• Aucun résultat trouvé

NON PERTURBATIVE EFFECTS AND QCD SUM RULES

N/A
N/A
Protected

Academic year: 2021

Partager "NON PERTURBATIVE EFFECTS AND QCD SUM RULES"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00221903

https://hal.archives-ouvertes.fr/jpa-00221903

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NON PERTURBATIVE EFFECTS AND QCD SUM RULES

H. Rubinstein

To cite this version:

H. Rubinstein. NON PERTURBATIVE EFFECTS AND QCD SUM RULES. Journal de Physique

Colloques, 1982, 43 (C3), pp.C3-249-C3-253. �10.1051/jphyscol:1982349�. �jpa-00221903�

(2)

CoZZoque suppZ6ment au n o 12, Tome 43, d6cembre 1982 page

NON PERTURBATIVE EFFECTS AND QCD SUM RULES H.R. Rubinstein

Weizmann I n s t i t u t e of Science, Rehovot, Israel ChaZmers University of TeehnoZogy, Gijteborg, Sweden

- I n t r o d u c t i o n . Consider a p o l a r i z a t i o n operator generated by some c u r r e n t , p h y s i c a l o r unphysical

,

t h a t has t h e general form j ( r ) = q r q . The c o r r e l a t i o n f u n c t i o n o f t h i s c u r r e n t generates, t o z e r o t h order a quark l o o p i n a given p a r t i a l wave w i t h quan- tum numbers determined by

T.

A t v e r y s h o r t distances because o f asymptotic freedom t h e amplitude i s determined by t h i s term. Separating t h e quarks (by t a k i n g d e r i v a - t i v e s i n t h e conjugate v a r i a b l e ) one must i n c l u d e c o r r e c t i o n s . Gluon exchanges cannot keep quarks from escaping. Therefore, a f t e r normal o r d e r i n g o t h e r operators besides t h e u n i t operator survive. T h e i r Wilson c o e f f i c i e n t s a r e c a l c u l a t e d p e r t u r - b a t i v e l y w h i l e t h e m a t r i x element, which cannot be evaluated, parametrizes our i g - norance o f what goes on a l o n g d i s t a n c e

.

These operators l i k e <GG> and <qq> a r e gauge and r e n o r m a l i z a t i o n group i n v a r i a n t and t h e r e f o r e u n i v e r s a l . The expression obtained i s now matched w i t h a sum o f resonances and e v e n t u a l l y a continuum. One t h e r e f o r e o b t a i n s a d e t e r m i n a t i o n o f masses and couplings i n terms o f fundamental Lagrange parameters.

Since e a r l i e r work has been described i n e a r l i e r conferences ( I ) I w i l l make a c r i - t i c a l e v a l u a t i o n o f these r e s u l t s and discuss new c a l c u l a t i o n s (2,3,4,5,7,8,14).

Heavy quark systems. I n t h i s case t h e mass o f t h e quark f i x e s t h e scale. The d e r i - v a t i v e s o f t h e p o l a r i z a t i o n f u n c t i o n become:

where Q O i s a spacelike reference p o i n t upon which t h e r e s u l t s should n o t depend. 2

J J 2 2

I n t h e QCD s i d e we have Mn(c)=An(l+an(J ,e)as+bn(J ,c)@), where c=Qo/4mh and

4x2 2

4 9

< $

G a G a >(4mc ) - I i s t h e famous gluon condensate. On t h e resonance s i d e

vv I.lV 2

1 m n ( s ) = 9 m ~ / ~ ~ 2 6 ( s - m ~ ) + continuum. S a t u r a t i n g o n l y w i t h one resonance one o b t a i n s t h e formula: r n ( F ) = ( ~ i + ~ i ) - l . I n f i g u r e 3 , , I one sees t h e r e s u l t f o r a charmonium s t a t e (". The breakdown

" = = , " - . - - -

f o r h i g h n s i g n a l s as i t can be checked t h a t t h e t h e o r y i s no l o n g e r v a l i d . For small n t h e disagreement has t o do w i t h t h e breakdown o f t h e one resonance approximation. The smooth matching works t o o w e l l .

b, For t h e v e c t o r c u r r e n t and n=4 t h e q(3100) i s s u f f i - c i e n t t o s a t u r a t e as i t can be checked d i r e c t l y from experiment. One may ask which a r e t h e parameters i n - 3.6 volved. For every f l a v o u r t h e r e i s t h e mass o f t h e

*

-

3 S O quark (mu=md=D, e t c ) . For a l l p a r t i a l waves and f l a -

3.aLl-

3.4 4 6 8 10 12 14

,,

vours one has hgCD and t h e values o f t h e m a t r i x e l e - ments l i k e <qq> and <G:~G:~>. AOCD agrees w i t h pre-

F i g u r e 1

sent estimates and t h e ' o t h e r s have been e s t a b l i s h e d by o t h e r meth d 1 i ke c u r r e n t algebra and l a t t i c e simulations. 965

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982349

(3)

C3-250 JOURNAL DE PHYSIQUE

Though t h e r e i s no systematic study o f h i g h e r dimensional operators and many times t h e i r Wilson c o e f f i c i e n t s a r e n o t known.Inallcases when estimates a r e a v a i l a b l e t h e i r e f f e c t i s small. Other hidden parameters are: 1) t h r e s h o l d values f o r t h e continuum. I n charmonium these e f f e c t s a r e v e r y small, i n baryons too. For massless quark systems these e f f e c t s a r e e s s e n t i a l b u t p h y s i c a l assumptions o r experimental i n f o r m a t i o n unables t h e p r a c t i t i o n e r t o make accurate p r e d i c t i o n s . 2) I n t h e case o f baryons t h e r e i s ambiguity i n t h e choice o f c u r r e n t (798).

I So = 3.01 .02 Gev 3 ~ 1 = 3.10 .O1 Gev 3 ~ 0 = 3.40 .O1 Gev 3 ~ 1 = 3.50 .O1 Gev 3 ~ 2 = 3.56 .O1 Gev 'PI = 3.51 .01 Gev m -m = 60 Mev

Y

QB 2 2

m, = 1.25 Gev(p =-m )

As an example we see t h e masses p r e d i c t e d f o r t h e char- monium s t a t e s and some r e s u l t s on t h e bottonium spect- rum. I n t h e case o f t h e bottom quark t h e r e a r e prob- lems t h a t r e q u i r e some f u r t h e r assumptions ( 9 ) b u t d i f f e r e n t techniques y i e l d v e r y s i m i l a r r e s u l t s and one i s t h e r e f o r e c o n f i d e n t on t h e r e s u l t s . These c a l c u l a - t i o n s a r e t h e b e s t k own method t o e s t a b l i s h t h e mass o f t h e heavy quarks 110). The l p l s t a t e has n o t been observed b u t i t s p o s i t i o n seems t o be p r e d i c t e d a t 3.51 by a l l models (11).

L i g h t mesons w i t h 1=1. The l o w e s t l y i n g mesons were s t u d i e d i n Ref. 3 . Here I de- s c r i b e t h e c a l c u l a t i o n s of Ref. 3 which have completed t h e knowledge o f t h e spect- rum up t o s p i n 2. I n t h e case o f massless quarks one must i n t r o d u c e a s c a l e i n t o t h e problem. This i s accomplished by c a l c u l a t i n g a t q l a r g e and t a k i n g a Borel 2 transform.

J 2

iMn (Q )=1 i m

$:

and Q ~ / ~ = M ~ o f (n-1 ) ! - ' ~ ~ ~ ( - d / d ~ ) ' ~ n ~ ( Q ~ ) g i v i n g

2 3

I exp(-s/M ) Imn (s)ds

I n t h e case of t h e A, meson which we discuss as an example t h e p o l a r i z a t i o n o p e r a t o r

where t h e operators discussed e a r l i e r a r e shown t o appear. The o t h e r s can be expres- sed i n terms o f t h e s e o r estimated s i n c e t h e i r c o n t r i b u t i o n i s small. A f t e r a Borel t r a n s f o r m t h e sum r u l e ( i n c l u d i n g t h e continuum which i s important) reads

A s i m i l a r sum r u l e can be obtained using t h e a x i a l c u r r e n t . The r e s u l t s seen i n Fig.

2 a r e q u i t e s a t i s f a c t o r y . I n these cases t h e continuum i s important b u t t h e value t h a t g i v e s best r e s u l t s i s very reasonable. Large number o f s t a t e s can be c a l c u l a t e d except f o r t h e B meson where a c c i d e n t a l l y t h e presence o f s u b t r a c t i o n s makes t h e c a l c u l a t i o n impossible. Couplings as shown can a l s o be calculated. For completeness

(4)

F i g u r e 2

750k30 776 750+30 780

920 892

1070 1020

1270 1270

1500 1516

1320 1317

1420 1434

1000 981

1000 980

1350 1300

1150 1100-1300

1270 1285

1460 1418

n o t

available1231

A3 2 - I 1630 1660

Theory Exp Table 1

2

f T =

2

=I25 Mev (133 Mev),

%

=2.3*.1 (2.36?.18), ff=0.037r.003 (0.04) ( 5

Couplings f o r R=O and 1 l i g h t quark mesons

-

we i n c l u d e t h e r e s u l t s o f Shifman e t a1 w i t h o u t discussing them.(12)

N o t i c e t h a t t h e parameters a r e mn=md=O, ms=150 Mev, <iq> ( i t s breaking i s un- important) and

4.

The small d i f f e r e n c e s l i k e f, A2 can be understood ( d i f f e r e n t thresholds), b u t o v e r a l l t h e theory p r e d i c t s 1=0,1 degeneracy i n agreement w i t h ex- periment. There a r e s t i l l c o n f l i c t i n g models f o r CD sum r u l e s on s c a l a r s (14).

Our r e s u l t s seem confirmed by l a t t i c e s i m u l a t i o n s ?6

1.

L i h t heavy quark systems.(16)(open bottom) Here we o n l y mention t h a t f -200 Mev

mg1

which i s incompatible w i t h models t o e x p l a i n r D + / ~ ~ o and mo++

-

in0-!$800 Mev.

This r e s u l t i s due t o t h e term mb<uu> which s p l i t s s t r o n g l y o p p o s i t e p a r i t y states.

T h i s term seems " n o n - p o t e n t i a l " .

Baryons. For t h e baryon o c t e t t h e r e a r e two p o s s i b l e c u r r e n t s . The n a t u r a l choice i s t h e one t h a t has an SU(6) non r e l a t i v i s t i c l i m i t and couples t o t h e non p e r t u r b a t i v e operators. For t h e decuplet t h e choice i s unique.

The nucleon p o l a r i z a t i o n f u n c t i o n i s given by

4 2 2

I d x e i P ' X < ~ ~ ~ n n ( x ) ~ n ( ~ ) ~ ~ > = PFi(p )+l.F2(p

1.

(5)

C3-252 JOURNAL DE PHYSIQUE

On dimensional counting i t follows t h a t F1 i s even and F2 i s odd. As a consequence the function F2 i s proportional t o <qq> without a mass f a c t o r and i s furthermore enhanced by the elimination of one loop i n t e g r a l . I t completely overwhelms the bare loop term. The other sum rule i s standard and several terms including the two con- densates and bare loop compete. After Borel transform the two sum rules become:

0 ,,

4 4 2 - M ~ / M ~

2 a M = ZIT) AN MN e where a= - ( ~ n ) ~ < q q > , b = 2

<G

a G a

>,

and MN i s the I.lv .I.lv

mass of t h e nucleon and A , the coupling t o three quarks, a quantlty t h a t appears in proton decay calculations"(15). M i s the Borel variable as usual.

Solving f o r the nucleon mass one obtains:

Figure 3

and a s l i g h t l y more complicated formula i f the continuum i s allow- ed. In Figure 3 we see the r e s u l t s as a function of M. The r e s u l t s show how f o r massless quarks the chiral condensate generates the nucleon mass. The continuum im- proves the r e s u l t s but i t i s a minor e f f e c t . Analogous formulae can be written f o r the o c t e t and decuplet and the agreement i s ex- c e l l e n t . In the decuplet there i s a-new operator contributing:

< q ~ ; ~ h ~ q > = m ~ < q q > and i t s value has been estimated elsewhere. I t i s i n t e r e s t i n g t h a t these calcula- tions-depend c r u c i a l l y on y = ( < u ~ > - < q q > ) / < u u > . ( 17)

Allowing f o r d i f f e r e n t strange and u quark masses but s e t t i n g y=O drives the E below t h e C. The calculation also yields a correc- MN=900(940) MA=1070(1 115) Mz=l 170(1185) tion t o proton l i f e t i m e t h a t M1=1370(1320)

-

MN*;1240(1235) My*=1370(1 385)

seems

Out simp1est S U ( 5 ) ' M~*=1510(1520) Ma-=1650(1670) I t i s a l s o possible t o apply the

theory t o three point functions.

Table 2 though we can o t discuss these

r e s u l t s here 1181, one can compute the pion nucleon coupling constant and obtain

in remarkable agreement with experiment. Calculations of higher partial waves f o r baryons show the negative parity s t a t e s f a r above the 56 representation a s desired.

Conclusions. A theory based on QCD and some dynamical assumptions about the conver- gence of dfspersion i n t e g r a l s can reproduce remarkably well t h e spectrum of hadrons with very few parameters. Moreover i t predicts the appearance of i n t e r e s t i n g terms in the spectrum of these s t a t e s . In particular: establishes the spin dependence of

(6)

t h e c o n f i n i n g f o r c e s a r e s h o r t distances and unables t o demonstrate how c h i r a l breaking endows t h e p r o t o n w i t h mass. There a r e a l s o non l o c a l terms t h a t a r e neces- sary and t h e i r presence would be a d e c i s i v e element i n p r o v i n g i t s v a l i d i t y . L a t t i c e s i m u l a t i o n s o f these systems a r e o f g r e a t i n t r e t. There i s some work on l a t t i c e s t h a t might e x p l a i n t h e success o f t h e theory 7193. C h i r a l breaking seems t o occur a t much s h o r t e r distances than confinement dressing t h e quarks and e s t a b l i s h i n g t h e p r o p e r t i e s o f t h e bound s t a t e s a t s h o r t distances.

Because o f time I cannot discuss o t h e r i n t e r e s t i n g issues l i k e t h e Schwinger Smilga Cronstrom gauge (201, f u r t h e r c a l c u l a t i o n s on Wilson c o e f f i c i e n t s ( 2 1 ) , form f a c t o r s and many o t h e r t o p i c s . References a r e f o r guidance o n l y and c e r t a i n l y incomplete.

I would l i k e t o thank my f r i e n d s a t Weizmann f o r discussions and my c o l l a b o r a t o r s L.H. Reinders and S. Yazaki t h a t played a c r u c i a l r o l e i n a l l our r e s u l t s .

References

V. Zakharov, High Energy Physics Conference, Wisconsin 1980, p. 1235.

M.A. Shifman, I n t e r n a t i o n a l Symposium on Electromagnetic and Weak I n t e r a c t i o n s , Bonn 1981.

L.J. Reinders, H.R. Rubinstein and S. Yazaki, Nucl. Phys.

8186

(1981) 109.

L.J. Reinders, H.R. Rubinstein and S. Yazaki, Nucl. Phys. (1982) 125.

S. Narisson and E. de Rafael, Phys. L e t t . (1981) 57.

M.A. Shifman e t a l , Phys. L e t t . t o appear.

H. Hamber and G. P a r i s i , Phys. Rev. L e t t .

2

(1982) 1792, and p r e p r i n t s .

T. Banks, R. Horsley, H.R. Rubinstein and U. Wolf, Nucl. Phys. ( F S ~ ) (1981) 692.

B.I. I o f f e , Nucl. Phys.

B188

(1981) 317,

8191

(1981) 591.

A.V. Smilga, p r e p r i n t .

Y. Chung, H.G. Dusch, M. Kremer and D. S c h a l l , Phys. L e t t . WJJ (1981) 175.

Pascual and Tarrach, p r e p r i n t , Madrid 1982.

For a discussion, see M.A. Shifman, Ref. 1.

See Ref. 2. For a l l quarks masses: P. Leutwyler and S. M a l l i k , Physics Reports t o be published.

This s t a t e should be observed by i s o s p i n v i o l a t i o n decay. See N. I s g u r , H.J. L i p k i n , H.R. Rubinstein and A. Schwimmer, Phys. L e t t . @J (1979) 79.

M.A. Shifman, A.I. Vainshtein and V . I . Zakharov, Nucl. Phys.

8147

(1979) 385.

V.A. Novikov. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V . I . Zakharov,

~ h y s . Rep. 4 i (1978) I .

E.V. S h u r y a r a n d c o l l a b o r a t o r s , f o r example, discuss i n s t a n t o n e f f e c t s i n these channels

.

V.S. Berezinsky, B.L. I o f f e , Ya I. Kogan, Phys. L e t t . (1981) 33.

L.J. Reinders, H.R. Rubinstein and S. Yazaki, Phys. L e t t . (1981) 305.

E.V. Shuryak, Novosibirsk p r e p r i n t . See Shifman, Ref. 1.

L.J. Reinders, H.R. Rubinstein and S. Yazaki, t o be published.

L.J. Reinders, H.R. Rubinstein and S. Yazaki, Weizmann I n s t i t u t e p r e p r i n t 1982.

J. Kogut, M. Stone, H.W. Wyld, J. Shigemitsu, S.H. Shenker and D.K. S i n c l a i r , Phys. Rev. L e t t . 4 8 (1982) 735.

J. Schwinger, P a r E c l e s , Sources and F i e l d s , 1970, p. 271;

M.J.

Dulobikov, A.V.

Smilga, Nucl. Phys. 8185 (1981) 109; C. Cronstrom, Phys. L e t t . (1980) 267.

W. Hubschmid and S. m i k , p r e p r i n t butp 10/1982.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to