• Aucun résultat trouvé

3 Analyse de compléments alimentaires pour sportifs

3.5 Matériels et méthodes

3.5.4 Chromatographie

Pour obtenir le produit pur d’oxilofrine l’échantillon correspondant à la formulation 16 a été purifié dans les conditions génériques explicitées ci-après :

3.5.4.1.1 Mise au point analytique

Pour mettre au point les conditions analytiques 3 gélules de la formulation 16 ont été dissoutes dans 6 mL d’un mélange acétonitrile-H2O (80-20 v-v). Nous avons travaillé sur une UPLC Waters Acquity muni d’un double mode de détection PDA MS simple quadripôle (mass spectrometry).

La colonne utilisée est une colonne Acquity BEH (Bridged Ethylene Hybrid) en phase inverse C18, avec une granulométrie de 1,7 µm et des dimensions de (2,1*100) mm.

137 Un mélange binaire homogène de solvant MeOH (+0.1% HCOOH) [A] et H2O (+0,1 % HCOOH) [B] a été utilisé dans les conditions d’élution suivante avec un volume d’injection de 5 µL et un débit de 0,6 mL/min à une température d’analyse de 40°C.

Temps (min) % [A] MeOH (+0,1% HCOOH) % [B] H2O (+0,1 % HCOOH)

0 5 95

2 5 95

6 100 0

7,5 100 0

8 5 95

Les analyses ont été menées avec une détection UV à 254 nm et une détection de masse en electrospray positif avec une tension de cône fixée à 20V.

3.5.4.1.2 Conditions de purification

Les conditions de chromatographie préparative ont été adaptées des conditions analytiques. Les analyses ont été menées sur un système d’auto-purification waters à pompe binaire 245 muni d’un collecteur de fraction 2767, équipé cette fois uniquement d’un détecteur UV. La colonne utilisée est une XBridge en phase inverse C18 avec une granulométrie de 5 µm et de dimension (19*150) mm possédant la même chimie de colonne que la BEH utilisée en analytique. Le même mélange binaire de solvant que précédemment [A] et [B] a été utilisé selon les conditions d’élution présentés ci-après avec un volume d’injection de 1 mL et débit de 20,5 mL/min.

Temps (min) % [A] MeOH (+0.1% HCOOH) % [B] H2O (+0.1 % HCOOH)

0 5 95

2 5 95

12 100 0

14 100 0

14,5 5 95

138

3.6 Références

1. WADA What is prohibited.

https://www.wada-ama.org/en/content/what-is-prohibited (consulté le 15/08/2018).

2. Venhuis, B.; Keizers, P.; van Riel, A.; de Kaste, D., A cocktail of synthetic stimulants found in a dietary supplement associated with serious adverse events. Drug Test Anal 2014, 6 (6), 578-81. 3. Dexaprine XR. http://www.dexaprine.org/xr (consulté le 16/08/2018).

4. WikiStéro Dianabol. https://wikistero.com/dianabol/ (consulté le 16/08/2018). 5. WikiStéro Anadrol. https://wikistero.com/anadrol/ (consulté le 16/08/2018).

6. Thevis, M.; Makarov, A. A.; Horning, S.; Schänzer, W., Mass spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap-orbitrap hybrid mass analyzers. Rapid Communications in Mass Spectrometry 2005, 19 (22), 3369-3378.

7. Guan, F.; Soma, L. R.; Luo, Y.; Uboh, C. E.; Peterman, S., Collision-induced dissociation pathways of anabolic steroids by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 2006, 17 (4), 477-489.

8. Hatziieremia, S.; Kostomitsopoulos, N.; Balafas, V.; Tamvakopoulos, C., A liquid chromatographic/tandem mass spectroscopic method for quantification of the cyclic peptide melanotan-II. Plasma and brain tissue concentrations following administration in mice. Rapid Commun

Mass Spectrom 2007, 21 (15), 2431-8.

9. Zhao, J.; Wang, M.; Avula, B.; Khan, I. A., Detection and quantification of phenethylamines in sports dietary supplements by NMR approach. J Pharm Biomed Anal 2018, 151, 347-355.

10. Slezak, T.; Francis, P. S.; Anastos, N.; Barnett, N. W., Determination of synephrine in weight- loss products using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Anal Chim Acta 2007, 593 (1), 98-102.

11. Niemann, R. A.; Gay, M. L., Determination of ephedrine alkaloids and synephrine in dietary supplements by column-switching cation exchange high-performance liquid chromatography with scanning-wavelength ultraviolet and fluorescence detection. Journal of Agricultural and Food

Chemistry 2003, 51, 5630-5638.

12. Roman, M. C.; Betz, J. M.; Hildreth, J., Determination of synephrine in bitter orange raw materials, extracts, and dietary supplements by liquid chromatography with ultraviolet detection: single-laboratory validation. Journal of the Association of Official Analytical Chemists 2007, 90 (1), 68- 81.

13. Gay, M. L.; Niemann, R. A.; Musser, S. M., An isotopically labeled internal standard liquid chromatography−tandem mass spectrometry method for determination of ephedrine alkaloids and synephrine in dietary supplements. Agricultural and food chemistry 2006, 54 (2), 286-291.

14. Gatti, R.; Lotti, C., Development and validation of a pre-column reversed phase liquid chromatographic method with fluorescence detection for the determination of primary phenethylamines in dietary supplements and phytoextracts. J Chromatogr A 2011, 1218 (28), 4468-73. 15. Marchei, E.; Pichini, S.; Pacifici, R.; Pellegrini, M.; Zuccaro, P., A rapid and simple procedure for the determination of synephrine in dietary supplements by gas chromatography-mass spectrometry. J

Pharm Biomed Anal 2006, 41 (4), 1468-72.

16. Avula, B.; Upparapalli, S. K.; Khan, I. A., Enantiomeric Separation of Adrenergic Amines in Citrus Species, Related Genera and Dietary Supplements by Capillary Electrophoresis. Chromatographia 2005, 62 (3-4), 151-157.

17. B. Avula, I. A. K., Separation and Determination of Ephedrine Enantiomers and Synephrine by High Performance Capillary Electrophoresis in Dietary Supplements. Chromatographia 2004, 59, 71- 77.

139 18. Pawar, R. S.; Grundel, E.; Fardin-Kia, A. R.; Rader, J. I., Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC-MS/MS methods. J Pharm

Biomed Anal 2014, 88, 457-66.

19. Cohen, P. A.; Avula, B.; Venhuis, B.; Travis, J. C.; Wang, Y. H.; Khan, I. A., Pharmaceutical doses of the banned stimulant oxilofrine found in dietary supplements sold in the USA. Drug Test Anal 2017,

9 (1), 135-142.

20. IFE Oestrogène, ménopause, obésité et cancer du sein.

http://acces.ens-yon.fr/acces/thematiques/sante/epidemiologie/cancersein/risq_cancer_sein/ oestrog_menop_cancer_sein (consulté le 16/08/2018).

21. Topsteroid Stéroides oraux.

http://top-steroids-online.com/steroides-oraux/ (consulté le 16/08/2018). 22. Winstrol steroïds.

https://winstrol-steroids.com/le-cycle-ideal-anavar-winstrol-6-conseils-de-professionnels/ (consulté le 16/08/2018).

23. Mohler, M. L.; Bohl, C. E.; Jones, A.; Coss, C. C.; Narayanan, R.; He, Y.; Hwang, D. J.; Dalton, J. T.; Miller, D. D., Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem 2009,

52 (12), 3597-617.

24. FDA: FDA warns against using SARMs in body-building products.

https://www.fda.gov/newsevents/newsroom/fdainbrief/ucm583021.htm (consulté le 16/08/2018). 25. Thevis, M.; Schanzer, W., Detection of SARMs in doping control analysis. Mol Cell Endocrinol 2018, 464, 34-45.

26. Thevis, M.; Schrader, Y.; Thomas, A.; Sigmund, G.; Geyer, H.; Schänzer, W., Analysis of Confiscated Black Market Drugs Using Chromatographic and Mass Spectrometric Approaches. Journal

of Analytical Toxicology 2008, 32, 232-240.

27. Odoardi, S.; Castrignano, E.; Martello, S.; Chiarotti, M.; Strano-Rossi, S., Determination of anabolic agents in dietary supplements by liquid chromatography-high-resolution mass spectrometry.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015, 32 (5), 635-47.

28. Pellegrini, M.; Rotolo, M. C.; Di Giovannadrea, R.; Pacifici, R.; Pichini, S., A simple toxicological analysis of anabolic steroid preparations from the black market. Annales de Toxicologie Analytique 2012, 24 (2), 67-72.

29. Cho, S. H.; Park, H. J.; Lee, J. H.; Do, J. A.; Heo, S.; Jo, J. H.; Cho, S., Determination of anabolic- androgenic steroid adulterants in counterfeit drugs by UHPLC-MS/MS. J Pharm Biomed Anal 2015, 111, 138-46.

30. Van Poucke, C.; Detavernier, C.; Van Cauwenberghe, R.; Van Peteghem, C., Determination of anabolic steroids in dietary supplements by liquid chromatography-tandem mass spectrometry. Anal

Chim Acta 2007, 586 (1-2), 35-42.

31. Abbate, V.; Kicman, A. T.; Evans-Brown, M.; McVeigh, J.; Cowan, D. A.; Wilson, C.; Coles, S. J.; Walker, C. J., Anabolic steroids detected in bodybuilding dietary supplements - a significant risk to public health. Drug Test Anal 2015, 7 (7), 609-18.

32. Ribeiro, M. V. d. M.; Boralle, N.; Pezza, H. R.; Pezza, L., Authenticity assessment of anabolic androgenic steroids in counterfeit drugs by 1H NMR. Analytical Methods 2018, 10 (10), 1140-1150. 33. Ribeiro, M. V. M.; Boralle, N.; Felippe, L. G.; Pezza, H. R.; Pezza, L., (1)H NMR determination of adulteration of anabolic steroids in seized drugs. Steroids 2018, 138, 47-56.

34. Fabian, C. J., The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int J Clin Pract 2007, 61 (12), 2051-63.

35. Richard J., H.; Timothy R., C.; Chris D., M.; Raymond E., M., A tandem mass spectrometric study of selected characteristic flavonoids. International Journal of Mass Spectrometry 210, 371-385. 36. Kellis Jr, J.; Vickery, L., Inhibition of human estrogen synthetase (aromatase) by flavones.

140 37. Ibrahim, A. R.; Abul-Hajj, Y. J., Aromatase inhibition by flavonoids. J Steroid Biochem Mol Biol 1990, 37 (2), 257-60.

38. Jeong, H.-J.; Shin, Y. G.; Kim, I.-H.; Pezzuto, J. M., Inhibition of Aromatase Activity by Flavonoids.

Archives of pharmacal Research 1999, 22 (3), 309-312.

39. Saarinen, N.; Joshi, S. C.; Ahotupa, M.; Li, X.; Ämmälä, J.; Mäkelä, S.; Santti, R., No evidence for the in vivo activity of aromatase-inhibiting flavonoids. Steroid biochemistry & molecular biology 2001,

78, 231-239.

40. EMA Benzyl alcohol and benzoic acid group used as excipients.

http://www.ema.europa.eu/docs/en_GB/document_library/Report/2017/10/WC500235920.pdf

(consulté le 16/08/2018).

41. Nielen, M. W.; Lasaroms, J. J.; Mulder, P. P.; Van Hende, J.; van Rhijn, J. H.; Groot, M. J., Multi residue screening of intact testosterone esters and boldenone undecylenate in bovine hair using liquid chromatography electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life

Sci 2006, 830 (1), 126-34.

42. Xia, Z.; Akim, L. G.; Argyropoulos, D. S., Quantitative 13C NMR Analysis of Lignins with Internal Standards. Journal of Agricultural and Food Chemistry 2001, 49 (8), 3573-3578.

43. Mitrevski, B. S.; Wilairat, P.; Marriott, P. J., Comprehensive two-dimensional gas chromatography improves separation and identification of anabolic agents in doping control. J

Chromatogr A 2010, 1217 (1), 127-35.

44. Liu, W.; Zhang, L.; Fan, L.; Lin, Z.; Cai, Y.; Wei, Z.; Chen, G., An improved hollow fiber solvent- stir bar microextraction for the preconcentration of anabolic steroids in biological matrix with determination by gas chromatography-mass spectrometry. J Chromatogr A 2012, 1233, 1-7.

45. Cuervo, D.; Diaz-Rodriguez, P.; Munoz-Guerra, J., An automated sample preparation for detection of 72 doping-related substances. Drug Test Anal 2014, 6 (6), 516-27.

46. Matysik, S.; Schmitz, G., Determination of steroid hormones in human plasma by GC-triple quadrupole MS. Steroids 2015, 99 (Pt B), 151-4.

47. Fragkaki, A. G.; Angelis, Y. S.; Kiousi, P.; Georgakopoulos, C. G.; Lyris, E., Comparison of sulfo- conjugated and gluco-conjugated urinary metabolites for detection of methenolone misuse in doping control by LC-HRMS, GC-MS and GC-HRMS. J Mass Spectrom 2015, 50 (5), 740-8.

48. Polet, M.; Van Eenoo, P., GC-C-IRMS in routine doping control practice: 3 years of drug testing data, quality control and evolution of the method. Anal Bioanal Chem 2015, 407 (15), 4397-409. 49. Kohler, M.; Thomas, A.; Geyer, H.; Petrou, M.; Schanzer, W.; Thevis, M., Confiscated black market products and nutritional supplements with non-approved ingredients analyzed in the Cologne Doping Control Laboratory 2009. Drug Test Anal 2010, 2 (11-12), 533-7.

50. Shi, Y. Q.; Yao, J.; Liu, F.; Hu, C. Q.; Yuan, J.; Zhang, Q. M.; Jin, S. H., Establishment of an HPLC identification system for detection of counterfeit steroidal drugs. J Pharm Biomed Anal 2008, 46 (4), 663-9.

51. Doue, M.; Dervilly-Pinel, G.; Pouponneau, K.; Monteau, F.; Le Bizec, B., Direct analysis in real time - high resolution mass spectrometry (DART-HRMS): a high throughput strategy for identification and quantification of anabolic steroid esters. Drug Test Anal 2015, 7 (7), 603-8.

52. Musharraf, S. G.; Gulzar, U., Effective separation and simultaneous analysis of anabolic androgenic steroids (AAS) in their pharmaceutical formulations by a validated TLC-densitometry method. Chem Cent J 2012, 6 (1), 54.

53. Gonzalo-Lumbreras, R.; Garcia-Miguens, M. A.; Izquierdo-Hornillos, R., HPLC method development for testosterone propionate and cipionate in oil-based injectables. J Pharm Biomed Anal 2005, 38 (4), 757-62.

54. Kozlik, P.; Tircova, B., Development of the fast, simple and fully validated high performance liquid chromatographic method with diode array detector for quantification of testosterone esters in an oil-based injectable dosage form. Steroids 2016, 115, 34-39.

141