• Aucun résultat trouvé

87 Ce maintien de réactivité peut être observé sur la mesure du flux de chaleur d’un coulis avec

2.4.2.3 Bilan de l’étude des coulis binaires

La combinaison de précurseurs permet de tirer parti des avantages liés à l’utilisation de chacune des matières premières. Une amélioration du comportement rhéologique est associée à la compacité supérieure des cendres volantes et à leur forme sphérique. Les cendres volantes se caractérisent également par une réactivité plus faible, conduisant à une ouvrabilité prolongée et un gain de résistance dans le temps. Un taux de substitution à 20 % donne des performances optimales du point de vue de la stabilité, de la rhéologie et de la résistance mécanique. Cependant, afin de bien souligner l’effet des cendres volantes, la formulation GMKCV40 (à 40 % de cendres) a été retenue pour la suite de l’étude (chapitres 1 et 4).

2.5 BILAN

Dans ce chapitre, différents paramètres liés à la formulation de coulis géopolymères et alcali- activés ont été considérés. Le comportement rhéologique des combinaisons binaires de précurseurs métakaolin/cendres volantes et laitier/cendres volantes a été étudié. Les différents coulis suivent un modèle d’Herschel Bulkley à faible seuil et légèrement rhéofluidifiant. L’augmentation du ressuage avec l’ajout de cendres a été observée et attribuée à la diminution de la consistance des coulis. Ce phénomène est atténué par la réactivité plus élevée du laitier ainsi que par l’addition de bentonite et du dispersant dans le mélange. Dans l’objectif de répondre au cahier des charges spécifié, la substitution par 20 % de cendres volantes permet d’obtenir les meilleures performances mécaniques et rhéologiques.

Certaines limitations persistent : l’absence de superplastifiants, la baisse de réactivité dans les systèmes dilués et la prise parfois trop rapide dans les coulis au laitier. Il faut toutefois rappeler que cette étude s’est basée sur des sources de matières premières de disponibilité élevée et de qualité moyenne. L’étude de sources variables permettrait d’élargir le spectre de performances accessibles. Il serait également intéressant d’étudier l’effet d’autres additions minérales (fumée de silice, filler, etc.) et leur influence sur les différentes propriétés. Dans l’attente du développement d’adjuvants efficaces, l’optimisation de la phase solide du matériau semble offrir une alternative très prometteuse pour la formulation des géopolymères.

89

RÉFÉRENCES

[1] E. Nonveiller, Grouting, theory and practice. Elsevier, 1989.

[2] R. Glossop, “The Invention and Development of Injection Processes Part I: 1802–1850,”

Géotechnique, vol. 10, no. 3, pp. 91–100, Sep. 1960.

[3] A. C. Houlsby, Construction and design of cement grouting : a guide to grouting in rock foundations. Wiley, 1990.

[4] J. Dziewański, W. Brylicki, and M. Pawlikowski, “Utilization of slag-alkaline cement as a grouting medium in hydrotechnical construction,” Bull. Int. Assoc. Eng. Geol., vol. 54, no. 1, pp. 65–70, Oct. 1996.

[5] M. Romagnoli, C. Leonelli, E. Kamse, and M. Lassinantti Gualtieri, “Rheology of geopolymer by DOE approach,” Constr. Build. Mater., vol. 36, pp. 251–258, Nov. 2012.

[6] W. Jiang, “Alkali-activated cementitious materials: Mechanisms, microstructure and properties,” The Pennsylvania State University, 1997.

[7] C. Jolicoeur, M. A. Simard, J. Sharman, R. Zamojska, M. Dupuis, N. Spiratos, E. Douglas, and V. M. Malhotra, “Chemical activation of blast-furnace slag, An overview and systematic experimental investigation,” in Advances in Concrete Technology, 1992, pp. 471–502.

[8] C. Shi, P. V Krivenko, and D. Roy, Alkali-Activated Cements and Concretes. Abingdon, UK: Taylor & Francis, 2006.

[9] P. M. Gifford and J. E. Gillott, “Behaviour of mortar and concrete made with activated blast furnace slag cement,” Can. J. Civ. Eng., vol. 24, no. 2, pp. 237–249, Apr. 1997.

[10] F. Collins and J. . Sanjayan, “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder,” Cem. Concr. Res., vol. 29, no. 3, pp. 459–462, Mar. 1999.

[11] A. Favier, “Mécanisme de prise et rhéologie de liants géopolymères modèles,” Université Paris- Est, 2013.

[12] A. Favier, J. Hot, G. Habert, N. Roussel, and J.-B. d’Espinose de Lacaillerie, “Flow properties of MK- based geopolymer pastes. A comparative study with standard Portland cement pastes,” Soft

Matter, vol. 10, no. 8, p. 1134, 2014.

[13] J. van der Donck and H. Stein, “Viscosity of Silicate Solutions,” Langmuir, vol. 9, no. 3, pp. 2276– 2280, 2001.

[14] X. Yang, W. Zhu, and Q. Yang, “The Viscosity Properties of Sodium Silicate Solutions,” J. Solution

Chem., vol. 37, no. 1, pp. 73–83, Jan. 2008.

[15] A. Bourlon, “Physico-chimie et rhéologie de géopolymères frais pour la cimentation des puits pétroliers,” Université Pierre et Marie Curie - Paris VI, 2010.

[16] M. Palacios and F. Puertas, “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars,” Cem. Concr. Res., vol. 35, no. 7, pp. 1358–1367, Jul. 2005. [17] F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, and P. Chindaprasirt, Handbook of alkali-activated

cements, mortars and concretes, 1st Editio. 2014.

[18] A. O. Purdon, “The action of alkalis on blast-furnace slag,” J. Soc. Chem. Ind., vol. 59, no. Trans. Commun., pp. 191–202, 1940.

90

[19] R. Andersson and H.-E. Gram, “Properties of alkali-activated slag concrete,” Nord. Concr. Res., no. 6, pp. 7–18, 1987.

[20] S. Caijun and L. Yinyu, “Investigation on some factors affecting the characteristics of alkali- phosphorus slag cement,” Cem. Concr. Res., vol. 19, no. 4, pp. 527–533, 1989.

[21] T. Bakharev, J. G. Sanjayan, and Y. B. Cheng, “Alkali activation of Australian slag cements,” Cem.

Concr. Res., vol. 29, no. 1, pp. 113–120, 1999.

[22] F. Collins and J. . Sanjayan, “Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3,” Cem. Concr. Res., vol. 28, no. 5, pp. 655–664, 1998.

[23] T. S. Tan, T. H. Wee, S. A. Tan, C. T. Tam, and S. L. Lee, “A consolidation model for bleeding of cement paste,” Adv. Cem. Res., vol. 1, no. 1, pp. 18–26, Oct. 1987.

[24] L. Josserand, O. Coussy, and F. de Larrard, “Bleeding of concrete as an ageing consolidation process,” Cem. Concr. Res., vol. 36, no. 9, pp. 1603–1608, Sep. 2006.

[25] K. Kovler and N. Roussel, “Properties of fresh and hardened concrete,” Cem. Concr. Res., vol. 41, no. 7, pp. 775–792, 2011.

[26] F. G. Collins and J. G. Sanjayan, “Workability and mechanical properties of alkali activated slag concrete,” Cem. Concr. Res., vol. 29, no. 3, pp. 455–458, Mar. 1999.

[27] P. Chindaprasirt, T. Chareerat, S. Hatanaka, and T. Cao, “High-Strength Geopolymer Using Fine High-Calcium Fly Ash,” J. Mater. Civ. Eng., vol. 23, no. 3, pp. 264–270, Mar. 2011.

[28] D. Hardjito, “Studies on Fly Ash-Based Geopolymer Concrete,” 2005.

[29] A. A. Adam, “Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete,” School of Civil, Environmental and Chemical Engineering RMIT University, Melbourne, Australia, 2009.

[30] M. F. Ahmed, M. F. Nuruddin, and N. Shafiq, “Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete,” Int. J. Civil,

Environ. Struct. Constr. Archit. Eng., vol. 5, no. 2, pp. 64–70, 2011.

[31] F. Collins and J. . Sanjayan, “Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3,” Cem. Concr. Res., vol. 28, no. 5, pp. 655–664, Oct. 1998.

[32] R. R. Lloyd, “The durability of inorganic polymer cements,” University of Melbourne, 2008. [33] S.-D. Wang, K. L. Scrivener, and P. L. Pratt, “Factors affecting the strength of alkali-activated slag,”

Cem. Concr. Res., vol. 24, no. 6, pp. 1033–1043, 1994.

[34] F. Puertas, S. Martı́nez-Ramı́rez, S. Alonso, and T. Vázquez, “Alkali-activated fly ash/slag cements,”

Cem. Concr. Res., vol. 30, no. 10, pp. 1625–1632, Oct. 2000.

[35] M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,”

Mater. Des., vol. 36, pp. 191–198, Apr. 2012.

[36] A. Bagheri and A. Nazari, “Compressive strength of high strength class C fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method,” Mater. Des., vol. 54, pp. 483–490, Feb. 2014.

[37] B. Talling, P. Krivenko, and C. Satish, “Blast furnace slag-the ultimate binder,” in Waste Materials

Used in Concrete Manufacturing, Elsevier, 1996, pp. 235–289.

[38] J. Davidovits and P. J. Davidovits, “30 Years of Successes and Failures in Geopolymer Applications . Market Trends and Potential Breakthroughs .,” in Geopolymer Conference, 2002, pp. 1–16.

91

[39] H. Xu, J. L. Provis, J. S. J. van Deventer, P. V. Krivenko, X. Hua, J. L. Provis, J. S. J. Van Deventer, and

P. V. Krivenko, “Characterization of Aged Slag Concretes,” ACI Mater. J., vol. 105, no. 2, pp. 131– 139, 2008.

[40] J. S. J. J. Van Deventer, J. L. Provis, and P. Duxson, “Technical and commercial progress in the adoption of geopolymer cement,” Miner. Eng., vol. 29, pp. 89–104, Mar. 2012.

[41] J. Temuujin, R. P. Williams, and a. van Riessen, “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature,” J. Mater. Process. Technol., vol. 209, no. 12–13, pp. 5276–5280, Jul. 2009.

[42] N. Marjanović, M. Komljenović, Z. Baščarević, and V. Nikolić, “Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation,” Constr. Build. Mater., vol. 57, pp. 151–162, Apr. 2014.

[43] M. Ben Haha, B. Lothenbach, G. Le Saout, and F. Winnefeld, “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO,” Cem. Concr. Res., vol. 41, no. 9, pp. 955–963, Sep. 2011.

[44] F. Jin, K. Gu, and A. Al-Tabbaa, “Strength and drying shrinkage of reactive MgO modified alkali- activated slag paste,” Constr. Build. Mater., vol. 51, pp. 395–404, 2014.

[45] M. Ben Haha, B. Lothenbach, G. Le Saout, and F. Winnefeld, “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al2O3,” Cem. Concr. Res., vol. 42, no. 1, pp. 74–83, 2012.

[46] R. San Nicolas, M. Cyr, and G. Escadeillas, “Characteristics and applications of flash metakaolins,”

Appl. Clay Sci., vol. 83–84, pp. 253–262, Oct. 2013.

[47] A. Autef, E. Joussein, A. Poulesquen, G. Gasgnier, S. Pronier, I. Sobrados, J. Sanz, and S. Rossignol, “Influence of metakaolin purities on potassium geopolymer formulation: The existence of several networks,” J. Colloid Interface Sci., vol. 408, no. 1, pp. 43–53, 2013.

[48] A. Autef, E. Joussein, G. Gasgnier, and S. Rossignol, “Importance of metakaolin impurities for geopolymer based synthesis,” in Ceramic Engineering and Science Proceedings, 2014, vol. 34, no. 10, pp. 3–12.

[49] M. R. Wang, D. C. Jia, P. G. He, and Y. Zhou, “Influence of calcination temperature of kaolin on the structure and properties of final geopolymer,” Mater. Lett., vol. 64, no. 22, pp. 2551–2554, 2010. [50] A. Elimbi, H. K. Tchakoute, and D. Njopwouo, “Effects of calcination temperature of kaolinite clays

on the properties of geopolymer cements,” Constr. Build. Mater., vol. 25, no. 6, pp. 2805–2812, 2011.

[51] L. Weng and K. Sagoe-Crentsil, “Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems,” J. Mater. Sci., vol. 42, no. 9, pp. 2997–3006, May 2007.

[52] P. Duxson, S. W. Mallicoat, G. C. Lukey, W. M. Kriven, and J. S. J. van Deventer, “The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers,”

Colloids Surfaces A Physicochem. Eng. Asp., vol. 292, no. 1, pp. 8–20, Jan. 2007.

[53] M. Steveson and K. Sagoe-Crentsil, “Relationships between composition, structure and strength of inorganic polymers,” J. Mater. Sci., vol. 40, no. 16, pp. 4247–4259, Aug. 2005.

[54] A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Microporous Mesoporous Mater., vol. 91, no. 1–3, pp. 111–119, Apr. 2006.

92

[55] R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, vol. 89, no. 12, pp. 3683–3692, Dec. 2010. [56] E. I. Diaz, E. N. Allouche, and S. Eklund, “Factors affecting the suitability of fly ash as source

material for geopolymers,” Fuel, vol. 89, no. 5, pp. 992–996, May 2010.

[57] F. Winnefeld, A. Leemann, M. Lucuk, P. Svoboda, and M. Neuroth, “Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials,” Constr. Build.

Mater., vol. 24, no. 6, pp. 1086–1093, 2010.

[58] J. Temuujin, a van Riessen, and R. Williams, “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.,” J. Hazard. Mater., vol. 167, no. 1–3, pp. 82–8, Aug. 2009. [59] P. Duxson and J. L. Provis, “Designing Precursors for Geopolymer Cements,” J. Am. Ceram. Soc.,

vol. 91, no. 12, pp. 3864–3869, Dec. 2008.

[60] J. Van Jaarsveld, J. Van Deventer, and G. Lukey, “The characterization of source materials in fly ash-based geopolymers,” Mater. Lett., vol. 57, no. 7, pp. 1272–1280, 2003.

[61] A. R. Brough and A. Atkinson, “Sodium silicate-based, alkali-activated slag mortars - Part I. Strength, hydration and microstructure,” Cem. Concr. Res., vol. 32, no. 6, pp. 865–879, 2002. [62] A. Fernández-Jiménez, J. G. Palomo, and F. Puertas, “Alkali-activated slag mortars: Mechanical

strength behaviour,” Cem. Concr. Res., vol. 29, no. 8, pp. 1313–1321, 1999.

[63] M. Ben Haha, G. Le Saout, F. Winnefeld, and B. Lothenbach, “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast- furnace slags,” Cem. Concr. Res., vol. 41, no. 3, pp. 301–310, 2011.

[64] C. Duran Atiş, C. Bilim, Ö. Çelik, and O. Karahan, “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar,” Constr. Build. Mater., vol. 23, no. 1, pp. 548–555, Jan. 2009.

[65] F. Pacheco-Torgal, D. Moura, Y. Ding, and S. Jalali, “Composition, strength and workability of alkali-activated metakaolin based mortars,” Constr. Build. Mater., vol. 25, no. 9, pp. 3732–3745, Sep. 2011.

[66] M. Rowles and B. O’Connor, “Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite,” J. Mater.

Chem., vol. 13, no. 5, pp. 1161–1165, Apr. 2003.

[67] Y. Zhang, W. Sun, and Z. Li, “Synthesis and microstructural characterization of fully-reacted potassium-poly(sialate-Siloxo) geopolymeric cement matrix,” ACI Mater. J., vol. 105, no. 2, pp. 156–164, 2008.

[68] A. Gharzouni, E. Joussein, B. Samet, S. Baklouti, and S. Rossignol, “Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation,” J. Non. Cryst. Solids, vol. 410, pp. 127–134, Feb. 2015.

[69] C. Panagiotopoulou, E. Kontori, T. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., vol. 42, no. 9, pp. 2967–2973, Dec. 2007. [70] M. Komljenović, Z. Baščarević, and V. Bradić, “Mechanical and microstructural properties of alkali-

activated fly ash geopolymers,” J. Hazard. Mater., vol. 181, no. 1–3, pp. 35–42, Sep. 2010.

[71] J. L. Provis, C. Z. Yong, P. Duxson, and J. S. J. van Deventer, “Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 336, no. 1–3, pp. 57–63, Mar. 2009.

93