• Aucun résultat trouvé

COLLECTIVE MODES IN ARRAYS OF SUPERCONDUCTING BRIDGES

N/A
N/A
Protected

Academic year: 2021

Partager "COLLECTIVE MODES IN ARRAYS OF SUPERCONDUCTING BRIDGES"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00217702

https://hal.archives-ouvertes.fr/jpa-00217702

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

COLLECTIVE MODES IN ARRAYS OF

SUPERCONDUCTING BRIDGES

S. Artemenko, A. Volkov, A. Zaitsev

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque

C6, suppldment au

no

8, Tome 39, aotir 1978, page

C6-588

COLLECTIVE MODES

I N ARRAYS

OF SUPERCONDUCTING BRIDGES

S.N. Artemenko, A.F. Volkov and A.V. Z a i t s e v

I n s t i t u t e of Radioengineering and EZectronics, USSR Academy o f Sciences, USSR, Moscow, 103907, Marx Avenue, 1 8 .

R6sum6.- On a obtenu d e s 6 q u a t i o n s d s c r i v a n t l ' e f f e t Josephson dans d e s p o n t s supraconduc- t e u r s 1 une dimension. On montre que dans l e systPme d e ponts p r 6 s d e Tc, peuvent e x i s t e r des o s c i l l a t i o n s c o l l e c t i v e s dont l e s p e c t r e a une s t r u c t u r e de bande.

A b s t r a c t . - Equations d e s c r i b i n g t h e Josephson e f f e c t i n p r o x i m i t y - e f f e c t b r i d g e s were o b t a i n e d . I t was shown t h a t i n s e r i e s a r r a y s c o l l e c t i v e modes w i t h band spectrum can e x i s t near T

.

I t was shown e x p e r i m e n t a l l y / I / and theo- r e t i c a l l y / 2 , 3 / t h a t i n superconductors n e a r Tc weakly-damped c o l l e c t i v e o s c i l l a t i o n s of t h e su- p e r f l u i d v e l o c i t y p s / ~ and of t h e e l e c t r i c f i e l d E ( x , t ) =-V$(x,t) , w i t h a sound spectrum, can e x i s t . We s h a l l s e e t h a t t h e p o s s i b i l i t y of appearance of t h e s e modes and t h e l a r g e p e n e t r a t i o n ' l e n g t h of t h e f i e l d E i n t o a superconductor lead t o some in- t e r e s t i n g p r o p e r t i e s of t h e Josephson j u n c t i o n s . These e f f e c t s a r e e s p e c i a l l y important i n t h e case of weak l i n k s i n which t h e c u r r e n t d e n s i t y j de- pends only on one c o o r d i n a t e ( f o r example, a s i n t h e p r o x i m i t y - e f f e c t b r i d g e s 1 4 1 ) . R e s i s t a n c e of such b r i d g e s i s determined by t h e p e n e t r a t i o n l e n g t h of the f i e l d E i n t o superconductor. Let u s o b t a i n e q u a t i o n s d e s c r i b i n g t h e Josephson e f f e c t i n t h e p r o x i m i t y - e f f e c t b r i d g e made of t h e d i r t y superconductor ( T r < < l , ~ - i m p u r i t y c o l l i s i o n time). We s h a l l u s e t h e model of t h e b r i d g e considered i n / 5 / f o r t h e c a s e of g a p l e s s

superconductors, i .e.

,

we c o n s i d e r a t h i n super- conducting f i l m w i t h t h e c r i t i c a l temperature Tc(x) which depends on t h e c o o r d i n a t e along t h e b r i d g e :

T ~ ( X ) = T: f o r I x l < d , T ~ ( x ) = T ~ > T: f o r 1x1 d.

Namely, a t ] x i < d , s i m i l a r l y t o / 5 / , t h e y reduce t o one l i n e a r Ginzburg-Landau e q u a t i o n f o r

Z\,

and a t

I x I >

d , t h e i r s o l u t i o n i s K(x) = A t h R x + ~ ~ ) / ~ S ( ~ ~ e x p ~ ~ ( x > 7 . Matching t h e s o l u t i o n s f o r A(x) a t 1x1 = d , s i m i - l a r l y t o

151,

we o b t a i n t h e e x p r e s s i o n f o r t h e c u r r e n t d e n s i t y j = j c s i n $ ( t ) + a E ( t ) (1)

where E ( t ) = E(d, t )

.

(The f i e l d i n s i d e t h e b r i d g e i s independent of x)

,

$ ( t ) = 2x(d). To f i n d t h e r e l a t i o n between E ( t ) and $ ( t ) we have t o s o l v e t h e e q u a t i o n d e s c r i b i n g t h e process of conversion of t h e q u a s i p a r t i c l e c u r r e n t j n = a E ( x , t ) i n t o the

superconducting one j =

$

(x) ps (x)

where p= (112- g + e $ ( x , t ) , T -energy r e l a x a t i o n time. The r e l a t i o n between E ( x , t ) and one can be o b t a i n e d from t h e formula 3 s = e E ( x , t ) + Vp

a t

and from t h e c o n t i n u i t y e q u a t i o n f o r t h e t o t a l c u r r e n t j = jn + js. T h i s r e l a t i o n f o r t h e Fourier-transforms has t h e L e t parameter vo2 = (T

-

<

) / ( T c

-

T)>> 1 and form

E ( X )

.

$

v,,

-

21WT

$1

-

W T ] - I (3)

vod >S(T). Then t h e c r i t i c a l c u r r e n t of t h e b r i d g e w

3 6

-

1 I T A ~ ( X ) , *A (x)

j = T j G L ~ ~ o ~ h ( 2 ~ o d / t ( ~ ) 7 1 is e x p o n e n t i a l l y

I t i s easy t o s o l v e Equations (2)

-

(3) and t o s m a l l i n comparison w i t h t h e d e p a i r i n g c u r r e n t

j

GL

f i n d t h e sought r e l a t i o n between E ( t ) and $ ( t ) i f

of t h e uniform f i l m / 5 / . I n t h e c o n s i d e r e d c a s e of

'xo t h e c h a r a c t e r i s t i c p e n e t r a t i o n l e n g t h k-1 of t h e

t h e o r d i n a r y superconductor t h e complex gap ~ ( x ) w

f i e l d E i s l a r g e enough : kW < ( T ) < < 1 . i s d e s c r i b e d by t h e g e n e r a l i z e d Ginzburg-Landau

(N)

, - ( j u / a ) i i 2 ( 2 v 0 < ( ~ )

+

k-i) e q u a t i o n s w i t h t h e anomalous terms ( s e e , f o r exam- E,=

4

a t

w

p l e 1 6 1 ) . However, because of t h e smallness of d + k-:( ]-in)

-

2i6hroS(T)

j c / j G L t h e s e e q u a t i o n s can be s i m p l i f i e d essentially. where Q =

?WT ,

k t = ( k * + ik9')2

.

*(-iu + = - l )

ITA 2 w

(-in + 1) (A/4TD).

(3)

Rather complicated form of (4) i s due t o t h e f a c t t h a t , provided w>>ri1 , A ~ / T , t h e p e n e t r a t i o n l e n g t h of E i n t o superconductors e s s e n t i a l l y depends on w . I n t h e low frequency l i m i t (w<<A2 /T,T -1 ) eE = 1 / 2 (%)[2(d

+

l E u - l . The q u a n t i t y

:

E =k-I U=o

i s t h e p e n e t r a t i o n l e n g t h of t h e low frequency f i e l d . Note a l s o t h a t t h e r e l a t i o n between Vw = 2(d

+

k;l)EW and ( a ( / a t ) d i f f e r s from t h e Josephson r e l a t i o n . But t h e l a t t e r i s v a l i d f o r time-averaged q u a n t i t i e s ( 2 e v ( t ) =

m).

I t f o l - lows from (1) and (4) t h a t t h e h y s t e r e s i s may appear i n t h e I(V) curve / 7 / . Consider now a s e r i e s a r r a y of a l a r g e number N of microbridges ( i n expe- riment N may be a s l a r g e a s 2000 and t h e d i s t a n c e between a d j a c e n t b r i d g e s i s L

=

111

'1.

I n t h i s c a s e from ( 2 ) and ( 3 ) , we g e t f o r t h e f i e l d i n t h e n-th j u n c t i o n 1 E'"' ch(kwL) =

+

( g ) w ( l - i ~ ) - ~ k ~ s h ( k ~ L ) +

I

( ~ ( " 1 )

+

82-1))

+

( j W / c r ) i ~ ( l - i ~ ) - l Q - c h ( k w ~ ~ , (kWS(T)vo<<l) (5) provided d<rL, k i l . I f j = 0 and ( < < I , E ( ~ ) = W W - ( j c / a ) ( W ( n ) a s i t f o l l o w s from ( 1 ) . We s h a l l s e e k t h e s o l u t i o n of ( 5 ) , i n t r o d u c i n g t h e c o l l e c - t i v e c o o r d i n a t e s , $ + w 4 9

1

+

einqL, where q = 2mn/NL (m = 0 , 1 , 2 .

..).

Then under t h e c o n d i t i o n s = - I < < ,, A ~ / T << U , w << A W (6) we g e t t h e d i s p e r s i o n r e l a t i o n

A (w/wo)sin(b~/wo) = cos (w/wo)

-

cos (qL) (7)

where h =wg/w: = ( l b ~ T j ~ / n L o A ) , w0 = (2DA) l I 2 / L . Consider two l i m i t i n g c a s e s . a) A < < 1 . I f Iw/wo

-

nnl > A , we have t h e sound-like spectrum of uniform superconductor u=(206) 1/2q2. I f lu/oo-nn

1

< A

,

t h e s p l i t t i n g of t h e spectrum a p p e a r s , and f o r b i d d e n frequency bands a r e formed. The magnitudes of t h e gaps a r e 6w= 2n wonk. b) A > > l . I n t h i s case t h e bands appear a l s o . I n t h e f i r s t band t h e spectrum h a s t h e form of t h e a c o u s t i c a l phonons branch i n

c r y s t a l s

: w

= w s i n ( q L I 2 ) . I t i s important t o n o t e J

t h a t t h e mode i n t h e f i r s t band i s weaklyLdamped even i f t h e second c o n d i t i o n of (6) i s n o t f u l f i l - l e d , i . e . , even i f in an uniform superconductor t h e o s c i l l a t i o n s a r e heavily-damped. The modes i n o t h e r bands a r e weakly-damped o n l y under t h e condi- t i o n s ( 6 ) . The spectrum i s g i v e n by formula

w/wo = r n

+

( h ~ n ) - ' n

-

( - l ) n c o ~ ( ~ L f l , n = 2,3..

.

( s e e F i g u r e ) .

I n c o n t r a s t with t h e c a s e of uniform su- perconductor, t h e modes considered above cause p e c u l i a r i t i e s i n t h e impedance Z(w) of t h e conside-

red system. We c a l c u l a t e Z(w) on t h e grounds of (1) and ( 5 ) . The r e s u l t i s

Equating t h e e x p r e s s i o n i n s q u a r e b r a c k e t s t o zero, we o b t a i n t h e f r e q u e n c i e s of t h e c o l l e c t i v e modes

c

qL

T h e r e f o r e , t h e impedance p e c u l i a r i t i e s a r e determi- ned by t h e r e l a t i o n tg(w/2wo) = -A(w/wo). The lowest frequency i s marked on t h e f i g u r e by a c i r - c l e .

Besides, t h e p e c u l i a r i t i e s i n t h e I(V) cur- v e appear when a dc-voltage upon one j u n c t i o n

7

s a t i s f i e s t h e r e l a t i o n 2eV = ~ ( 2 ;

+

li)w

.

Calcula- t i n g t h e dependance I(V) a t l a r g e

7,

we f i n d t h a t a c o r r e c t i o n j t o t h e ohmic c u r r e n t j =

07 G l E t h

(L/21E)]-l, a s a f u n c t i o n of

v,

o s c i l y a t e s w i t h 4 2

t h e p e r i o d nwo/e and w i t h t h e amplitude

-

j c kA2k"th(k'L/2U.

We n o t e t h a t a n e q u a t i o n l i k e (5), d e s c r i - b i n g an i n t e r a c t i o n between j u n c t i o n s i s v a l i d not o n l y f o r considered one-dimensional a r r a y s , b u t a l s o f o r a r r a y s c o n s i s t i n g , f o r example, of v a r i a - b l e t h i c k n e s s microbridges. Thus, i f such two brid- g e s a r e s i t u a t e d a t a d i s t a n c e L<lE one from ano- t h e r , t h e n t h e y i n t e r a c t , and, i n p a r t i c u l a r , they may become spontaneously synchronised. The mode

locking c o n d i t i o n f o r p r o x i m i t y - e f f e c t b r i d g e s has t h e form

(4)

R e f e r e n c e s

/ I / C a r l s o n , R.A., Goldman, A.M. Phys. Rev. L e t t .

36

(1975) 11. / 2 / Schmid, A., Schon, G . , Phys. Rev. L e t t .

36

(1975) 941. 1 3 1 Artemenko, S.N., Volko, A.F., Sov. Phys. JETP

42

(1976) 896. / 4 / N o t a r y s , H.A., Mercereau, J.E., J. Appl. Phys.

5

(1973) 1821. / 5 / Volkov, A.F., K a s a t k i n , A.L., Sov. Phys. JETP

40

(1975) 760. / 6 / Gor'kov, L.P., Kopnin, N . B . , Zh. Eksp. Theor. Phys.

64

(1973) 356.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to