigen expressway: follicular conduits carry antigen to B cells. Immunity, 2009. 30(2): p. 177-9.

14. Roozendaal, R., et al., Conduits mediate transport of low-molecular-weight antigen to lymph node

follicles. Immunity, 2009. 30(2): p. 264-76.

15. Oracki, S.A., et al., Plasma cell development and survival. Immunol Rev, 2010. 237(1): p. 140-59. 16. Vos, Q., et al., B-cell activation by T-cell-independent type 2 antigens as an integral part of the

humoral immune response to pathogenic microorganisms. Immunol Rev, 2000. 176: p. 154-70.

17. Weintraub, A., Immunology of bacterial polysaccharide antigens. Carbohydr Res, 2003. 338(23): p. 2539-47.

18. Balazs, M., et al., Blood dendritic cells interact with splenic marginal zone B cells to initiate T-

independent immune responses. Immunity, 2002. 17(3): p. 341-52.

19. Batista, F.D. and N.E. Harwood, The who, how and where of antigen presentation to B cells. Nat Rev Immunol, 2009. 9(1): p. 15-27.

20. Qi, H., et al., Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science, 2006. 312(5780): p. 1672-6.

21. Reif, K., et al., Balanced responsiveness to chemoattractants from adjacent zones determines B-cell

position. Nature, 2002. 416(6876): p. 94-9.

22. Choi, Y.S., et al., ICOS receptor instructs T follicular helper cell versus effector cell differentiation via

induction of the transcriptional repressor Bcl6. Immunity, 2011. 34(6): p. 932-46.

23. Crotty, S., Follicular helper CD4 T cells (TFH). Annu Rev Immunol, 2011. 29: p. 621-63.

24. Paus, D., et al., Antigen recognition strength regulates the choice between extrafollicular plasma cell

25. Victora, G.D., et al., Germinal center dynamics revealed by multiphoton microscopy with a

photoactivatable fluorescent reporter. Cell, 2010. 143(4): p. 592-605.

26. Schwickert, T.A., et al., In vivo imaging of germinal centres reveals a dynamic open structure. Nature, 2007. 446(7131): p. 83-7.

27. McHeyzer-Williams, M., et al., Molecular programming of B cell memory. Nat Rev Immunol, 2012.

12(1): p. 24-34.

28. Lanzi, G., et al., Different molecular behavior of CD40 mutants causing hyper-IgM syndrome. Blood, 2010. 116(26): p. 5867-74.

29. Agematsu, K., et al., Plasma cell generation from B-lymphocytes via CD27/CD70 interaction. Leuk Lymphoma, 1999. 35(3-4): p. 219-25.

30. Agematsu, K., et al., CD27/CD70 interaction directly drives B cell IgG and IgM synthesis. Eur J Immunol, 1995. 25(10): p. 2825-9.

31. Allen, C.D., T. Okada, and J.G. Cyster, Germinal-center organization and cellular dynamics. Immunity, 2007. 27(2): p. 190-202.

32. McHeyzer-Williams, L.J. and M.G. McHeyzer-Williams, Antigen-specific memory B cell development. Annu Rev Immunol, 2005. 23: p. 487-513.

33. Calame, K.L., K.I. Lin, and C. Tunyaplin, Regulatory mechanisms that determine the development

and function of plasma cells. Annu Rev Immunol, 2003. 21: p. 205-30.

34. Fecteau, J.F., A. Roy, and S. Neron, Peripheral blood CD27+ IgG+ B cells rapidly proliferate and

differentiate into immunoglobulin-secreting cells after exposure to low CD154 interaction.

Immunology, 2009. 128(1 Suppl): p. e353-65.

35. Tarlinton, D., et al., Plasma cell differentiation and survival. Curr Opin Immunol, 2008. 20(2): p. 162-9. 36. Shapiro-Shelef, M., et al., Blimp-1 is required for maintenance of long-lived plasma cells in the bone

marrow. J Exp Med, 2005. 202(11): p. 1471-6.

37. Amanna, I.J. and M.K. Slifka, Mechanisms that determine plasma cell lifespan and the duration of

humoral immunity. Immunol Rev, 2010. 236: p. 125-38.

38. Barnes, N.A., et al., BLIMP-1 and STAT3 counterregulate microRNA-21 during plasma cell

differentiation. J Immunol, 2012. 189(1): p. 253-60.

39. Radbruch, A., et al., Competence and competition: the challenge of becoming a long-lived plasma

cell. Nat Rev Immunol, 2006. 6(10): p. 741-50.

40. Foote, J.B., et al., Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting

cells. J Immunol, 2012. 188(1): p. 57-67.

41. Kurosaki, T., et al., Unique properties of memory B cells of different isotypes. Immunol Rev, 2010.

237(1): p. 104-16.

42. Aiba, Y., et al., Preferential localization of IgG memory B cells adjacent to contracted germinal

centers. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12192-7.

43. Klein, U., K. Rajewsky, and R. Kuppers, Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells

expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med, 1998. 188(9): p. 1679-89.

44. Fecteau, J.F., G. Cote, and S. Neron, A new memory CD27-IgG+ B cell population in peripheral

blood expressing VH genes with low frequency of somatic mutation. J Immunol, 2006. 177(6): p.

3728-36.

45. Erazo, A., et al., Unique maturation program of the IgE response in vivo. Immunity, 2007. 26(2): p. 191-203.

46. Talay, O., et al., IgE(+) memory B cells and plasma cells generated through a germinal-center

pathway. Nat Immunol, 2012. 13(4): p. 396-404.

47. Perez-Andres, M., et al., Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom, 2010. 78 Suppl 1: p. S47-60.

48. Neron, S., et al., Differential responses of human B-lymphocyte subpopulations to graded levels of

49. Tarte, K., et al., Gene expression profiling of plasma cells and plasmablasts: toward a better

understanding of the late stages of B-cell differentiation. Blood, 2003. 102(2): p. 592-600.

50. Caraux, A., et al., Circulating human B and plasma cells. Age-associated changes in counts and

detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica,

2010. 95(6): p. 1016-20.

51. Mei, H.E., et al., Blood-borne human plasma cells in steady state are derived from mucosal immune

responses. Blood, 2009. 113(11): p. 2461-9.

52. Brandtzaeg, P., et al., The B-cell system of human mucosae and exocrine glands. Immunol Rev, 1999. 171: p. 45-87.

53. Fritz, J.H., et al., Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature, 2012.

481(7380): p. 199-203.

54. Hamilton, R.G., Human IgG subclass measurements in the clinical laboratory. Clin Chem, 1987.

33(10): p. 1707-25.

55. Schroeder, H.W., Jr. and L. Cavacini, Structure and function of immunoglobulins. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S41-52.

56. Burton, D.R. and I.A. Wilson, Immunology. Square-dancing antibodies. Science, 2007. 317(5844): p. 1507-8.

57. Pabst, O., New concepts in the generation and functions of IgA. Nat Rev Immunol, 2012. 12(12): p. 821-32.

58. Acosta-Rodriguez, E.V., et al., Cytokines and chemokines shaping the B-cell compartment. Cytokine Growth Factor Rev, 2007. 18(1-2): p. 73-83.

59. Snapper, C.M. and W.E. Paul, Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate

Ig isotype production. Science, 1987. 236(4804): p. 944-7.

60. Pene, J., et al., Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B

cells. J Immunol, 2004. 172(9): p. 5154-7.

61. Malisan, F., et al., Interleukin-10 induces immunoglobulin G isotype switch recombination in human

CD40-activated naive B lymphocytes. J Exp Med, 1996. 183(3): p. 937-47.

62. Cazac, B.B. and J. Roes, TGF-beta receptor controls B cell responsiveness and induction of IgA in

vivo. Immunity, 2000. 13(4): p. 443-51.

63. Fecteau, J.F. and S. Neron, CD40 stimulation of human peripheral B lymphocytes: distinct response

from naive and memory cells. J Immunol, 2003. 171(9): p. 4621-9.

64. De Vos, J., et al., Microarray-based understanding of normal and malignant plasma cells. Immunol Rev, 2006. 210: p. 86-104.

65. Tarte, K., et al., Generation of polyclonal plasmablasts from peripheral blood B cells: a normal

counterpart of malignant plasmablasts. Blood, 2002. 100(4): p. 1113-22.

66. Wijdenes, J., et al., A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol, 1996. 94(2): p. 318-23.

67. Bernfield, M., et al., Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 1999. 68: p. 729-77.

68. Reijmers, R.M., M. Spaargaren, and S.T. Pals, Heparan sulfate proteoglycans in the control of B cell

development and the pathogenesis of multiple myeloma. FEBS J, 2013.

69. Coombe, D.R., Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol, 2008. 86(7): p. 598-607.

70. Reijmers, R.M., et al., Impaired lymphoid organ development in mice lacking the heparan sulfate

modifying enzyme glucuronyl C5-epimerase. J Immunol, 2010. 184(7): p. 3656-64.

71. Kimberley, F.C., et al., The proteoglycan (heparan sulfate proteoglycan) binding domain of APRIL

serves as a platform for ligand multimerization and cross-linking. FASEB J, 2009. 23(5): p. 1584-95.

72. Richardson, P.G., et al., Managing multiple myeloma: the emerging role of novel therapies and

adapting combination treatment for higher risk settings. Br J Haematol, 2011.

73. Moreaux, J., et al., BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6

74. Carl Simard, S.N., Phospho-specific flow cytometry enabling rapid functional analysis of bone marrow

samples from patients with multiple myeloma, 2012: Quebec.

75. Jackson, D.E., et al., Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is associated

with a naive B-cell phenotype in human tonsils. Tissue Antigens, 2000. 56(2): p. 105-16.

76. Deaglio, S., et al., Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig

superfamily member. J Immunol, 1998. 160(1): p. 395-402.

77. Sagawa, K., et al., The protein-tyrosine phosphatase SHP-2 associates with tyrosine-phosphorylated

adhesion molecule PECAM-1 (CD31). J Biol Chem, 1997. 272(49): p. 31086-91.

78. Newman, P.J., Switched at birth: a new family for PECAM-1. J Clin Invest, 1999. 103(1): p. 5-9. 79. Medina, F., C. Segundo, and J.A. Brieva, Purification of human tonsil plasma cells: pre-enrichment

step by immunomagnetic selection of CD31(+) cells. Cytometry, 2000. 39(3): p. 231-4.

80. Kaczmarek, E., et al., Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem, 1996. 271(51): p. 33116-22.

81. Maliszewski, C.R., et al., The CD39 lymphoid cell activation antigen. Molecular cloning and structural

characterization. J Immunol, 1994. 153(8): p. 3574-83.

82. Borsellino, G., et al., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of

extracellular ATP and immune suppression. Blood, 2007. 110(4): p. 1225-32.

83. Pulte, E.D., et al., CD39/NTPDase-1 activity and expression in normal leukocytes. Thromb Res, 2007. 121(3): p. 309-17.

84. Calame, K.L., Plasma cells: finding new light at the end of B cell development. Nat Immunol, 2001.

2(12): p. 1103-8.

85. Cenci, S. and R. Sitia, Managing and exploiting stress in the antibody factory. FEBS Lett, 2007.

581(19): p. 3652-7.

86. Auner, H.W., et al., The life span of short-lived plasma cells is partly determined by a block on

activation of apoptotic caspases acting in combination with endoplasmic reticulum stress. Blood,

2010. 116(18): p. 3445-55.

87. Hibi, T. and H.M. Dosch, Limiting dilution analysis of the B cell compartment in human bone marrow. Eur J Immunol, 1986. 16(2): p. 139-45.

88. Conrad, R.E. and J.S. Ingraham, Rate of hemolytic antibody production by single cells in vivo in

rabbits. J Immunol, 1974. 112(1): p. 17-25.

89. Calame, K., Transcription factors that regulate memory in humoral responses. Immunol Rev, 2006.

211: p. 269-79.

90. Fairfax, K.A., et al., Plasma cell development: from B-cell subsets to long-term survival niches. Semin Immunol, 2008. 20(1): p. 49-58.

91. Rozanski, C.H., et al., Sustained antibody responses depend on CD28 function in bone marrow-

resident plasma cells. J Exp Med, 2011. 208(7): p. 1435-46.

92. Mesin, L., et al., Long-lived plasma cells from human small intestine biopsies secrete

immunoglobulins for many weeks in vitro. J Immunol, 2011. 187(6): p. 2867-74.

93. van Laar, J.M., et al., Sustained secretion of immunoglobulin by long-lived human tonsil plasma cells. Am J Pathol, 2007. 171(3): p. 917-27.

94. Manz, R.A., A. Thiel, and A. Radbruch, Lifetime of plasma cells in the bone marrow. Nature, 1997.

388(6638): p. 133-4.

95. Mercier, F.E., C. Ragu, and D.T. Scadden, The bone marrow at the crossroads of blood and

immunity. Nat Rev Immunol, 2012. 12(1): p. 49-60.

96. Manz, R.A., et al., Maintenance of serum antibody levels. Annu Rev Immunol, 2005. 23: p. 367-86. 97. Haaijman, J.J., H.R. Schuit, and W. Hijmans, Immunoglobulin-containing cells in different lymphoid

organs of the CBA mouse during its life-span. Immunology, 1977. 32(4): p. 427-34.

98. Hargreaves, D.C., et al., A coordinated change in chemokine responsiveness guides plasma cell

movements. J Exp Med, 2001. 194(1): p. 45-56.

99. Cassese, G., et al., Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-

100. Tokoyoda, K., et al., Organization of immunological memory by bone marrow stroma. Nat Rev Immunol, 2010. 10(3): p. 193-200.

101. Chu, V.T., et al., The long-term survival of plasma cells. Scand J Immunol, 2011. 73(6): p. 508-11. 102. Nie, Y., et al., The role of CXCR4 in maintaining peripheral B cell compartments and humoral

immunity. J Exp Med, 2004. 200(9): p. 1145-56.

103. Belnoue, E., et al., Homing and adhesion patterns determine the cellular composition of the bone

marrow plasma cell niche. J Immunol, 2012. 188(3): p. 1283-91.

104. Underhill, G.H., et al., IgG plasma cells display a unique spectrum of leukocyte adhesion and homing

molecules. Blood, 2002. 99(8): p. 2905-12.

105. Burjanadze, M., et al., [APRIL, the spring of plasmacytes]. Med Sci (Paris), 2009. 25(1): p. 5-8. 106. Mackay, F., P.A. Silveira, and R. Brink, B cells and the BAFF/APRIL axis: fast-forward on

autoimmunity and signaling. Curr Opin Immunol, 2007. 19(3): p. 327-36.

107. Day, E.S., et al., Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors

BAFFR/BR3 and BCMA. Biochemistry, 2005. 44(6): p. 1919-31.

108. Dillon, S.R., et al., An APRIL to remember: novel TNF ligands as therapeutic targets. Nat Rev Drug Discov, 2006. 5(3): p. 235-46.

109. Rankin, S.M., Chemokines and adult bone marrow stem cells. Immunol Lett, 2012. 145(1-2): p. 47- 54.

110. Mendez-Ferrer, S., et al., Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008. 452(7186): p. 442-7.

111. Mendez-Ferrer, S., M. Battista, and P.S. Frenette, Cooperation of beta(2)- and beta(3)-adrenergic

receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci, 2010. 1192: p. 139-44.

112. Rajagopal, S., et al., Beta-arrestin- but not G protein-mediated signaling by the "decoy" receptor

CXCR7. Proc Natl Acad Sci U S A, 2010. 107(2): p. 628-32.

113. Gratwohl, A., et al., Hematopoietic stem cell transplantation: a global perspective. JAMA, 2010.

303(16): p. 1617-24.

114. Greenbaum, A.M. and D.C. Link, Mechanisms of G-CSF-mediated hematopoietic stem and

progenitor mobilization. Leukemia, 2011. 25(2): p. 211-7.

115. Caraux, A., et al., Mobilization of plasma cells in healthy individuals treated with granulocyte colony-

stimulating factor for haematopoietic stem cell collection. Immunology, 2011. 132(2): p. 266-72.

116. Lapidot, T. and I. Petit, Current understanding of stem cell mobilization: the roles of chemokines,

proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol, 2002. 30(9): p.

973-81.

117. Seggewiss, R. and H. Einsele, Immune reconstitution after allogeneic transplantation and expanding

options for immunomodulation: an update. Blood, 2010. 115(19): p. 3861-8.

118. Tomblyn, M., et al., Guidelines for preventing infectious complications among hematopoietic cell

transplantation recipients: a global perspective. Biol Blood Marrow Transplant, 2009. 15(10): p. 1143-

238.

119. Voss, M.H., D.R. Feldman, and R.J. Motzer, High-dose chemotherapy and stem cell transplantation

for advanced testicular cancer. Expert Rev Anticancer Ther, 2011. 11(7): p. 1091-103.

120. Lapidot, T., A. Dar, and O. Kollet, How do stem cells find their way home? Blood, 2005. 106(6): p. 1901-10.

121. Bosch, M., F.M. Khan, and J. Storek, Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol, 2012. 19(4): p. 324-35.

122. Szabolcs, P. and M.S. Cairo, Unrelated umbilical cord blood transplantation and immune

reconstitution. Semin Hematol, 2010. 47(1): p. 22-36.

123. Storek, J., et al., Immune reconstitution after allogeneic marrow transplantation compared with blood

stem cell transplantation. Blood, 2001. 97(11): p. 3380-9.

124. Miller, J.J., 3rd and L.J. Cole, The radiation resistance of long-lived lymphocytes and plasma cells in

125. Blin, N., et al., Impact of donor-recipient major ABO mismatch on allogeneic transplantation outcome

according to stem cell source. Biol Blood Marrow Transplant, 2010. 16(9): p. 1315-23.

126. Rubinstein, P., et al., Outcomes among 562 recipients of placental-blood transplants from unrelated

donors. N Engl J Med, 1998. 339(22): p. 1565-77.

127. Okas, M., et al., Clinical expansion of cord blood-derived T cells for use as donor lymphocyte infusion

after cord blood transplantation. J Immunother, 2010. 33(1): p. 96-105.

128. Leen, A.M., et al., Monoculture-derived T lymphocytes specific for multiple viruses expand and

produce clinically relevant effects in immunocompromised individuals. Nat Med, 2006. 12(10): p.

1160-6.

129. Hanley, P.J., et al., Functionally active virus-specific T cells that target CMV, adenovirus, and EBV

can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes.

Blood, 2009. 114(9): p. 1958-67.

130. Rossig, C. and M.K. Brenner, Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther, 2004. 10(1): p. 5-18.

131. Thomson, C.A., et al., Pandemic H1N1 Influenza Infection and Vaccination in Humans Induces

Cross-Protective Antibodies that Target the Hemagglutinin Stem. Front Immunol, 2012. 3: p. 87.

132. Cocco, M., et al., In vitro generation of long-lived human plasma cells. J Immunol, 2012. 189(12): p. 5773-85.

133. Huggins, J., et al., CpG DNA activation and plasma-cell differentiation of CD27- naive human B cells. Blood, 2007. 109(4): p. 1611-9.

134. Jourdan, M., et al., An in vitro model of differentiation of memory B cells into plasmablasts and

plasma cells including detailed phenotypic and molecular characterization. Blood, 2009. 114(25): p.

5173-81.

135. Neron, S., et al., Tuning of CD40-CD154 interactions in human B-lymphocyte activation: a broad

array of in vitro models for a complex in vivo situation. Arch Immunol Ther Exp (Warsz), 2011. 59(1):

p. 25-40.

136. Banchereau, J. and F. Rousset, Growing human B lymphocytes in the CD40 system. Nature, 1991.

353(6345): p. 678-9.

137. Neron, S., et al., Induction of LFA-1 independent human B cell proliferation and differentiation by

binding of CD40 with its ligand. Immunol Invest, 1996. 25(1-2): p. 79-89.

138. Neron, S., A. Roy, and N. Dumont, Large-scale in vitro expansion of polyclonal human switched-

memory B lymphocytes. PLoS One, 2012. 7(12): p. e51946.

139. Rochette, J.T., Une niche pour la différenciation: la réponse in vitro des lymphocytes B à mémoire

aux cytokines de leur environnement, in Département de biochimie, de micrrobiologie et de bio- informatique2011, Université Laval: Québec. p. 109.

140. Nagumo, H. and K. Agematsu, Synergistic augmentative effect of interleukin-10 and CD27/CD70

interactions on B-cell immunoglobulin synthesis. Immunology, 1998. 94(3): p. 388-94.

141. Kobata, T., et al., CD27-CD70 interactions regulate B-cell activation by T cells. Proc Natl Acad Sci U S A, 1995. 92(24): p. 11249-53.

142. Borst, J., J. Hendriks, and Y. Xiao, CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol, 2005. 17(3): p. 275-81.

143. Avery, D.T., et al., Increased expression of CD27 on activated human memory B cells correlates with

their commitment to the plasma cell lineage. J Immunol, 2005. 174(7): p. 4034-42.

144. Sonia Neron, G.C., Nellie Dumont, Annie Roy, Jessie F. Fecteau and Marie-Ève McNeil, Contribution

of CD40-activated Naïve B Lymphocytes in the Modulation of CD27+ Memory B Cell Growth and Differentiation in Advances in Medecine and Biology, L.V. Berhardt, 2011, Nova Scicence Publishers.

p. 145-169.

145. Neron, S., et al., Characterization of mononuclear cells remaining in the leukoreduction system

chambers of apheresis instruments after routine platelet collection: a new source of viable human blood cells. Transfusion, 2007. 47(6): p. 1042-9.

146. Munson, M.E., An improved technique for calculating relative response in cellular proliferation

experiments. Cytometry A, 2010. 77(10): p. 909-10.

147. Krutzik, P.O. and G.P. Nolan, Fluorescent cell barcoding in flow cytometry allows high-throughput

drug screening and signaling profiling. Nat Methods, 2006. 3(5): p. 361-8.

148. Kotecha, N., P.O. Krutzik, and J.M. Irish, Web-based analysis and publication of flow cytometry

experiments. Curr Protoc Cytom, 2010. Chapter 10: p. Unit10 17.

149. Costes, V., et al., The Mi15 monoclonal antibody (anti-syndecan-1) is a reliable marker for quantifying

plasma cells in paraffin-embedded bone marrow biopsy specimens. Hum Pathol, 1999. 30(12): p.

1405-11.

150. Kainulainen, V., et al., Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of

acute wound fluids. J Biol Chem, 1998. 273(19): p. 11563-9.

151. Carbone, A., et al., Establishment and characterization of EBV-positive and EBV-negative primary

effusion lymphoma cell lines harbouring human herpesvirus type-8. Br J Haematol, 1998. 102(4): p.

1081-9.

152. Dore, J.M., et al., Identification and location on syndecan-1 core protein of the epitopes of B-B2 and

B-B4 monoclonal antibodies. FEBS Lett, 1998. 426(1): p. 67-70.

153. Kawano, M.M., et al., Differentiation of early plasma cells on bone marrow stromal cells requires

interleukin-6 for escaping from apoptosis. Blood, 1995. 85(2): p. 487-94.

154. Moore, K.W., et al., Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 2001. 19: p. 683-765.

155. Moreaux, J., et al., APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma

cells to form an essential survival loop. Eur J Haematol, 2009. 83(2): p. 119-29.

156. Haribabu, B., et al., Regulation of human chemokine receptors CXCR4. Role of phosphorylation in

desensitization and internalization. J Biol Chem, 1997. 272(45): p. 28726-31.

157. Forster, R., et al., Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on

various leukocyte subsets: rapid internalization and recycling upon activation. J Immunol, 1998.

160(3): p. 1522-31.

158. Neron, S., et al., Effective in vitro expansion of CD40-activated human B lymphocytes in a defined

bovine protein-free medium. J Immunol Methods, 2011. 371(1-2): p. 61-9.

159. Wols, H.A.M., Plasma Cells, in Encyclopedia of Life Sciences2005, John Wiley & Sons.

Documents relatifs