• Aucun résultat trouvé

J. C Baudez et al [52] ont appliqué la méthode d’adimensionnalisation développée par P Coussot [53] sur les rhéogrammes obtenus par la rhéométrie rotative Pour une boue

2.12 Conclusion de l’étude bibliographique

L’étude bibliographique sur la rhéologie nous précise d’abord les propriétés rhéologiques pouvant être identifiées : l’élasticité, la viscosité, le seuil de contrainte, les indices de consistance et de coulabilité. Ensuite, les travaux antérieurs réalisés sur les boues ont mis en évidence les limitations de la rhéométrie conventionnelle pour la caractérisation des boues très résistantes à l’écoulement sous contrainte tangentielle : soit la boue se fracture pendant la mesure, soit les prétraitements comme le tamisage et le pré-cisaillement sont mis en œuvre pour rendre la boue plus facile à déformer en continu. Donc, d’après cette étude sur les méthodes de la caractérisation des matériaux très déformables et de consistance similaire aux boues concentrées, nous fixons notre plan de travail :

- Adapter les tests empiriques d’affaissement et de limite de plasticité pour déterminer l’état physique (solide ou fluide) des boues concentrées.

- Selon l’état physique déterminé, nous pouvons développer un protocole d’essais en tenant compte des facteurs d’impact identifiés dans la littérature. Si les boues concentrées sont fluides, nous utiliserons la méthode rhéométrique. Si elles sont solides, nous utiliserons les essais en compression uniaxiale. En plus, nous pouvons appliquer la méthode d’analyse de texture avec les résultats issus de compression uniaxiale cyclique pour déterminer les paramètres texturaux des boues.

- Les résultats expérimentaux nous serviront pour identifier et modéliser le comportement rhéologique des boues sous une sollicitation spécifique et pour déterminer les valeurs des propriétés rhéologiques.

Le développement de la méthodologie basé sur ce plan de travail est donc présenté dans

2.13 Bibliographie

[1] P. Arlabosse, J.-H. Ferrasse, D. Lecomte, M. Crine, Y. Dumont, and A. Léonard, “Efficient Sludge Thermal Processing: From Drying to Thermal Valorization,” in Modern Drying Technology: Energy Savings, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014.

[2] “Déchets : Chiffres-clés.” Agence de l’Environnement et de la Maîtrise de l’Energie, 2015.

[3] P. Oswald, Rhéophysique ou comment coule la matière. France: Belin, 2005.

[4] P. Coussot, Rhéophysique - La matière dans tous ses états. France: EDP Sciences/CNRS Editions, 2012. [5] J. SCHER, “Rhéologie, texture et texuration des produits alimentaires,” Tech. Ing. Agroaliment., vol. F2, no. F3300, p. F3300.1-F3300.13, 2006. [6] J.-L. Grossiord and A. Ponton, La mesure en Rhéologie - Des avancées récentes aux perspectives. France: EDP Sciences, 2013. [7] A. Y. Malkin and A. I. Isayev, Rheology Concepts, Methods, & Applications. Canada: ChemTec Publishing, 2006. [8] F. A. Morrison, Understanding Rheology. USA: Oxford University Press, 2001. [9] R. I. Tanner and K. Walters, Rheology : An Historical Perspective. UK: Elsevier Science, 1998.

[10] A.-C. Roudot, Rhéologie et analyse de texture des aliments. France: Tec & Doc Lavoisier, 2001.

[11] H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology. The Netherlands: Elsevier Science, 1998.

[12] R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology. USA: Elsevier Science, 2011.

[13] P. Coussot, “Yield stress fluid flows: A review of experimental data,” J. Non- Newton. Fluid Mech., vol. 211, pp. 31–49, 2014.

[14] F. Mainardi and G. Spada, “Creep, relaxation and viscosity properties for basic fractional models in rheology,” Eur. Phys. J. Spec. Top., vol. 193, no. 1, pp. 133–160, 2011. [15] P. K. Sharma, H. J. Busscher, T. Terwee, S. A. Koopmans, and T. G. van Kooten, “A comparative study on the viscoelastic properties of human and animal lenses,” Exp. Eye Res., vol. 93, no. 5, pp. 681–688, 2011.

[16] Y. M. Lin, T. Lotti, P. K. Sharma, and M. C. M. van Loosdrecht, “Apatite accumulation enhances the mechanical property of anammox granules,” Water Res., vol. 47, no. 13, pp. 4556–4566, 2013.

[17] Y. Lin, M. de Kreuk, M. C. M. van Loosdrecht, and A. Adin, “Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant,” Water Res., vol. 44, no. 11, pp. 3355–3364, 2010.

[18] D. François, “Lois de comportement des métaux - Élastoplasticité. Viscoplasticité,” Tech. Ing., vol. 44, no. M4152, p. M4152.1-M4152.23, 2005.

[19] B. Chenal and J. Driver, “Écrouissage d’alliages d’aluminium,” Tech. Ing., no. M230, p. M230.1-M230.18, 1999.

[20] H. Kleemola and M. Nieminen, “On the strain-hardening parameters of metals,” Metall. Trans., vol. 5, no. 8, pp. 1863–1866, 1974.

[21] H. Paruz and D. V. Edmonds, “The strain hardening behaviour of dual-phase steel,” Mater. Sci. Eng., vol. A117, pp. 67–74, 1989.

[22] S. Sharma and S. Bhattacharya, “Strain and strain rate dependence of gellan, agar and agar–gellan gels as model systems,” J. Food Eng., vol. 141, pp. 93–98, 2014.

[23] J. Lemaitre, J.-L. Chaboche, A. Benalla, and R. Desmorat, Mécanique des Matériaux Solides, 3ème édition. France: Dunod, 2009.

[24] P. Coussot and C. Ancey, Rhéophysique des pâtes et des suspensions. France: EDP Sciences, 1999.

[25] S. Degallaix and B. Ilschner, Caractérisation expérimentale des matériaux I Propriétés physiques, thermiques et mécanique, 1ère édition. France: Presses polytechniques et universitaires romandes, 2007.

[26] P. Coussot, Mudflow Rheology and Dynamics. USA: Taylor & Francis, 1997.

[27] T. Tadros, Rheology of Dispersions, 1st edition. Germany: WILEY-VCH Verlag GmbH & Co., 2010.

[28] L. Bilmes, “A Rheological Chart,” Nature, vol. 150, p. 432, 1942.

[29] R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd edition. UK: Butterworth-Heinemann, 2011.

[30] L. Choplin, P. Marchal, C. Baravian, and D. Langevin, “Rhéologie et produits formulés complexes,” Tech. Ing., no. J2145, p. J2145.1-J2145.23, 2010.

[31] N. Eshtiaghi, F. Markis, S. D. Yap, J.-C. Baudez, and P. Slatter, “Rheological characterisation of municipal sludge: A review,” Water Res., vol. 47, no. 15, pp. 5493– 5510, 2013. [32] J. Murata, “Flow and deformation of fresh concrete,” Matér. Constr., vol. 17, no. 2, pp. 117–129, 1984. [33] "Structural Engineering Resources", http://structx.com/Material_Properties_009. html [34] Y. Berthaud, P. Buhan (de), and N. Schmitt, Aide-mémoire de Mécanique des Sols, 2ème édition. France: Dunod, 2013. [35] “Western Kentucky University,” people.wku.edu, 2016. . [36] G. Bigot, “Les nouvelles normes françaises des essais de mesure en laboratoire de la résistance au cisaillement des sols,” 2016. [Online]. Available: http://www.geotech- fr.org.

[37] S. N. Bhattacharya, “Flow characteristics of primary and digested sewage sludge,” Rheol. Acta, vol. 20, no. 3, pp. 288–298, 1981.

[38] “Friction of sewage sludge in pipes,” American Society of Civil Engineers, USA, Committee Report, 1929.

[39] H. E. Babbitt and D. H. Caldwell, “Laminar Flow Of Sludges In Pipes With Special Reference To Sewage Sludge,” University of Illinois Bulletin, USA, 1939.

[40] I. Seyssiecq, M. Karrabi, and N. Roche, “In situ rheological characterisation of wastewater sludge: Comparison of stirred bioreactor and pipe flow configurations,” Chem. Eng. J., vol. 259, pp. 205–212, 2015.

[41] R. Kotzé, R. Haldenwang, V. Fester, and W. Rössle, “A feasibility study of in-line rheological characterisation of a wastewater sludge using ultrasound technology,” Water SA, vol. 40, no. 4, pp. 579–586, 2014.

[42] R. Kotzé, R. Haldenwang, V. Fester, and W. Rössle, “In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology,” Water SA, vol. 41, no. 5, pp. 683–690, 2015.

[43] C. Durán, Y. Fayolle, Y. Pechaud, A. Cockx, and S. Gillot, “Impact of suspended solids on the activated sludge non-newtonian behaviour and on oxygen transfer in a bubble column,” Chem. Eng. Sci., vol. 141, pp. 154–165, 2016.

[44] W. D. Hatfield, “The Viscosity or Pseudo-Plastic Properties of Sewage Sludges,” Sew. Works J., vol. 10, no. 1, pp. 3–25, 1938.

Sanit. Eng. Div., 1967.

[46] P. Battistoni, G. Pava, F. Cecchi, and P. Pavan, “Rheology of sludge from semi-dry anaerobic digestion of municipal solid waste,” Environ. Technol., vol. 12, no. 10, pp. 897– 905, 1991.

[47] P. Battistoni, “Pre-treatment, measurement execution procedure and waste characteristics in the rheology of sewage sludges and the digested organic fraction of municipal solid wastes,” Water Sci. Technol., vol. 36, no. 11, pp. 33–41, 1997.

[48] V. Lotito, L. Spinosa, G. Mininni, and R. Antonacci, “The rheology of sewage sludge at different steps of treatment,” Water Sci. Technol., vol. 36, no. 11, pp. 79–85, 1997. [49] I. Seyssiecq, J.-H. Ferrasse, and N. Roche, “State-of-the-art: rheological characterisation of wastewater treatment sludge,” Biochem. Eng. J., vol. 16, no. 1, pp. 41– 56, 2003.

[50] J. Jiang, J. Wu, S. Poncin, and H. Z. Li, “Rheological characteristics of highly concentrated anaerobic digested sludge,” Biochem. Eng. J., vol. 86, pp. 57–61, 2014. [51] G. Feng, L. Liu, and W. Tan, “Effect of Thermal Hydrolysis on Rheological Behavior of Municipal Sludge,” Ind. Eng. Chem. Res., vol. 53, no. 27, pp. 11185–11192, 2014.

[52] J. C. Baudez and P. Coussot, “Rheology of aging, concentrated, polymeric suspensions: Application to pasty sewage sludges,” Soc. Rheol., vol. 45, no. 5, pp. 1123– 1139, 2001.

[53] P. Coussot, “Structuaral Similarity and Transition from Newtonian to Non- newtonian Behavior for Clay-Water Suspensions,” Phys. Rev. Lett., vol. 74, no. 20, pp. 3971–3974, 1995.

[54] J.-C. Baudez, A. Ayol, and P. Coussot, “Practical determination of the rheological behavior of pasty biosolids,” J. Environ. Manage., vol. 72, no. 3, pp. 181–188, 2004.

[55] N. Tixier, G. Guibaud, and M. Baudu, “Determination of some rheological parameters for the characterization of activated sludge,” Bioresour. Technol., vol. 90, no. 2, pp. 215–220, 2003.

[56] N. Tixier, G. Guibaud, and M. Baudu, “Towards a rheological parameter for activated sludge bulking characterisation,” Enzyme Microb. Technol., vol. 33, no. 2–3, pp. 292–298, 2003.

[57] C. Ségalen, E. Dieudé-Fauvel, and J. C. Baudez, “Electrical and rheological properties of sewage sludge – Impact of the solid content,” Water Res., vol. 82, pp. 25–36, 2015. [58] C. Ségalen, E. Dieudé-Fauvel, J. Clément, and J. C. Baudez, “Relationship between electrical and rheological properties of sewage sludge – Impact of temperature,” Water Res., vol. 73, pp. 1–8, 2015. [59] B. C. O’Kelly, “Mechanical properties of dewatered sewage sludge,” Waste Manag., vol. 25, no. 1, pp. 47–52, 2005. [60] B. C. O’Kelly, “Geotechnical properties of municipal sewage sludge,” Geotech. Geol. Eng., no. 24, pp. 833–850, 2006.

[61] B. C. O’Kelly, “Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge,” Waste Manag., vol. 28, no. 8, pp. 1395–1405, 2008. [62] K. Wichmann and A. Riehl, “Mechanical properties of waterwork sludges — Shear strength,” Water Sci. Technol., vol. 36, no. 11, pp. 43–50, 1997.

[63] T. Ruiz, T. Kaosol, and C. Wisniewski, “Dewatering of urban residual sludges: Filterability and hydro-textural characteristics of conditioned sludge,” Sep. Purif. Technol., vol. 72, no. 3, pp. 275–281, 2010.

[64] T. Ruiz and C. Wisniewski, “Correlation between dewatering and hydro-textural characteristics of sewage sludge during drying,” Sep. Purif. Technol., vol. 61, no. 2, pp.

204–210, 2008.

[65] T. Ruiz, C. Wisniewski, T. Kaosol, and F. Persin, “Influence of Organic Content in Dewatering and Shrinkage of Urban Residual Sludge Under Controlled Atmospheric Drying,” Process Saf. Environ. Prot., vol. 85, no. 1, pp. 104–110, 2007.

[66] N. Pashias, D. V. Boger, J. Summers, and D. J. Glenister, “A fifty cent rheometer for yield stress measurement,” J. Rheol., vol. 40, no. 6, pp. 1179–1189, 1996.

[67] J. C. Baudez, F. Chabot, and P. Coussot, “Rheological interpretation of the slump test,” Appl. Rheol., no. 12, pp. 133–141, 2002.

[68] G. Agoda-Tandjawa, E. Dieudé-Fauvel, R. Girault, and J.-C. Baudez, “Using water activity measurements to evaluate rheological consistency and structure strength of sludge,” Chem. Eng. J., vol. 228, pp. 799–805, 2013.

[69] F. Markis, J.-C. Baudez, R. Parthasarathy, P. Slatter, and N. Eshtiaghi, “The apparent viscosity and yield stress of mixtures of primary and secondary sludge: Impact of volume fraction of secondary sludge and total solids concentration,” Chem. Eng. J., vol. 288, pp. 577–587, 2016. [70] T. Tao, X. F. Peng, D. J. Lee, and J. P. Hsu, “Micromechanics of wastewater sludge floc: Force–deformation relationship at cyclic freezing and thawing,” J. Colloid Interface Sci., vol. 298, no. 2, pp. 860–868, 2006. [71] Q. Chen and Y. Wang, “Influence of single- and dual-flocculant conditioning on the geometric morphology and internal structure of activated sludge,” Powder Technol., vol. 270, Part A, pp. 1–9, 2015. [72] P. Jarvis, B. Jefferson, J. Gregory, and S. A. Parsons, “A review of floc strength and breakage,” Water Res., vol. 39, no. 14, pp. 3121–3137, 2005.

[73] M. Ruiz-Hernando, J. Labanda, and J. Llorens, “Structural model to study the influence of thermal treatment on the thixotropic behaviour of waste activated sludge,” Chem. Eng. J., vol. 262, pp. 242–249, 2015.

[74] J.-C. Baudez, P. Coussot, and F. Thirion, “Rhéologie des boues de stations d’épuration : études préliminaires pour la maîtrise des stockages et épandages,” Ingénieries - E T, no. 15, pp. 33–46, 1998.

[75] P. Nielsen, B. Frolund, and K. Keiding, “Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage,” Appl. Microbiol. Biotechnol., vol. 44, no. 6, pp. 823–830, 1996.

[76] C. S. Laspidou and B. E. Rittmann, “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass,” Water Res., vol. 36, no. 11, pp. 2711–2720, 2002.

[77] D. Q. Yuan, Y. L. Wang, and J. Feng, “Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge,” Water Res., vol. 56, pp. 56–65, 2014.

[78] M. Ruiz-Hernando, E. Cabanillas, J. Labanda, and J. Llorens, “Ultrasound, thermal and alkali treatments affect extracellular polymeric substances (EPSs) and improve waste activated sludge dewatering,” Process Biochem., vol. 50, no. 3, pp. 438–446, 2015. [79] S. Yang and X. Li, “Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions,” Process Biochem., vol. 44, no. 1, pp. 91–96, 2009. [80] P. Larsen, J. L. Nielsen, T. C. Svendsen, and P. H. Nielsen, “Adhesion characteristics of nitrifying bacteria in activated sludge,” Water Res., vol. 42, no. 10–11, pp. 2814–2826, 2008. [81] D. Mowla, H. N. Tran, and D. G. Allen, “A review of the properties of biosludge and its relevance to enhanced dewatering processes,” Biomass Bioenergy, vol. 58, pp. 365–

378, 2013.

[82] M. Mori, J. Isaac, I. Seyssiecq, and N. Roche, “Effect of measuring geometries and of exocellular polymeric substances on the rheological behaviour of sewage sludge,” Chem. Eng. Res. Des., vol. 86, no. 6, pp. 554–559, 2008.

[83] G.-J. Liu, Y. Liu, Z.-Y. Wang, Y.-H. Lei, Z.-A. Chen, and L.-W. Deng, “The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure,” Waste Manag., vol. 38, pp. 449–454, 2015.

[84] S. Mbaye, E. Dieudé-Fauvel, and J. C. Baudez, “Comparative analysis of anaerobically digested wastes flow properties,” Waste Manag., vol. 34, no. 11, pp. 2057– 2062, 2014.

[85] B. Li, F. Wang, Y. Chi, and J. H. Yan, “Adhesion and Cohesion Characteristics of Sewage Sludge During Drying,” Dry. Technol., vol. 32, no. 13, pp. 1598–1607, 2014. [86] E. Farno, J. C. Baudez, R. Parthasarathy, and N. Eshtiaghi, “Impact of temperature and duration of thermal treatment on different concentrations of anaerobic digested sludge: Kinetic similarity of organic matter solubilisation and sludge rheology,” Chem. Eng. J., vol. 273, pp. 534–542, 2015.

[87] B. Ruffino, G. Campo, G. Genon, E. Lorenzi, D. Novarino, G. Scibilia, and M. Zanetti, “Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment,” Bioresour. Technol., vol. 175, pp. 298–308, 2015.

[88] L. Appels, J. Degrève, B. Van der Bruggen, J. Van Impe, and R. Dewil, “Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion,” Bioresour. Technol., vol. 101, no. 15, pp. 5743–5748, 2010. [89] E. Farno, J. C. Baudez, R. Parthasarathy, and N. Eshtiaghi, “Rheological characterisation of thermally-treated anaerobic digested sludge: Impact of temperature and thermal history,” Water Res., vol. 56, pp. 156–161, 2014.

[90] S. Baroutian, N. Eshtiaghi, and D. J. Gapes, “Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration,” Bioresour. Technol., vol. 140, pp. 227–233, 2013.

[91] T. Kudra, “Sticky Region in Drying—Definition and Identification,” Dry. Technol., vol. 21, no. 8, pp. 1457–1469, 2003.

[92] J. C. Baudez, P. Slatter, and N. Eshtiaghi, “The impact of temperature on the rheological behaviour of anaerobic digested sludge,” Chem. Eng. J., vol. 215–216, pp. 182–187, 2013.

[93] J. Beckley and S. Banerjee, “Operational issues with impulse drying sludge,” Water Sci. Technol., vol. 40, no. 11–12, pp. 163–168, 1999.

[94] S. R. Jing, Y. F. Lin, Y. M. Lin, C. S. Hsu, C. S. Huang, and D. Y. Lee, “Evaluation of effective conditioners for enhancing sludge dewatering and subsequent detachment from filter cloth,” J. Environ. Sci. Health Part A, vol. 34, no. 7, pp. 1517–1531, 1999. [95] T.-I. Ohm, J.-S. Chae, J.-E. Kim, H. Kim, and S.-H. Moon, “A study on the dewatering of industrial waste sludge by fry-drying technology,” J. Hazard. Mater., vol. 168, no. 1, pp. 445–450, 2009. [96] S. E. Papadakis and R. E. Bahu, “The Sticky Issues of Drying,” Dry. Technol., vol. 10, no. 4, pp. 817–837, 1992. [97] B. Peeters, R. Dewil, J. F. Van Impe, L. Vernimmen, and I. Y. Smets, “Using a Shear Test-Based Lab Protocol to Map the Sticky Phase of Activated Sludge,” Environ. Eng. Sci., vol. 28, no. 1, pp. 81–85, 2010.

[98] H. Li, S. Zou, and C. Li, “Liming Pretreatment Reduces Sludge Build-Up on the Dryer Wall during Thermal Drying,” Dry. Technol., vol. 30, no. 14, pp. 1563–1569, 2012.

[99] C. Charlou, “Caractérisation et modélisation de l’écoulement des boues résiduaires dans un sécheur à palettes,” Université de Toulouse, France, 2014.

[100] F. Liang, X. Chen, H. Mao, M. Sauceau, P. Arlabosse, F. Wang, and Y. Chi, “The Microstructure: A Critical Factor In Characterising The Sticky Properties Of Highly Concentrated Sewage Sludge,” presented at the 6th International Conference on Engineering for Waste and Biomass Valorisation, France, 2016.

[101] J. H. Ferrasse, P. Arlabosse, and D. Lecomte, “Heat, Momentum, and Mass Transfer Measurements in Indirect Agitated Sludge Dryer,” Dry. Technol., vol. 20, no. 4–5, pp. 749– 769, 2002.

[102] P. Arlabosse, S. Chavez, and D. Lecomte, “Method for Thermal Design of Paddle Dryers: Application to Municipal Sewage Sludge,” Dry. Technol., vol. 22, no. 10, pp. 2375– 2393, 2004.

[103] J. Hort, G. Grys, and J. Woodman, “The relationships between the chemical, rheological and textural properties of Cheddar cheese,” Le Lait, vol. 77, no. 5, pp. 587– 600, 1997.

[104] J. F. Steffe, Rheological Methods in Food Process Engineering, 2nd edition. USA: Freeman Press, 1996.

[105] J. Yu, P. h. s. Santos, and O. h. Campanella, “A Study to Characterize the Mechanical Behavior of Semisolid Viscoelastic Systems Under Compression Chewing – Case Study of Agar Gel,” J. Texture Stud., vol. 43, no. 6, pp. 459–467, 2012.

[106] Y. M. Lin, P. K. Sharma, and M. C. M. van Loosdrecht, “The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge,” Water Res., vol. 47, no. 1, pp. 57–65, 2013. [107] C. ZHANG, P. CAO, C. PU, J. LIU, and P. WEN, “Integrated identification method of rheological model of sandstone in Sanmenxia bauxite,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1859–1865, 2014.

3 MATERIELS ET METHODES

71