• Aucun résultat trouvé

Title: An Assessment of Environmental Impacts of Cassava Starch Extraction Technologies Authors & affiliations: T. Tran

N/A
N/A
Protected

Academic year: 2021

Partager "Title: An Assessment of Environmental Impacts of Cassava Starch Extraction Technologies Authors & affiliations: T. Tran"

Copied!
1
0
0

Texte intégral

(1)

Title:

An Assessment of Environmental Impacts of Cassava Starch Extraction Technologies

Authors & affiliations:

T. Trana,f,*, G. Dab, K. Piyachomkwanf, M. Morenoc, G. Velezd, A. Giraldo-Toroe, K. Srirothf, D. Dufoura,e

a

Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Persyst Department,

UMR Qualisud, TA-B95/15, 73 rue JF Breton, 34398 Montpellier, France

b

CERTES, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94000 Créteil, France

c

Universidad del Valle (UniValle), Cali, Colombia

d

Deriyuca LTDA. Carrera 89 # 10-80 apartamento 323 - Multicentro - Unidad 20-21, Cali, Colombia

e

International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, Colombia

f

Cassava and Starch Technology Research Unit (CSTRU / BIOTEC), Kasetsart University, Jatujak, Bangkok 10900, Thailand

*

Corresponding author: Tel +66-868220362; E-mail thierry.tran@cirad.fr

Abstract: (Your abstract must use Normal style and must fit in this box. Your abstract should be no longer than 300 words. The box will ‘expand’ over 2 pages as you add text/diagrams into it.)

The environmental impacts of the transformation of cassava roots into starch were assessed for three contrasting technologies at small and large scale (1-2 and 100-200t starch per day), using the Life Cycle Assessment (LCA) methodology. The objective was to assess impacts for each unit operation, so as to identify impacts hotspots as well as sustainable practices, with a view to uncover opportunities for improving the environmental performance of cassava starch production. The system boundaries were defined as the unit operations used to transform fresh cassava roots delivered at factory gate into loose, dry cassava starch. Inventory data indicated wide variations in energy and water consumption. The large scale technology required 702kWh/t starch, mainly (75%) from fuel oil used for the drying operation, but was most efficient in terms of water use (10m3/t starch) due to water recycling between unit operations. The two small scale technologies were similar in terms of electricity use (59kWh/t starch), and relied on solar energy for drying. In contrast, their water consumption varied from 20 to 60m3/t starch due to differences in the design of the rasping and starch recovery (extraction) operations. The LCA characterizations, using the ReCiPe method, indicated that the main impact contributions were at the drying operation for the large scale technology, and at the extraction operation for the small scale technologies, mainly because of energy use, as well as water use in the case of the most water-intensive technology. Hence strategies to reduce the impacts of cassava starch production could focus on: Increasing the energy efficiency of the drying operation or replacing fossil energy with a renewable source (biogas), which can be produced from the factory wastewater; Improving the design of some unit operations with regards to water and energy efficiency; and Promoting the transfer and adoption of water recycling practices.

Références

Documents relatifs

Twenty eight genotypes has been harvested in two villages (1740 m); Popayan, and Cajibio, the dry matter-content (DM), density, starch content, starch extraction yield,

In Cauca region (Colombia) of an altitude of (1300-2200 m snm) cassava is grown mainly for the production of fermented starch (15 000 T/year) used in traditional bread and

The amylograms presented in Figure 2 compare “normal” cassava and starches from the waxy mutation reported above (based on starch from the seedling which was slightly different as

The industry searched for alternatives to the cassava starch it could no longer import and found that functional properties of waxy maize starch resembled more closely (than wild

affected  the  results  markedly,  which  highlighted  the  importance  of  the  allocation 

13 cassava varieties of Colombia (3 lowlands and 10 highlands) have been dissociated by 4 different processes (fermentation and/or sun-drying) and genetically, in order to determine

The fermentation of native starch showed that the rate of glucose production by SSF is faster for the original small- granule mutation (5G-160-13) than for normal and waxy

Among the three technologies assessed, markedly different levels of energy and water consumption were identified for some unit operations, such as extraction or root washing,