• Aucun résultat trouvé

Caractérisation électrochimique de [Fe III (F 20 TPP)DMF]

3.

Par addition d’une quantité croissante de AgClO4 permettant la précipitation du ligand axial Cl- initialement coordiné à [FeIII(F20TPP)Cl] , l’espèce [FeIII

(F20TPP)DMF] est obtenue. Sa formation est suivie par CV sous argon.

-0.2 -0.1 0.0 0.1 0.2 0.3 -4 -3 -2 -1 0 1 2 3 I (µA) E (V vs SCE) +AgClO4

Figure A-4 : CV Fe(F20TPP) à 0.5 mM dans DMF + 0.1 M TBAPF6 à l’électrode de carbone vitreux ( d= 3 mm) à T = 293 K sous argon (en noir) et après ajout d’une quantité croissante, 0, 1, 2, 3, 4 et 5 mM de AgClO4 sous argon (en rouge) .vb =0.1 V.s1

134 -0.2 -0.1 0.0 0.1 0.2 0.3 -4 -3 -2 -1 0 1 2 3 I (µA) E (V vs SCE)

Figure A- 5 : CV Fe(F20TPP) à 0.5 mM dans DMF + 0.1 M TBAPF6 à l’électrode de carbone vitreux ( d= 3 mm) à T = 293 K sous argon (en noir),après ajout de 5 mM de TBACl (en bleu) et après ajout de 5 mM de AgClO4 sous argon (en rouge) .vb =0.1 V.s1

135

Bibliographie

136

1. Centi, G.; Trifiró, F., New Developments in Selective Oxidation. 1990, 55.

2. Centi, G.; Cavani, F.; Trifirò, F., Selective Oxidation by Heterogeneous Catalysis. Fundamental and Applied Catalysis. 2001.

3. Labinger, J. A., Selective alkane oxidation: hot and cold approaches to a hot problem.

Journal of Molecular Catalysis A: Chemical 2004, 220, 27-35.

4. J. Henrique Teles; Ive Hermans; Gerhard Franz; Sheldon, R. A., Oxidation. In Ullmann's Encyclopedia of Industrial Chemistry. In Ullmann's Encyclopedia of Industrial Chemistry, pp 1-103.

5. Klaus Weissermel; Arpe, H.-J., Industrial Organic Chemistry. 3rd edition 1997

6. MichaelStoukides; G.Vayenas, C., The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. Journal of Catalysis 1981, 70, 137-146.

7. S. Hartmans; Bont, J. A. M. d.; Harder, W., Microbial metabolism of short-chain unsaturated hydrocarbons. Microbiology Reviews 1989, 63, 235-264.

8. Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T., Green chemistry: science and politics of change. Science 2002, 297, 807-10.

9. Clark, J. H.; Macquarrie, D., Handbook of green chemistry and technology 2002.

10. Cavani, F.; Teles, J. H., Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution? ChemSusChem 2009, 2, 508-534.

11. Montemore, M. M.; van Spronsen, M. A.; Madix, R. J.; Friend, C. M., O2 Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chemical

reviews 2018, 118, 2816-2862.

12. Hone, C. A.; Roberge, D. M.; Kappe, C. O., The Use of Molecular Oxygen in Pharmaceutical Manufacturing: Is Flow the Way to Go? ChemSusChem 2017, 10, 32-41.

13. Hayaishi, O.; Katagiri, M.; Rothberg, S., Mechanism of the pyrocatechase reaction.

Journal of the American Chemical Society 1955, 77, 5450-5451.

14. Mason, H. S.; Fowlks, W. L.; Peterson, E., Oxygen transfer and electron transport by the phenolase complex1. Journal of the American Chemical Society 1955, 77, 2914-2915.

15. So Iwata; Christian Ostermeier; Bernd Ludwig; Michel, H., Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995, 376, 660 - 669.

16. Richter, O. M.; Ludwig, B., Cytochrome c oxidase--structure, function, and physiology of a redox-driven molecular machine. Reviews of physiology, biochemistry and pharmacology 2003,

147, 47-74.

17. Bloch, D.; Belevich, I.; Jasaitis, A.; Ribacka, C.; Puustinen, A.; Verkhovsky, M. I.; Wikstrom, M., The catalytic cycle of cytochrome c oxidase is not the sum of its two halves.

Proceedings of the National Academy of Sciences of the United States of America 2004, 101,

529-33.

18. Kim, E.; Helton, M. E.; Wasser, I. M.; Karlin, K. D.; Lu, S.; Huang, H. W.; Moenne-Loccoz, P.; Incarvito, C. D.; Rheingold, A. L.; Honecker, M.; Kaderli, S.; Zuberbuhler, A. D.,

137

Superoxo, mu-peroxo, and mu-oxo complexes from heme/O2 and heme-Cu/O2 reactivity: copper ligand influences in cytochrome c oxidase models. Proceedings of the National Academy of

Sciences of the United States of America 2003, 100, 3623-8.

19. Babcock, G. T., How oxygen is activated and reduced in respiration. Proceedings of the

National Academy of Sciences 1999, 96, 12971-12973.

20. Michel, H., The mechanism of proton pumping by cytochrome c oxidase. Proceedings of

the National Academy of Sciences 1998, 95, 12819-12824.

21. Zhang, W.; Lai, W.; Cao, R., Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews 2017, 117, 3717-3797.

22. Collman, J. P.; Decreau, R. A., Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chemical communications 2008, 5065-76.

23. Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M., Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical reviews 2018, 118, 2340-2391.

24. Zhao, Y. M.; Yu, G. Q.; Wang, F. F.; Wei, P. J.; Liu, J. G., Bioinspired Transition-Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction. Chemistry, a European

Journal 2019, 25, 3726-3739.

25. Garfinkel, D., Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Archives of Biochemistry and Biophysics 1958, 77, 493-509. 26. Klingenberg, M., Pigments of rat liver microsomes. Archives of Biochemistry and

Biophysics 1958, 75, 376-386.

27. Omura, T.; Sato, R., A New Cytochrome in Liver Microsomes. Journal of Biological

Chemistry 1962, 237, PC1375-PC1376.

28. Omura, T.; Sato, R., The Carbon Monoxide-binding Pigment of Liver Microsomes: II. Solubilization, Purification and Prorperties. Journal of Biological Chemistry 1964, 239, 2379-2385.

29. Estabrook, R. W.; Cooper, D. Y.; Rosenthal, O., The Light Reversible Carbon Monoxide Inhibition of the Steroid C21-Hydroxylase System of the Adrenal Cortex. Biochem Z 1963, 338, 741-55.

30. Cooper, D. Y.; Levin, S.; Narasimhulu, S.; Rosenthal, O.; Estabrook, R. W., Photochemical Action Spectrum of the Terminal Oxidase of Mixed Function Oxidase Systems.

Science 1965, 147, 400-402.

31. Katagiri, M.; Ganguli, B. N.; Gunsalus, I. C., A Soluble Cytochrome P-450 Functional in Methylene Hydroxylation. Journal of Biological Chemistry 1968, 243, 3543-3546.

32. Poulos, T. L.; Finzel, B. C.; Howard, A. J., Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 1986, 25, 5314-5322.

33. (a) Meunier, B.; de Visser, S. P.; Shaik, S., Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chemical reviews 2004, 104, 3947-80; (b) Groves, J. T., The

138

bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proceedings of the

National Academy of Sciences 2003, 100, 3569-3574.

34. Hackett, J. C.; Brueggemeier, R. W.; Hadad, C. M., The Final Catalytic Step of Cytochrome P450 Aromatase:  A Density Functional Theory Study. Journal of the American

Chemical Society 2005, 127, 5224-5237.

35. T Egawa, T. O., R Makino, Y Ishimura and T Kitagawa, Observation of the O-O stretching Raman band for cytochrome P-450cam under catalytic conditions. The Journal of

Biological Chemistry 1991, 266, 10246-10248.

36. Rittle, J.; Green, M. T., Cytochrome P450 Compound I: Capture, Characterization, and C-H Bond Activation Kinetics. Science 2010, 330, 933-937.

37. Groves, J. T.; McClusky, G. A., Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. Journal of the American Chemical Society 1976, 98, 859-861.

38. Newcomb, M.; Toy, P. H., Hypersensitive Radical Probes and the Mechanisms of Cytochrome P450-Catalyzed Hydroxylation Reactions. Accounts of Chemical Research 2000, 33, 449-455.

39. Mansuy, D., A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. C. R. Chimie 2007, 10, 10392–413.

40. Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J., Epoxidation of olefins by cytochrome P450: Evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant.

Proceedings of the National Academy of Sciences 1998, 95, 3555-3560.

41. Jin, S.; Makris, T. M.; Bryson, T. A.; Sligar, S. G.; Dawson, J. H., Epoxidation of Olefins by Hydroperoxo−Ferric Cytochrome P450. Journal of the American Chemical Society 2003, 125, 3406-3407.

42. Mansuy, D., The great diversity of reactions catalyzed by cytochromes P4501.

Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 1998, 121, 5-14.

43. Guengerich, F. P., Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity. Chemical Research in Toxicology 2001, 14, 611-650.

44. Watanabe, I.; Nara, F.; Serizawa, N., Cloning, characterization and expression of the gene encoding cytochrome P-450sca-in2 from Streptomyces carbophilus involved in production of pravastatin, a specific HMG-CoA reductase inhibitor. Gene 1995, 163, 81-85.

45. Girvan, H. M.; Munro, A. W., Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Current Opinion in Chemical Biology 2016, 31, 136-145. 46. Collman, J. P.; Sorrell, T. N.; Hoffman, B. M., Models for cytochrome P-450. Journal of

the American Chemical Society 1975, 97, 913-914.

47. Koch, S.; Tang, S. C.; Holm, R. H.; Frankel, R. B., [FeIIIN4SR] coordination unit. Synthesis and ground state electronic properties of macrocyclic ferric thilates. Journal of the

American Chemical Society 1975, 97, 914-916.

48. Collman, J. P.; Sorrell, T. N., Model for the carbonyl adduct of ferrous cytochrome P 450.

139

49. Chang, C. K.; Traylor, T. G., Solution behavior of a synthetic myoblobin active site.

Journal of the American Chemical Society 1973, 95, 5810-5811.

50. Chin, D.-H.; La Mar, G. N.; Balch, A. L., Mechanism of autoxidation of iron(II) porphyrins. Detection of a peroxo-bridged iron(III) porphyrin dimer and the mechanism of its thermal decomposition to the oxo-bridged iron(III) porphyrin dimer. Journal of the American

Chemical Society 1980, 102, 4344-4350.

51. Anderson, D. L.; Weschler, C. J.; Basolo, F., Reversible reaction of simple ferrous porphyrins with molecular oxygen at low temperatures. Journal of the American Chemical

Society 1974, 96, 5599-5600.

52. Collman, J. P.; Brauman, J. I.; Doxsee, K. M.; Halbert, T. R.; Bunnenberg, E.; Linder, R. E.; LaMar, G. N.; Del Gaudio, J.; Lang, G.; Spartalian, K., Synthesis and characterization of "tailed picket fence" porphyrins. Journal of the American Chemical Society 1980, 102, 4182-4192.

53. Momenteau, M.; Rougée, M.; Loock, B., Five-Coordinate Iron-Porphyrin as a Model for the Active Site of Hemoproteins. European Journal of Biochemistry 1976, 71, 63-76.

54. Leal, O.; Anderson, D. L.; Bowman, R. G.; Basolo, F.; Burwell, R. L., Reversible adsorption of oxygen on silica gel modified by imidazole-attached iron tetraphenylporphyrin.

Journal of the American Chemical Society 1975, 97, 5125-5129.

55. Collman, J. P.; Gagne, R. R.; Reed, C. A.; Robinson, W. T.; Rodley, G. A., Structure of an iron(II) dioxygen complex; a model for oxygen carrying hemeproteins. Proceedings of the

National Academy of Sciences of the United States of America 1974, 71, 1326-1329.

56. Chang, C. K.; Traylor, T. G., Proximal base influence on the binding of oxygen and carbon monoxide to heme. Journal of the American Chemical Society 1973, 95, 8477-8479. 57. Mukherjee, A.; Cranswick, M. A.; Chakrabarti, M.; Paine, T. K.; Fujisawa, K.; Münck, E.; Que, L., Oxygen Activation at Mononuclear Nonheme Iron Centers: A Superoxo Perspective.

Inorganic chemistry 2010, 49, 3618-3628.

58. Chung, L. W.; Li, X.; Hirao, H.; Morokuma, K., Comparative Reactivity of Ferric-Superoxo and Ferryl-Oxo Species in Heme and Non-Heme Complexes. Journal of the American

Chemical Society 2011, 133, 20076-20079.

59. McCandlish, E.; Miksztal, A. R.; Nappa, M.; Sprenger, A. Q.; Valentine, J. S.; Stong, J. D.; Spiro, T. G., Reactions of superoxide with iron porphyrins in aprotic solvents. A high spin ferric porphyrin peroxo complex. Journal of the American Chemical Society 1980, 102, 4268-4271.

60. Hanson, L. K., Axial ligand effects on iron and manganese porphyrins: Extended hückel calculations of cyt p450 analogs and of O2 binding to iron and manganese. International Journal

of Quantum Chemistry 1979, 16, 73-87.

61. Ahmad, S.; McCallum, J. D.; Shiemke, A. K.; Appelman, E. H.; Loehr, T. M.; Sanders-Loehr, J., Raman spectroscopic evidence for side-on binding of peroxide ion to (ethylenediaminetetraacetato)ferrate(1-). Inorganic Chemistry 1988, 27, 2230-2233.

140

62. Liu, J.-G.; Shimizu, Y.; Ohta, T.; Naruta, Y., Formation of an End-On Ferric Peroxo Intermediate upon One-Electron Reduction of a Ferric Superoxo Heme. Journal of the American

Chemical Society 2010, 132, 3672-3673.

63. Selke, M.; Sisemore, M. F.; Ho, R. Y. N.; Wertz, D. L.; Valentine, J. S., Dioxygen activation by iron complexes. The search for reactive intermediates. Journal of Molecular

Catalysis A: Chemical 1997, 117, 71-82.

64. Selke, M.; Valentine, J. S., Switching on the Nucleophilic Reactivity of a Ferric

Porphyrin Peroxo Complex. Journal of the American Chemical Society 1998, 120, 2652-2653. 65. Davydov, R.; Hoffman, B. M., Active intermediates in heme monooxygenase reactions as revealed by cryoreduction/annealing, EPR/ENDOR studies. Archives of biochemistry and

biophysics 2011, 507, 36-43.

66. Tajima, K., A possible model of a hemoprotein-hydrogen peroxide complex. Inorganica

Chimica Acta 1989, 163, 115-122.

67. Liu, J. G.; Ohta, T.; Yamaguchi, S.; Ogura, T.; Sakamoto, S.; Maeda, Y.; Naruta, Y., Spectroscopic characterization of a hydroperoxo-heme intermediate: conversion of a side-on peroxo to an end-on hydroperoxo complex. Angewandte Chemie International Edition 2009, 48, 9262-7.

68. Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. Journal of the American

Chemical Society 1981, 103, 2884-2886.

69. Groves, J. T.; Nemo, T. E., Aliphatic hydroxylation catalyzed by iron porphyrin complexes. Journal of the American Chemical Society 1983, 105, 6243-6248.

70. Lexa, D.; Momenteau, M.; Mispelter, J., Characterization of the reduction steps of Fe(III) porphyrins. Biochimica et Biophysica Acta (BBA) - General Subjects 1974, 338, 151-163.

71. Kadish, K. M.; Caemelbeckea, E. V., Electrochemistry of Metalloporphyrins in Nonaqueous Media. In Encyclopedia of Electrochemistry, A. J. Bard 2007, 7, 175-227.

72. Creager, S. E.; Raybuck, S. A.; Murray, R. W., An efficient electrocatalytic model cytochrome P-450 epoxidation cycle. Journal of the American Chemical Society 1986, 108, 4225-4227.

73. Creager, S. E.; Murray, R. W., Electrochemical reactivity of manganese(II) porphyrins. Effects of dioxygen, benzoic anhydride, and axial ligands. Inorganic Chemistry 1987, 26, 2612-2618.

74. Sengupta, K.; Chatterjee, S.; Samanta, S.; Bandyopadhyay, S.; Dey, A., Resonance Raman and Electrocatalytic Behavior of Thiolate and Imidazole Bound Iron Porphyrin Complexes on Self Assembled Monolayers: Functional Modeling of Cytochrome P450.

Inorganic Chemistry 2013, 52, 2000-2014.

75. Oliveira, R.; Zouari, W.; Herrero, C.; Banse, F.; Schollhorn, B.; Fave, C.; Anxolabehere-Mallart, E., Characterization and Subsequent Reactivity of an Fe-Peroxo Porphyrin Generated by Electrochemical Reductive Activation of O2. Inorganic Chemistry 2016, 55, 12204-12210.

141

76. Kadish, K. M.; D'Souza, F.; Villard, A.; Autret, M.; Van Caemelbecke, E.; Bianco, P.; Antonini, A.; Tagliatesta, P., Effect of Porphyrin Ring Distortion on Redox Potentials of .beta.-Brominated-Pyrrole Iron(III) Tetraphenylporphyrins. Inorganic Chemistry 1994, 33, 5169-5170. 77. Achord, J. M.; Hussey, C. L., Determination of dissolved oxygen in nonaqueous electrochemical solvents. Analytical chemistry 1980, 52, 601-602.

78. Kadish, K. M.; Rhodes, R. K., Thin-layer spectroelectrochemical evidence of anion binding to (tetraphenylporphinato)iron(II) in nonaqueous media. Inorganic Chemistry 1983, 22, 1090-1094.

79. Selke, M.; Sisemore, M. F.; Valentine, J. S., The Diverse Reactivity of Peroxy Ferric Porphyrin Complexes of Electron-Rich and Electron-Poor Porphyrins. Journal of the American

Chemical Society 1996, 118, 2008-2012.

80. Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O., Scanning electrochemical microscopy. Introduction and principles. Analytical chemistry 1989, 61, 132-138.

81. Zoski, C. G., Review—Advances in Scanning Electrochemical Microscopy (SECM).

Journal of The Electrochemical Society 2016, 163, H3088-H3100.

82. Mirkin, M. V.; Arca, M.; Bard, A. J., Scanning electrochemical microscopy. 22. Examination of thin solid films of AgBr: Ion diffusion in the film and heterogeneous kinetics at the film/solution interface. Journal of Physical Chemistry 1993, 97, 10790-10795.

83. Masa, J.; Ventosa, E.; Schuhmann, W., Application of Scanning Electrochemical Microscopy (SECM) to Study Electrocatalysis of Oxygen Reduction by MN4-Macrocyclic Complexes. 2016; pp 103-141.

84. Eckhard, K.; Chen, X.; Turcu, F.; Schuhmann, W., Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Physical

Chemistry Chemical Physics 2006, 8, 5359-5365.

85. Okunola, A. O.; Nagaiah, T. C.; Chen, X.; Eckhard, K.; Schuhmann, W.; Bron, M., Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochimica

Acta 2009, 54, 4971-4978.

86. Demaille, C.; Unwin, P. R.; Bard, A. J., Scanning Electrochemical Microscopy. 33. Application to the Study of ECE/DISP Reactions. The Journal of Physical Chemistry 1996, 100, 14137-14143.

87. Noël, J.-M.; Latus, A.; Lagrost, C.; Volanschi, E.; Hapiot, P., Evidence for OH Radical Production during Electrocatalysis of Oxygen Reduction on Pt Surfaces: Consequences and Application. Journal of the American Chemical Society 2012, 134, 2835-2841.

88. López, I.; Cao, R.; Quist, D. A.; Karlin, K. D.; Le Poul, N., Direct Determination of Electron-Transfer Properties of Dicopper-Bound Reduced Dioxygen Species by a Cryo-Spectroelectrochemical Approach. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 18314-18319.

89. Kaim, W.; Fiedler, J., Spectroelectrochemistry: the best of two worlds. Chemical Society

142

90. Gueutin, C.; Lexa, D., Low temperature spectroelectrochemistry for the characterization of highly reduced σ-alkyl iron halogenated porphyrins. Electroanalysis 1996, 8, 1029-1033. 91. Cheng, F.; Chen, J., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 2012, 41, 2172-92.

92. Yeager, E., Electrocatalysts for O2 reduction. Electrochimica Acta 1984, 29, 1527-1537. 93. D. Vasudevan, H. J. W., Electroreduction of oxygen in aprotic media. Journal of

Electroanalytical Chemistry 1995, 69-74.

94. (a) Zhou, M.; Yu, Y.; Hu, K.; Mirkin, M. V., Nanoelectrochemical Approach To Detecting Short-Lived Intermediates of Electrocatalytic Oxygen Reduction. Journal of the

American Chemical Society 2015, 137, 6517-6523; (b) Bard, A. J.; Mirkin, M. V., Scanning Electrochemical Microscopy; CRC Press, 2012.

95. Zhang, C.; Fan, F.-R. F.; Bard, A. J., Electrochemistry of Oxygen in Concentrated NaOH Solutions: Solubility, Diffusion Coefficients, and Superoxide Formation. Journal of the American

Chemical Society 2009, 131, 177-181.

96. Chen, C.-H.; Meadows, K. E.; Cuharuc, A.; Lai, S. C. S.; Unwin, P. R., High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes. Physical

Chemistry Chemical Physics 2014, 16, 18545-18552.

97. Sanchez-Sanchez, C. M.; Bard, A. J., Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Analytical Chemistry 2009, 81, 8094-100.

98. Lu, Y.-C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y., Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy & Environmental Science 2013, 6, 750.

99. Yadegari, H.; Sun, Q.; Sun, X., Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. Advanced Materials 2016,

28, 7065-93.

100. Donald T. Sawyer; Glalco Chlerlcato; Jr., C. T. A.; Edward J. Nannl, J.; Tsuchlya, T., Effects of Media and Electrode Materials on the Electrochemical Reduction of Dioxygen.

Analytical Chemistry 1982, 54, 1720-1724.

101. Cofre, P.; Sawyer, D. T., Electrochemical Reduction of Dioxygen to Perhydroxyl (HO2.) in Aprotic Solvents That Contain Brmsted Acids. Analytical Chemistry 1986, 58, 1057-1062. 102. Costentin, C.; Robert, M.; Savéant, J.-M., Acceleration of the Homogeneous and Electrochemical Reductions of Dioxygen in Aprotic Media by Ammonium Ions. Is the Driving Force a Function of NH4+Concentration? What Is the Mechanism of the Reaction? The Journal

of Physical Chemistry C 2007, 111, 12877-12880.

103. Donald T. Sawyer; Glalco Chlerlcato; Jr., C. T. A.; Edward J. Nannl, J.; Tsuchlya, T., Effects of Media and Electrode Materials on the Electrochemical Reduction of Dioxygen

Analytical Chemistry 1982, 54, 1720-1724.

104. Kraytsberg, A.; Ein-Eli, Y., Review on Li–air batteries—Opportunities, limitations and perspective. Journal of Power Sources 2011, 196, 886-893.

143

105. Wang, L.; Zhang, Y.; Liu, Z.; Guo, L.; Peng, Z., Understanding oxygen electrochemistry in aprotic LiO2 batteries. Green Energy & Environment 2017, 2, 186-203.

106. Alina I. Belova, D. G. K., Lada V. Yashina, Yang Shao-Horn, and Daniil M. Itkis, On the Mechanism of Oxygen Reduction in Aprotic Li-Air Batteries: The Role of Carbon Electrode Surface Structure. 2017, The Journal of Physical Chemistry C 2017, 3, 1569-1577

107. Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A., Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Physical Chemistry Chemical

Physics 2013, 15, 11478-11493.

108. McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C., Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries. The Journal of Physical Chemistry Letters 2012, 3, 997-1001.

109. Ma, S.; McKee, W. C.; Wang, J.; Guo, L.; Jansen, M.; Xu, Y.; Peng, Z., Mechanistic origin of low polarization in aprotic Na-O2 batteries. Physical Chemistry Chemical Physics :

PCCP 2017, 19, 12375-12383.

110. Sun, Q.; Yang, Y.; Fu, Z.-W., Electrochemical properties of room temperature sodium–air batteries with non-aqueous electrolyte. Electrochemistry Communications 2012, 16, 22-25. 111. Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J.-M.; Bruce, P. G., Oxygen Reactions in a Non-Aqueous Li+ Electrolyte. Angewandte Chemie International Edition 2011, 50, 6351-6355.

112. Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A., Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. The

Journal of Physical Chemistry C 2009, 113, 20127-20134.

113. Rigsby, M. L.; Wasylenko, D. J.; Pegis, M. L.; Mayer, J. M., Medium Effects Are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron– Porphyrin Complexes. Journal of the American Chemical Society 2015, 137, 4296-4299.

114. Pegis, M. L.; Martin, D. J.; Wise, C. F.; Brezny, A. C.; Johnson, S. I.; Johnson, L. E.; Kumar, N.; Raugei, S.; Mayer, J. M., Mechanism of Catalytic O2 Reduction by Iron Tetraphenylporphyrin. Journal of the American Chemical Society 2019, 141, 8315-8326.

115. Phillippi, H. M. G. a. M. A., Imidazole Complexes of LowSpin Iron(III) Porphyrin pi -Cation Radical Species. Models for the Compound I pi--Cation Radical State of Peroxidases.

Journal of the American Chemical Society 1983, 105, 7567-7571.

116. COMSOL Multiphysics User's Guide. Copyright 1998-2018 COMSOLAB.

117. Akihiro Takahashi; Takuya Kurahashi; Fujii, H., Redox Potentials of Oxoiron(IV) Porphyrin π-Cation Radical Complexes: Participation of Electron Transfer Process in Oxygenation Reactions. Inorganic Chemistry 2011, 50, 6922-6928.

118. Savéant, J.-M., Elements of Molecular and Biomolecular Electrochemistry. An Electrochemical Approach to Electron Transfer Chemistry. 2006. ISBN-10: 0471445738

144

119. Wasylenko, D. J.; Rodriguez, C.; Pegis, M. L.; Mayer, J. M., Direct comparison of electrochemical and spectrochemical kinetics for catalytic oxygen reduction. Journal of the

American Chemical Society 2014, 136, 12544-7.

120. Izutsu, K., Blackwell Scientific Publications, Brookline Village. 1990, 35, 166.

121. Costentin, C.; Dridi, H.; Saveant, J. M., Molecular Catalysis of O2 Reduction by Iron Porphyrins in Water: Heterogeneous versus Homogeneous Pathways. Journal of the American

Chemical Society 2015, 137, 13535-44.

122. Pegis, M. L.; McKeown, B. A.; Kumar, N.; Lang, K.; Wasylenko, D. J.; Zhang, X. P.; Raugei, S.; Mayer, J. M., Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions. ACS Central Science 2016, 2, 850-856. 123. Franke, A.; Fertinger, C.; van Eldik, R., Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes. Chemistry A European

Journal 2012, 18, 6935-49.

124. Newcomb, Z. P. a. M., Kinetics and Mechanism of Oxidation Reactions of Porphyrin−Iron(IV)−Oxo Intermediates. Inorganic Chemistry 2007, 46, 6767−6774.

125. Cong, Z.; Yanagisawa, S.; Kurahashi, T.; Ogura, T.; Nakashima, S.; Fujii, H., Synthesis, characterization, and reactivity of hypochloritoiron(III) porphyrin complexes. Journal of the

American Chemical Society 2012, 134, 20617-20.

126. Cong, Z.; Kurahashi, T.; Fujii, H., Oxidation of Chloride and Subsequent Chlorination of Organic Compounds by Oxoiron(IV) Porphyrin π-Cation Radicals. Angewandte Chemie

International Edition 2011, 50, 9935-9939.

127. Cunningham, I. D.; Basaleh, A.; Gazzaz, H. A., Pre-steady state reactivity of 5,10,15,20-tetrakis(pentafluorophényl)-21H,23H-porphyrin iron(iii) chloride with hydrogen peroxide.

Dalton Transactions 2012, 41, 9158-9160.

128. Cometto, C.; Chen, L.; Lo, P.-K.; Guo, Z.; Lau, K.-C.; Anxolabéhère-Mallart, E.; Fave, C.; Lau, T.-C.; Robert, M., Highly Selective Molecular Catalysts for the CO2-to-CO Electrochemical Conversion at Very Low Overpotential. Contrasting Fe vs Co Quaterpyridine Complexes upon Mechanistic Studies. ACS Catalysis 2018, 8, 3411-3417.

129. Lassalle-Kaiser, B.; Zitolo, A.; Fonda, E.; Robert, M.; Anxolabéhère-Mallart, E., In Situ Observation of the Formation and Structure of Hydrogen-Evolving Amorphous Cobalt Electrocatalysts. ACS Energy Letters 2017, 2, 2545-2551.

130. Mendoza, D., Thèse (2018-2021).

131. Sengupta, K.; Chatterjee, S.; Samanta, S.; Dey, A., Direct observation of intermediates formed during steady-state electrocatalytic O<sub>2</sub> reduction by iron porphyrins.

Proceedings of the National Academy of Sciences 2013, 110, 8431-8436.

132. Wasylenko, D. J.; Rodríguez, C.; Pegis, M. L.; Mayer, J. M., Direct Comparison of Electrochemical and Spectrochemical Kinetics for Catalytic Oxygen Reduction. Journal of the

American Chemical Society 2014, 136, 12544-12547.

133. Vardhaman, A. K.; Barman, P.; Kumar, S.; Sastri, C. V.; Kumar, D.; de Visser, S. P., Mechanistic insight into halide oxidation by non-heme iron complexes. Haloperoxidase versus halogenase activity. Chemical Communications 2013, 49, 10926-10928.

145

134. Getrey, L.; Krieg, T.; Hollmann, F.; Schrader, J.; Holtmann, D., Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chemistry

2014, 16, 1104-1108.

135. Iqbal Bhugun, D. L., 1 and Jean-Michel Savéant, Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0) Porphyrins. Synergistic Effect of Lewis Acid Cations. J

phys chem 1996, 100, 19981-19985.

136. Li, F.; Van Heuvelen, K. M.; Meier, K. K.; Münck, E.; Que, L., Sc3+ Triggered Oxoiron(IV) Formation from O2 and its Non-Heme Iron(II) Precursor via a Sc3+–Peroxo–Fe3+

Intermediate. Journal of the American Chemical Society 2013, 135, 10198-10201.

137. Sengupta, K.; Chatterjee, S.; Dey, A., In SituMechanistic Investigation of O2Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catalysis 2016, 6, 6838-6852. 138. Collman, J. P.; Ghosh, S.; Dey, A.; Decréau, R. A., Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation. Proceedings of The