• Aucun résultat trouvé

GROWTH INSTABILITIES OF VESICLES

N/A
N/A
Protected

Academic year: 2021

Partager "GROWTH INSTABILITIES OF VESICLES"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: jpa-00231104

https://hal.archives-ouvertes.fr/jpa-00231104

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

To cite this version:

R. Bruinsma. GROWTH INSTABILITIES OF VESICLES. Journal de Physique Colloques, 1990, 51

(C7), pp.C7-53-C7-71. �10.1051/jphyscol:1990705�. �jpa-00231104�

(2)

COLLOQUE DE PHYSIQUE

C o l l o q u e C7, s u p p l 6 m e n t a u n 0 2 3 , Tome 51, l e r dgcembre 1990

GROWTH INSTABILITIES OF VESICLES

R. BRUINSMA

P h y s i c s D e p a r t m e n t , U n i v e r s i t y of C a l i f o r n i a , L o s A n g e l e s CA 90024, U.S.A.

ABSTRACT

We p r e s e n t a model f o r t h e growth of short-wavelength i n s t a b i l i t i e s of membranes with small c u r v a t u r e energy based on t h e van d e r Waals i n t e r a c t i o n energy.

I. INTRODUCTION

>S is well known,% t h e macroscopic shape of l i p i d membranes is l a r g e l y

c o n t r o l l e d by a combination of t h e curvature energy K , spontaneous c u r v a t u r e , temperature, and t h e i n t e r a c t i o n between membranes. Heasured c u r v a t u r e e n e r g i e s a r e u s u a l l y considerably i n excess of 8-1 = kBT. The s u r f a c e of t h e membrane is approximately . l a t on l e n g t h s c a l e s l e s s than t h e persistence l e n g t h Ep

-

exp BK. I f we do reduce BK, then Ep becomes smaller and smaller while t h e membrane becomes rougher and rougher. For @K $ i, membranes a r e believed t o be unstable due t o thermal f l u c t u a t i o n s . The p h a s e - t r a n s i t i o n between t h e

L,

and L3 phases may be an example of such an i n s t a b i l i t y . '

Recently, E. Evans devised an Ingenious experiment which suggests an a l t e r n a t i v e s c e n a r i o f o r t h e e v o l u t i o n of i n s t a b i l i t i e s of low X membranes. He d i s s o l v e d t h e sub-surface p r o t e i n s c a f f o l d i n g which had maintained t h e r i g i d i t y of a ( s p h e r i c a l ) v e s i c l e 3 and t h e n watched t h e evolution. The i n i t i a l

c u r v a t u r e energy was q u i t e low a s t e s t i f i e d by v i s i b l e thermal f l u c t u a t i o n s i n t h e v e s i c l e shape immediately following t h e d i s s o l u t i o n . A f t e r a while, t h e v e s i c l e grew "buds" which l e d t o new s m a l l e r v e s i c l e s . The new v e s i c l e s were s t a b l e .

Host i n t e r e s t i n g l y , he observed on occasion during t h i s process t u b u l a r buds and t h e s e t u b e s showed a bead-like i n s t a b i l i t y . I n o t h e r words, t h e cross- s e c t i o n of t h e t u b e was modulated p e r i o d i c a l l y . I n s t a b i l i t i e s of l i q u i d c y l i n d e r s a r e q u i t e f a m i l i a r s i n c e Rayleighq but t h e r e t h e d r i v i n g f o r c e is t h e s u r f a c e t e n s i o n . For v e s i c l e s , t h e s u r f a c e a r e a is a f i x e d q u a n t i t y because of t h e s u r f a c t a n t a c t i o n of t h e l i p i d molecules. Spontaneous c u r v a t u r e e f f e c t s can a l s o be r u l e d out.

The i n s t a b i l i t y would be understandable a s t h e consequence of a long- range a t t r a c t i v e i n t e r a c t i o n between t h e w a l l s of t h e tube.¶ A long-range Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990705

(3)

a t t r a c t i v e f o r c e would favor a l a r g e number of s m a l l v e s i c l e s over a s i n g l e l a r g e v e s i c l e ( w i t h t h e same t o t a l a r e a ) s i n c e more s e c t i o n s of t h e membrane would be i n c l o s e proximity i n t h e former case. I n t h a t sense, an a t t r a c t i v e f o r c e has an e f f e c t somewhat s i m i l a r t o s u r f a c e t e n s i o n . The observed Rayleigh- type i n s t a b i l i t y would then a l s o be understandable. This long-range a t t r a c t i o n must compete with t h e c u r v a t u r e energy. I f we transform a s i n g l e s p h e r i c a l v e s i c l e

--

with no spontaneous curvature

--

i n t o N s m a l l e r v e s i c l e s then t h e curvature energy is increased by roughly (N-114n

( ~ K + E )

with t h e Gaussian curvature energy.

The dominant long-range a t t r a c t i o n f o r membranes is provided by t h e van d e r Waals i n t e r a c t i o n e . The a t t r a c t i v e van d e r Waals energy between two f l a t p a r a l l e l l a y e r s of t h i c k n e s s 6 a d i s t a n c e z a p a r t is well known t o be of order W62/z4 with W t h e Bamaker constant (-10-2'

-

10'22 J . ) I f we use f o r 6 t h e membrane t h i c k n e s s ( - SOA) then t h i s a t t r a c t i o n is miniscule compared t o t h e curvature energy a s long a s r ( z )

>>

6. T h i s would appear t o be a f a t a l o b j e c t i o n t o t h e proposed explanation of t h e observed i n s t a b i l i t y . However, f o r t h e experiment discussed e a r l i e r t h e r e is no reason f o r t h e d i e l e c t r i c c o n s t a n t s o f t h e s o l v e n t s i n t h e i n t e r i o r and e x t e r i o r of t h e v e s i c l e t o be t h e same. Because o f t h e d i s s o l v e d p r o t e i n s c a f f o l d i n g i n t h e i n t e r i o r they could indeed be s i g n i f i c a n t l y d i f f e r e n t . The van der Waals i n t e r a c t i o n per u n i t a r e a between two p a r a l l e l s h e e t s enclosing a medium of d i e l e c t r i c c o n s t a n t E * with a medium of d i e l e c t r i c c o n s t a n t cB on the o u t s i d e is of o r d e r W/zz. Here, W is p r o p o r t i o n a l t o (E,

-

eB)Z/(cA + eB)2. The a t t r a c t i o n has i n c r e a s e d by a f a c t o r ( z / 6 ) z compared t o t h e d i r e c t i n t e r a c t i o n and can now be of t h e same order of magnitude a s t h e curvature energy. In t h i s a r t i c l e we w i l l

i n v e s t i g a t e t h e s t a b i l i t y of a v e s i c l e f o r which t h e van der Waals self-energy is comparable t o t h e H e l f r i c h curvature energy.

(4)

11. CURVATURE AND VAN DER WAALS ENERGIES.

The f r e e energy of a c l o s e d v e s i c l e with no spontaneous c u r v a t u r e is

=

1

K {R~-'

+

%-l)t +

- j 3

J d 3 r .

-

1 (1)

e x t e r i o r i n t e r i o r

The f i r s t term is t h e standard H e l f r i c h curvature energy. We dropped t h e Gaussian curvature term a s it is independent of t h e v e s i c l e shape and we a l s o

assumed zero spontaneous curvature. The second term i n Eq.1 is t h e non- r e t a r d e d van der Waals self-energy i n t h e de Boer-Hamaker approximation a s discussed i n t h e Appendix. We a r e i m p l i c i t l y assuming i n Eq.1 t h a t

--

notvithstanding t h e d i f f e r e n t s o l v e n t s

--

t h e r e is no a p p r e c i a b l e osmotic p r e s s u r e d i f f e r e n c e between i n t e r i o r and e x t e r i o r of t h e v e s i c l e .

We now should minimize F v i t h r e s p e c t t o t h e v e s i c l e shape f o r a given f i x e d s u r f a c e area. From dimensional c o n s i d e r a t i o n s we should expect f o r K >>

W t o f i n d a s p h e r i c a l shape s i n c e t h e n t h e H e l f r i c h term dominates.

For K

< <

W, t h e van d e r Waals self-energy dominates. We saw i n the

i n t r o d u c t i o n t h a t two p a r a l l e l f l a t s h e e t s a t t r a c t each o t h e r . If K << W we t h u s should expect t h e v e s i c l e t o be crumpled i n some way. The g e n e r a l minimization of F with r e s p e c t t o shape is c l e a r l y a q u i t e d i f f i c u l t problem.

We w i l l consider o n l y a s p e c i a l c a s e , motivated by Evans' experiment, namely t h a t o f a r o t a t i o n a l l y i n v a r i a n t v e s i c l e .

Assume a t u b u l a r membrane with a p o s i t i o n dependent r a d i u s r ( z ) a t t a c h e d t o a micron-size v e s i c l e of r a d i u s R

> >

r ( s e e F i g . 1 ) which a c t s a s a r e s e r v o i r . The l e n g t h of t h e t u b e is L and t h e

2

a x i s c o i n c i d e s w i t h t h e tube. The f r e e energy Eq.1 then s i m p l i f i e s t o

(5)

with A g.6W. The d e r i v a t i o n of t h e van d e r Waals term i n Eq.2 is given i n t h e Appendix but i t ' s form is obvious from dimensional c o n s i d e r a t i o n s : f o r r f z ) c o n s t a n t , F must be proportional t o both L and W s o F a WL/r. The second term i n Eq.2 is an obvious g e n e r a l i z a t i o n of t h i s .

Equation 2 i s only v a l i d f o r the,non-retarded van der Waals i n t e r a c t i o n . I f r

2

X with X t h e dominant adsorption wavelength of t h e s o l v e n t (- SOnm), t h e n we must r e p l a c e ~ r - l by ~ r - ' with B

=

XA ( t h e r e t a r d e d van d e r Waals i n t e r a c t i o n ) .

The q u a l i t a t i v e f e a t u r e s of F a r e e a s i l y understood. For a c i l i n d r i c a l tube with r ( z ) = r O , Eq.2 g i v e s F = L(Kn

-

A ) / r o . For K

>

A/n, we can minimize F by reduclng L and i n c r e a s i n g ro. For K

<

A/n, we minimize F by reducing ro and increasing L. We t h u s expect t h a t f o r K

>

A/n t h e v e s i c l e is s t a b l e while f o r

K < A / n i t w i l l spontaneously develop t u b u l a r p r o t r u s i o n s . For ro ?.,X, F =

L(Xn-B/ro)/ro s o t h e r e is then a c r i t i c a l r a d i u s R* = 8B/3nK such t h a t f o r ro

L

R*

2

X t h e tube w i l l s w e l l and vanishes while f o r X

5

ro

5

K* it w i l l s h r i n k and elongate ( t h e reason f o r t h e numerical f a c t o r w i l l become c l e a r l a t e r ) . The necessary c o n d i t i o n X

2

R* f o r t h i s i n s t a b i l i t y is j u s t K

5

A/n a s before.

We conclude t h a t K* = A/n marks t h e t h r e s h o l d of a growth I n s t a b i l i t y which we w i l l now proceed t o i n v e s t i g a t e i n more d e t a i l .

I11

.

DWAHICS

The growth-rate of t h e tube w i l l be c o n t r o l l e d by t h e flow of s o l v e n t m a t e r i a l . To s e e why, assume we have a tube of l e n g t h L and uniform r a d i u s r.

A s it s h r i n k s , its t o t a l s u r f a c e a r e a S a r ( t ) L ( t ) must remain (roughly) .fixed.

T h i s means t h a t t h e tube v o l ~ V ( t ) a r Z ( t ) L ( t ) must decrease as V ( t ) a S r ( t ) . This i n t u r n i m p l i e s t h a t t h e r e must be flow from t h e tube i n t o t h e v e s i c l e .

(6)

As a r e s u l t , t h e region where t h e tube is connected t o t h e v e s i c l e moves towards t h e v e s i c l e ( s e e Fig. 1). We w i l l focus on t h i s c o n t a c t region and i n p a r t i c u l a r look f o r "steady-state" s o l u t i o n s with t h e tube shape f i x e d but moving l e f t .

There w i l l be c o n t r i b u t i o n s t o t h e viscous energy-dissipation by t h e s o l v e n t flow both from t h e v e s i c l e i n t e r i o r and e x t e r i o r . Viscous l o s s e s from t h e i n t e r i o r w i l l dominate because of t h e v e l o c i t y g r a d i e n t s imposed by t h e boundary conditions a t t h e v e s i c l e s u r f a c e . As our boundary c o n d i t i o n on t h e flow v e l o c i t y v, we w i l l s e t +

:

i 0 a t t h e membrane. This is again because t h e membrane has a f i x e d s u r f a c e a r e a . If we wish t o maintain, o r even i n c r e a s e , t h e length of t h e tube during t h e flow, t h e n t h e membrane molecules cannot be c a r r i e d along by t h e flow towards t h e v e s i c l e s o

G

must be z e r o a t t h e s u r f a c e of t h e tube. We a l s o w i l l assume t h a t t h e r e is no s o l v e n t t r a n s p o r t a c r o s s t h e membrane.

-f

+

Let v ( p , z ) be t h e s o l v e n t flow v e l o c i t y . To compute v, we use t h e P o i s s e u i l l e approximation:

with P ( z , p ) t h e p r e s s u r e i n t h e tube and q t h e v i s c o s i t y . We assumed i n Eq.3 r ( z ) t o be a slowly varying f u n c t i o n of z. A s a consequence v -3 is roughly

a 2 3 p a r a l l e l t o t h e tube axis ( " l u b r i c a t i o n approximation")e and ap2

>> -

azz

.

The

s o l u t i o n of Eq.3 is then

v ( p , z ) P

-

2q az (r2

-

p 2 )

F i n a l l y , we demand mass conservation:

(7)

Using Eq.4 i n Eq.5 g i v e s

X =

a t [L]

8qr az

L { ~ & }

where we performed a s u i t a b l e average of P ( z , p ) over p.

The p r e s s u r e i n Eq.6 r e c e i v e s c o n t r i b u t i o n s from both c u r v a t u r e (PH) and van der Waals (Pmw) e n e r g i e s . We s t a r t with t h e "Helfrich" p r e s s u r e P,. On physical grounds we can i d e n t i f y a t l e a s t two c o n t r i b u t i o n s t o pH:

i i ) For r ( z ) = r0 independent of z , t h e curvature energy per u n i t a r e a o f a t u b e is K/2roz. The chemical p o t e n t i a l of s u r f a c t a n t molecules a t t h e tube s u r f a c e is t h u s l a r g e r than a t t h e v e s i c l e s u r f a c e . This chemical p o t e n t i a l d i f f e r e n c e would l e a d t o t r a n s p o r t of s u r f a c t a n t molecules from v e s i c l e t o tube. Local e q u i l i b r i u m r e q u i r e s a negative counter-pressure

--

o f o r d e r K / r o 3

--

t o prevent s w e l l i n g of t h e tube.

(11) Recall t h a t a c r o s s a curved s u r f a c e of a f l u i d with s u r f a c e t e n s i o n U t h e r e is a p r e s s u r e drop

-

f l z h with h t h e height p r o f i l e (Young-Laplace p r e s s u r e ) . T h i s p r e s s u r e drop is t h e v a r i a t i o n a l d e r i v a t i v e 6F/6h of t h e i n t e r f a c i a l energy. For membranes we would expect by analogy a p r e s s u r e &F/6h

I: KV4h which would c o n t r i b u t e a term Kd4r/dz4.

l ~ F H

2nr The p o s i t i v e s i g n is We d e f i n e t h e H e l f r i c h p r e s s u r e P, = BFH/BV =

- -

r e q u i r e d because P, is t h e counter-pressure r e q u i r e d f o r l o c a l e q u i l i b r i u m . Using Eq.2,

(8)

which c o n t a i n s t h e expected terms.

The van d e r Waals p r e s s u r e is h i g h l y inhomogeneous a s discussed i n t h e Appendix. For t h e present purpose, ve note t h a t t h e van der Waals self-energy would i n Eq.2 l e a d t o c o l l a p s e of t h e tube u n l e s s t h e r e i s a p o s i t i v e counter- p r e s s u r e .

Near t h e membrane t h e t r u e p r e s s u r e considerably exceeds PvDw ( s e e

Appendix) but s i n c e v

+

is r e s t r i c t e d t o t h e i n t e r i o r of t h e t u b e , we w i l l simply use Pm,. Since r ( z ) decreases as we e n t e r t h e t u b e , PYDW i n c r e a s e s with z . The r e s u l t i n g pressure g r a d i e n t i n Eq.6 is responsible f o r t h e f l o v i n t o t u b e .

We s h a l l look f o r s o l u t i o n s of Eq.6 of t h e form r ( z , t ) = r ( z + U t ) , i . e . s o l u t i o n s f o r which t h e growing tube maintains a s t a t i o n a r y shape while moving t o t h e l e f t . Here, U is t h e growth v e l o c i t y which should be of t h e o r d e r of 1 micronfsecond. I n a frame moving v i t h a v e l o c i t y U, where r o n l y depends on X f z + U t , Eq.6 becomes

T h i s e q u a t i o n has a f i r s t i n t e g r a l

We w i l l assume t h a t deep i n s i d e t h e v e s i c l e , t h e p r e s s u r e g r a d i e n t s a r e very small s o t h e i n t e g r a t i o n c o n s t a n t i n Eq.10 is a l s o very small (of o r d e r nU/R2) We w i l l s e t it t o zero. This means t h a t i n t h e tube dP/dx is everywhere non- zero s o dr/dx must be non-zero as well. Tubes with uniform cross-section a r e

(9)

t h u s only p o s s i b l e f o r U = 0. We w i l l only allow s o l u t i o n s with dr/dx

<

0.

For l a r g e r , we can neglect t h e van d e r Waals pressure i n Eq.10 a s well as t h e l / r 2 c o n t r i b u t i o n t o pH. Equation 10 then reads:

We w i l l look f o r s o l u t i o n s of increasing r as X becomes more negative. The Ansatz r ( x ) = C ( - X ) ~ is a s o l u t i o n of Eq.11 i f

For X

-

-R, r ( R ) must be of o r d e r R. Using Eq.12, t h i s gives an expression f o r t h e growth v e l o c i t y U:

I

U

-

K/qR2

I

The unexpected aspect of Eq.13 is t h a t t h e nrowth v e l o c i t v does not d e ~ e n d on t h e mannitude of t h e van d e r Waals a t t r a c t i o n (which is providing t h e d r i v i n g f o r c e f o r t h e growth). We w i l l r e t u r n t o t h i s point l a t e r . For a t y p i c a l v e s i c l e with R

-

1 0 ' ~ cm, we f i n d U

-

1 0 ' ~ c d s e c i f 1-1 = 10-2 Poise ( w a t e r ) and K a ksT. The o r d e r of magnitude of U is t h u s i n a reasonable range.

Deep i n s i d e t h e tube, r ( z ) v a r i e s l i t t l e . The.dominant c o n t r i b u t i o n t o t h e H e l f r i c h p r e s s u r e is t h e l/$ term i n Eq.7. Neglecting t h e o t h e r terms i n P, but including PYDW g i v e s f o r Eq.10:

(10)

Only s o l u t i o n s with dr/dx < 0 a r e allowed s o f o r r ),X we must demand t h a t

K

< $

( i . e . r !, R*) while f o r r

2

l, we m u s t demand K < A

z.

The shape of t h e tube f o r r

>,

X is given by t h e s o l u t i o n of Eq.14b:

with X, an i n t e g r a t i o n c o n s t a n t . To determine X,, ve match Eq.15 with Eq.iZ around r ( x )

-

R*, i . e . around X =

-

X, s i n c e R*

-

W K . The r e s u l t i s t h a t

X ,

-

- ( R 0 3 R 2 ) i/ S , using Eq.13.

For r (, X , we must use Eq.14a:

with X,' determined by matching Eqs.1S and 16 around r

-

X.

The tube-shape d e s c r i b e d by Eqs.15 and 16 has a c r o s s - s e c t i o n of o r d e r R*

over a r a t h e r l a r g e d i s t a n c e . Using Eq.iS, r Is of t h e o r d e r of R* f o r X

5

R2/R9 using Eq.13. Since R

>>

R*, t h e tube l e n g t h vould be q u l t e l a r g e compared t o R. Actually, t h e t u b e l e n g t h is u n l i k e l y t o g e t t h a t l a r g e . The v e s i c l e is not r e a l l y a r e s e r v o i r i n t o vhtch we can pump j u s t any amount o f s o l v e n t . Became of its f i x e d s u r f a c e a r e a a v e s i c l e can s w e l l by o n l y a s m a l l amount.

Eventually t h e v e s l c l e w i l l be p e r f e c t l y s p h e r i c a l and f u r t h e r f l o v from t h e tube is prevented ( b a r r i n g mass t r a n s p o r t a c r o s s t h e membrane). I n t h e absence of flow, we saw t h a t t h e r e can be no f u r t h e r increas. i n L o r d e c r e a s e i n r.

The maximal e x t e n s i o n of t h e tube w i l l depend on how "winkled" t h e i n i t l a l s u r f a c e is of t h e v e s i c l e because of thermal f l u c t u a t i o n s . Another l i m i t a t i o n

(11)

on L is s e t by t h e Rayleigh i n s t a b i l i t y which we w i l l d i s c u s s now.

IV. RAYLEIGH INSTABILITY FOR tlE?lBRANES

To i n v e s t i g a t e whether membranes can e x h i b i t a Rayleigh i n s t a b i l i t y , we s t a r t with a c y l i n d r i c a l v e s i c l e of r a d i u s R

>

X . The i n t e r n a l p r e s s u r e i n t h e tube is assumed t o be a d j u s t e d t o compensate f o r curvature and van der Waals f o r c e s . Now add a small p e r t u r b a t i o n i n t h e tube r a d i u s :

Since t h e s u r f a c e a r e a must be kept f i x e d , t h e average value R of r is unchanged. The induced p r e s s u r e v a r i a t i o n is then ( s e e Eqs. 7 & 8 ) :

I n s e r t i n g Eq.17 i n Eq.6 g i v e s

A p e r i o d i c modulation 6 ( z , t ) = eOkt cos kz is a s o l u t i o n i f

By maximizing % we f i n d t h e most r a p i d l y growing mode. S e t t i n g awk/ak* = 0 g i v e s f o r t h e a s s o c i a t e d wavevector

(12)

with R* = 8B/3n a s before. The wavelength of t h e i n s t a b i l i t y is t h u s of o r d e r R

--

j u s t a s f o r t h e "true" Rayleigh i n s t a b i l i t y . Note t h a t k*-1 d i v e r g e s a s R approaches R*. For R

>

R* t h e r e is no I n s t a b i l i t y .

The growth r a t e of t h e i n s t a b i l i t y is o r order B/R411. For R

-

.l micron,

t h i s is of o r d e r 102 sec-1

--

r e l a t i v e l y r a p i d . Of course, f o r l a t e r times we clnnot r e a l l y use l i n e a r s t a b i l i t y a n a l y s i s but by analogy with t h e Rayleigh i n s t a b i l i t y we expect e v e n t u a l l y t o f i n d an a r r a y of s p h e r i c a l v e s i c l e s w i t h a r a d i u s of o r d e r R.

V. SLPMRY AND CONCLUSION

We can summarize our main r e s u l t s a s follows:

(1) V e s i c l e s a r e u n s t a b l e a g a i n s t t h e growth of t u b u l a r p r o t r u s i o n s i f K !, A/n.

(11) The c h a r a c t e r i s t i c s i z e of t h e p r o t r u s i o n s i s R* = 8B/3nK while t h e growth v e l o c i t y is U

-

K/qR

--

with R t h e v e s i c l e r a d i u s .

( i i i ) A tube with a r a d i u s ro R* has a Rayleigh-type i n s t a b i l i t y w i t h a wavelength of o r d e r ro.

Our r e s u l t ( i i ) g i v e s R* r .l micron and U r l micron/second both of which have t h e r i g h t o r d e r of magnitude. The s t i f f n e s s constant was not known i n Evans' experiment s o ( i ) cannot be checked but f o r t y p i c a l s t a b l e membranes, K r 10-l9 J. which e a s i l y obeys t h e s t a b i l i t y c r i t e r i u m K > , A / n . Concerning

( i i i ) , t h e observed wave-length of t h e Rayleigh-type i n s t a b i l i t y was indeed of t h e o r d e r of t h e t u b e r a d i u s . These r e s u l t s show t h a t membranes which form a boundary between s o l v e n t s of d i f f e r e n t d i e l e c t r i c c o n s t a n t s , have "short- wavelength" I n s t a b i l i t i e s a t low K not d r i v e n by thermal f l u c t u a t i o n s but

i n s t e a d by competition between curvature energy and van d e r Waals self-energy.

Despite t h e s e encouraging r e s u l t s , it i s important t o emphasize t h a t we

(13)

made a number of r a t h e r s e r i o u s approximations and s i m p l i f i c a t i o n s . F i r s t of a l l , we used t h e H e l f r i c h curvature f r e e energy (Eq.1). During our discussion, we a c t u a l l y were i n v e s t i g a t i n g t h e short-distance behavior of membranes. I n g e n e r a l , t h e r e v i l l be f o r s m a l l r a d i u s r c o r r e c t i o n terms t o Eq.7 proportional t o ~ n r { l / r z p ) with p = 2 , 4 ,

. . .

For small r , such terms w i l l e v e n t u a l l y exceed t h e van der J a a l s a t t r a c t i o n , s a y a t , $ d i s t a n c e d. Obviously, i f d ),R8 our i n s t a b i l i t y mechanism f a i l s . These same non-linear terms could a l s o s t a b i l i z e small-size v e s i c l e s . Estimating d seems r a t h e r d i f f i c u l t and we i m p l i c i t l y assumed d t o be of a molecular s i z e .

We have made a number of o t h e r s i m p l i f i c a t i o n s :

(1) We neglected e l e c t r o s t a t i c f o r c e s and hydration f o r c e s which could overcome t h e van d e r Waals a t t r a c t i o n a t s h o r t d i s t a n c e s ;

( 2 ) We only c o n s t r u c t e d s t e a d y - s t a t e s o l u t i o n s f o r t h e growing tube. We d i d not provide a n u c l e a t i o n mechanism. The n u c l e a t i o n b a r r i e r which must be overcome should not be l a r g e compared t o kbT.

(3) We neglected thermal f l u c t u a t i o n s . The f a c t t h a t W

-

K is an important t h r e s h o l d f o r t h e growth process s u g g e s t s s i m i l a r i t i e s with t h e unbinding t r a n s i t i o n of l a m e l l a r membranes where W

-

iOK provides a t h r e s h o l d . 9 Thermal f l u c t u a t i o n s p l a y a very important r o l e i n t h a t c a s e . The e f f e c t of thermal f l u c t u a t i o n s i n our c a s e would crudely be t o make t h e s t i f f n e s s constant K dependent on t h e tube r a d i u s r and t o provide a r e p u l s i v e f o r c e f o r small r.

Using s t a n d a r d arguments, we expect K ( r )

Kg -

kBT Ln(r/R) with KR t h e s t i f f n e s s c o n s t a n t o f t h e v e s i c l e . The s t i f f n e s s c o n s t a n t t h u s i n c r e a s e s a s t h e tube s i z e decreases. The s t i f f n e s s c o n s t a n t KR o f a v e s i c l e with R

<

Cp is expected t o be of o r d e r Kg S K,

-

kBT t n ( W a o ) with a O a microscopic l e n g t h and K, t h e "bare" c u r v a t u r e energy. Assume now K, ),A/n. V e s i c l e s with KR

<

A can grow t u b e s with r t z ) > d where

(14)

The tube r a d i u s can however not s h r i n k t o zero s i n c e f o r r

<

d. K ( r ) w i l l exceed A even i f KR does n o t . Large thermal f l u c t u a t i o n could, a s mentioned, l e a d t o competing b - w a v e l e n p t h i n s t a b i 1 i t i e s . i On t h e b a s i s of Evans' observations we concentrated on short-distance i n s t a b i l i t i e s and ignored t h i s p o s s i b i l i t y .

Our d i s c u s s i o n of membrane s t a b i l i t y was p a t t e r n e d on t h e t h e o r y of

precursor spreadlng.8 Precursors a r e t h i n f i l m s spreading out of drops of f l u i d on a s u b s t r a t e which is wetted by t h e f l u i d . A s i n t h e p r e s e n t c a s e , t h e van d e r Waals f o r c e is b e l i e v e d t o l i e a t t h e o r i g i n of t h e p r e c u r s o r i n s t a b i l i t y . Our p e c u l i a r r e s u l t t h a t t h e growth v e l o c i t y U is independent of t h e Hamaker constant was a l s o found t o be t r u e f o r precursor spreading. The r e a d e r is r e f e r r e d t o Ref.8 f o r a f u r t h e r d i s c u s s i o n of t h i s s t r a n g e f a c t . An important d i f f e r e n c e wlth precursor spreading is t h a t i n t h a t c a s e t h e van der Waals f o r c e t h i c k e n s t h e f i l m whlle i n our c a s e it led t o a thinning of the tube.

The most e a s i l y experimentally a c c e s s i b l e p r e d i c t i o n s concern t h e growth v e l o c i t y U (Eq.13) and t h e wavevector kg of t h e membrane analog of t h e Rayleigh i n s t a b i l i t y . I n p a r t i c u l a r , it would be very i n t e r e s t i n g i f Ae = €*-EB could be v a r i e d s i n c e t h e growth v e l o c i t y U is p r e d i c t e d t o be independent of t h e Hamaker c o n s t a n t which is p r o p o r t i o n a l t o A E ~ . h t h e o t h e r hand, by t u n i n g AG one could a d j u s t t h e s t a b i l i t y c o n d i t i o n A

><

K. One could even s p e c u l a t e whether t h e budding instability o c c u r s i n b i o l o g i c a l v e s i c l e s with A6 a s t h e c o n t r o l parameter.

(15)

I would l i k e t o thank E. Evans f o r d i s c u s s i o n and H. Gelfand f o r helping me t o understand van d e r Waals i n t e r a c t i o n , and showing me how t o c a l c u l a t e PYDW (Eq.8).

REFERENCES

l . See: S t a t i s t i c a l Hechanics of Henbranes and S u r f a c e s , e d i t e d by D.

Nelson, T. P i r a n , and S. Weinberg (World S c i e n t i f i c , New J e r s e y , 1 9 8 8 ) . 2. E. Evans i n a b s t r a c t of Self-Assembling Holecular H a t e r i a l s Conference,

Prlnceton, Hay 1990.

3. E. Evans and R. Shalah, Hechanics and Thermodynamics of Biomembranes (CRC P r e s s , Boca Raton, F l a . 1980).

4. Lord Rayleigh, Proc. London Hath. Soc.

10,

4 (1878).

S. E. Evans, p r i v a t e communication.

6. J . N . I s r a e l a c h v l l l i , Intermolecular and Surface Forces, (Adademic,

Orlando, 1985); J. Rahanty and B.W. Ninham, D i s ~ e r s i o n Forces, (Academic, London, 1971 )

.

7. W. H e l f r i c h , 2 . Naturf. T e l l A, 33, 305 (1978).

8. P.G. de Gennes, Rev. &d. Phys.

2

(3). 827 (1985). We a r e borrowing a method described i n t h i s a r t i c l e .

9. R. Llpovsky and S. L e i b l e r , Phys. Rev. L e t t . 56, 2541, 1986; Erratum 59 (1987); R. Lipowsky and M.E. F i s h e r , Phys. Rev. L e t t

z,

2711 (1986).

(16)

FIGURE CAPTIONS

F i g . l Tubular i n s t a b i l i t y appearing on the surface o f spherical v e s i c l e of radius R . The bud is r o t a t i o n a l l y invariant around the z axes.

The tube grows by a flow v ( p , z ) from the tube into the v e s i c l e .

+

(17)

APPENDIX A: Van d e r Waals I n t e r a c t i o n

Assume we have a c l o s e d v e s i c l e of a r b i t r a r y shape. Let "A" denote i n t e r i o r s o l v e n t molecules and "B" e x t e r i o r sovent molecules. The non- r e t a r d e d van der Wals energy of t h e v e s i c l e i n t h e de Boer-Hamaker approximation is:

with W,, WAB and WBB t h e a p p r o p r i a t e energy s c a l e s f o r r e s p e c t i v e l y AA, BB and AB i n t e r a c t i o n . A l l i n t e g r a l s must be evaluated with a cut-off

+

-4

Ir,

-

rZ1

>

d where d is a molecular length. Define

and r e w r i t e Eq. A I as

with VA t h e t o t a l volume of A s o l v e n t and VB t h a t o f B s o l v e n t . We t h u s can i n t e r p r e t

- F

C(d) and

- F

C(d) a s c o n t r i b u t i o n s t o t h e chemical

(18)

p o t e n t i a l s of t h e s o l v e n t molecules i n s i d e and o u t s i d e t h e v e s i c l e . By assumption t h e r e is no osmotic pressure drop accross t h e membrane s o we can drop them.

For two p l a t e s s e p a r a t e d by a d i s t a n c e L , Eq.A3 i s e a s y t o e v a l u t e :

with S t h e s u r f a c e a r e a . This must reduce t o t h e well known r e s u l t 6

with W t h e Hamaker c o n s t a n t . We t h u s i d e n t i f y

Approximately, W M a c A Z , WBB a and WAB a EAEB while W a ( E A

-

eB)2.

Next we go t o a tube of cross-section r , l e n g t h L. Then

with

t h e energy d e n s i t y . T h i s i n t e g r a l is a hypergeometric f u n c t i o n , s o is d i f - f i c u l t t o o b t a i n FvDw i n c l o s e d form. Numerical e v a l u a t i o n cannot be used because t h e i n t e g r a l i n Eq.A7 is s t r o n g l y divergent a t p=r. To circumvent

(19)

t h i s problem, we expand f i r s t f ( p ) i n powers of p:

The s e r i e s c o n t a i n s only even powers. Next, f o r p c l o s e t o r it is easy t o show t h a t f ( p ) reduces t o t h e s t a n d a r d expression o f ~ e r j a ~ u i n : ~

Equation AI0 is not of t h e a n a l y t i c form i n d i c a t e d by t h e power s e r i e s Eq.A9 a s it c o n t a i n s odd powers of p / r . It is simple t o r e w r i t e Eq.AI0 t o avoid t h i s problem:

A l l

with C an undetermined c o n s t a n t . We choose C by demarrding t h a t f ( 0 ) = w/8r3 ( s e e Eq.A9) s o C =(3n/16

-

l ) . Now, f ( p ) has t h e l i m i t i n g form o f Eq.AI0 without v i o l a t i n g t h e form imposed by Eq.A9. I f we expand Eq.AII i n powers of p / r t h e n we f i n d t h a t c o e f f i c i e n t 2/71 o f t h e ( p / r ) = term is c l o s e t o t h e c o r r e c t value 15/32. The c o e f f i c i e n t of t h e zero o r d e r term is t h e c o r r e c t 1/8 by c o n s t r u c t i o n . We conclude t h a t Eq.AI1 is a

reasonable approximation t o f ( p ) f o r a l l p i n the range 0 t o r.

Performing t h e i n t e g r a l i n Eq.A7 gives:

with C' a c o n s t a n t .

(20)

The f i r s t term i n Eq.AI2 is p r o p o r t i o n a l t o t h e s u r f a c e a r e a Lr. It is thus a contribution t o t h e s u r f a c e energy. The t o t a l s u r f a c e t e n s i o n 1s assumed zero s o we can drop t h e term. The remaining term is t h e second term of Eq.2 vhere we assumed r(z) t o be slowly varying with z on a s c a l e of o r d e r r.

The reason why t h e van d e r Waals pressure is inhomogeneous follows from t h e c o n d i t i o n of h y d r o s t a t i c equilibrium

with f our f r e e energy density. It follows from Eq.AI1 t h a t P is very l a r g e near p = r.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to