• Aucun résultat trouvé

comparative   assessment   with   fuel   oil S08 ‐ 03 Biogas   reduces   the   carbon   footprint   of   cassava   starch:   A

N/A
N/A
Protected

Academic year: 2021

Partager "comparative   assessment   with   fuel   oil S08 ‐ 03 Biogas   reduces   the   carbon   footprint   of   cassava   starch:   A"

Copied!
1
0
0

Texte intégral

(1)

Biogas  reduces  the  carbon  footprint  of  cassava  starch:  A 

comparative assessment with fuel oil

 

 

Nanthiya Hansupalak1, Palotai Piromkraipak1,2, Phakamas Tamthirat1,2, Apisit  Manitsorasak3, Klanarong Sriroth3, and Thierry Tran3,4,* 

  1) Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand  2) Interdisciplinary Graduate Program in Advanced and Sustainable Environmental Engineering (International  Program), Faculty of Engineering, Kasetsart University, Bangkok, Thailand  3) Cassava and Starch Technology Research Unit (CSTRU), BIOTEC, Kasetsart University, Bangkok, Thailand  4) CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR  Qualisud, Montpellier, France  * thierry.tran@cirad.fr, Registrant ID# 4476    Greenhouse gases (GHG) emissions (100‐year horizon), or carbon footprint of cassava starch  production,  were  assessed  based  on  three  factories  in  Thailand.  The  system  boundaries  included farm stage (production of cassava roots), transportation to factory, processing into  native  starch.  The  functional  unit  (FU)  was  one  ton  of  native  cassava  starch  at  13%  water 

content. The total CF of cassava starch was in the range 609–966 kg CO2eq/FU. Agricultural 

production  contributed  approximately  60%  of  GHG  emissions,  mainly  from  the  use  of  nitrogen fertilizers. GHG emissions of root production varied widely due to the diversity of  agricultural practices  within  the  same  region.  The  contribution  of  the  factory  stage  to  the  carbon  footprint  depended  on  the  use  of  electricity,  biogas  and  other  fuels,  ranging  from  217 to 342 kg CO2eq/FU. Allocation rules such as wet‐weight or dry‐weight basis allocations 

affected  the  results  markedly,  which  highlighted  the  importance  of  the  allocation  method  for co‐products with high moisture contents. Biogas produced from the factory wastewater  was  the  main  source  of  thermal  energy  for  starch  drying  (95–200m3/FU).  In  the  past  10  years,  90%  of  cassava  starch  factories  in  Thailand  switched  from  fuel  oil  to  biogas,  which  reduced  GHG  emissions  of  the  cassava  starch  industry  as  a  whole  between  900,000  and  1,000,000 tons CO2eq/year. 

Keyword: Biogas; Cassava starch; Carbon footprint; Life cycle assessment (LCA) 

Références

Documents relatifs

It shows how each neighborhood characteristic imposes both a direct impact on household travel energy use and an indirect impact through its influence on household

 The model showed its ability to represent the main drivers of carbon allocation, such as source-sink distances and competition among sinks , when applied to simulated apple

Despite the large number of studies on the subject of carbon allocation, no clear consensus exists on (i) the most appropriate topological scale (organ,

The fermentation of native starch showed that the rate of glucose production by SSF is faster for the original small- granule mutation (5G-160-13) than for normal and waxy

Among the three technologies assessed, markedly different levels of energy and water consumption were identified for some unit operations, such as extraction or root washing,

Then, based on the objective function, optimizing algorithm reduces energy consumption or CO 2 emission or non-renewable energy usage respectively and the controller

Cassava double purpose: good eating quality and industrial for

Twenty eight genotypes has been harvested in two villages (1740 m); Popayan, and Cajibio, the dry matter-content (DM), density, starch content, starch extraction yield,