• Aucun résultat trouvé

QUANTUM TUNNELING OF TRAPPED HYDROGEN IN Nb

N/A
N/A
Protected

Academic year: 2021

Partager "QUANTUM TUNNELING OF TRAPPED HYDROGEN IN Nb"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225367

https://hal.archives-ouvertes.fr/jpa-00225367

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

QUANTUM TUNNELING OF TRAPPED

HYDROGEN IN Nb

E. Drescher-Krasicka, A. Granato

To cite this version:

(2)

JOURNAL DE PHYSIQUE

C o l l o q u e

C10,

s u p p l 6 m e n t

au

11-12,

Tome

4 6 , dbcembre 1 9 8 5 p a g e C10-73

QUANTUM TUNNELING

OF

TRAPPED HYDROGEN IN Nb

University of Illinois at Urbana-Champaign, Urbana,

1110

W.

Green Street, Urbana, IL 61801, U.S.A.

A b s t r a c t

-

Quantum t u n n e l i n g of hydrogen t r a p p e d by oxygen i n a Nb l a t t i c e i s found a t low temperatures. Information o b t a i n e d by v a r i o u s measurement t e c h n i q u e s w i l l be reviewed and compared. U l t r a s o n i c measurements of a t t e n u a t i o n and v e l o c i t y a s a f u n c t i o n of p o l a r i z a t i o n , t e m p e r a t u r e , f r e q u e n c y , d e f e c t c o n c e n t r a t i o n , i s o t o p e and c o o l i n g r a t e p r o v i d e d e t a i l e d q u a n t i t a t i v e i n f o r m a t i o n p a r t i c u l a r l y concerning t h e symmetry and dynamics of i s o l a t e d systems i n Nb where t h e normal t o superconducting t r a n s i t i o n is used t o e s t a b l i s h t h e e f f e c t of conduction e l e c t r o n s on t h e t u n n e l i n g r a t e . In t h e OH system a peak a t 2.25 K a t 10 MHz i n t h e s u p e r c o n d u c t i n g s t a t e d i s a p p e a r s i n the normal s t a t e . In a second system produced by r a p i d c o o l i n g , a peak a t 6 K a t 10 MHz a l s o moves d r a m a t i c a l l y , but i n t h i s c a s e t h e response can be f u l l y measured i n t h e normal s t a t e . It is found t h a t a two l e v e l system (TLS) formalism which t a k e s i n t o account t h e r e l a x a t i o n s t i m u l a t e d by i n e l a s t i c s c a t t e r i n g of e l e c t r o n s g i v e s a good q u a n t i t a t i v e d e s c r i p t i o n of t h e quantum behavior of t h e OH system. The theory used f o r a n a l y z i n g the d a t a is s i m i l a r t o t h a t f o r m e t a l l i c g l a s s e s but s i m p l e r . U l t r a s o n i c experiments, p a r t i c u l a r l y high accuracy v e l o c i t y measurements, a r e s u f f i c i e n t f o r t h e complete e v a l u a t i o n of a l l t h r e e parameters of t h e TLS; A.

-

t h e minimum gap, a

-

t h e c o u p l i n g t o t h e s t r a i n f i e l d , and E

-

t h e average a b s o l u t e s t r a i n magnitude. For t h e OH system, t h e r e l a x a t t o n r a t e i n t h e normal s t a t e cannot be measured. For t h e quenching peak, t h e r e l a x a t i o n r a t e a s w e l l a s t h e quantum d e p l e t i o n of t h e r e l a x a t i o n s t r e n g t h , a r e d i r e c t l y a c c e s s i b l e .

I. Brief Review

Measurements by S e l l e r s , Anderson, and Birnbaum [ I ] of a l a r g e i s o t o p e e f f e c t i n t h e e x c e s s s p e c i f i c h e a t of niobium c o n t a i n i n g hydrogen o r deuterium showed convincingly t h a t hydrogen i n niobium formed a quantum t u n n e l i n g system. More d e t a i l e d measurements of s p e c i f i c h e a t by Morkel, Wipf, and Neumaier [ 2 ] showed t h a t i f t h e r e is no oxygen o r n i t r o g e n i m p u r i t y , t h e n t h e r e is no e x c e s s s p e c i f i c h e a t . This i m p l i e s t h a t t h e t u n n e l i n g system c o n s i s t s of a complex made up of hydrogen t r a p p e d a t an oxygen o r n i t r o g e n impurity.

More s p e c i f i c i n f o r m a t i o n has s i n c e been o b t a i n e d from neutron s c a t t e r i n g [3-61 and u l t r a s o n i c measurements [7-181. I n e l a s t i c n e u t r o n s c a t t e r i n g experiments by Magerl, e t a 1 [ 3 ] and a l s o by R i c h t e r and Shapiro [41 showed t h a t t h e r e a r e two v i b r a t i o n a l l e v e l s c e n t e r e d a t 0.11 eV and 0.16 w i t h an i n t e n s i t y r a t i o of 112, i n d i c a t i n g t h a t t h e h i g h e r v i b r a t i o n a l l e v e l

i s

doubly d e g e n e r a t e , a s would be expected f o r a t e t r a h e d r a l p o s i t i o n . L a t e r measurements by Rush, e t a 1 [ 5 ] showed t h a t t h e r e is n o t much change i n t h e v i b r a t i o n a l l e v e l s f o r a-phase hydrogen and hydrogen t r a p p e d a t n i t r o g e n o r oxygen. Using i n e l a s t i c n e u t r o n s c a t t e r i n g measurements a t 0.15 K i n niobium c o n t a i n i n g 1900 ppm 0, Wipf, e t a1 [ 6 ] found r e s u l t s which could be i n t e r p r e t e d w i t h a quantum two l e v e l system (TLS) formalism w i t h a t u n n e l i n g m a t r i x element o r gap of J = 0.21

2

.03 meV (2.4 K). This was i n f a i r agreement w i t h t h e v a l u e of 0.19 f -02 m e V they o b t a i n e d from f i t t i n g s p e c i f i c h e a t data.

*permanent a d d r e s s : IFTR, P o l i s h Acad. of S c i . , Warsaw, P O U N D

(3)

C10-74

JOURNAL

DE

PHYSIQUE

Poker, e t a 1 [ 7 , 8 ] measured t h e u l t r a s o n i c a t t e n u a t i o n and v e l o c i t y i n niobium c o n t a i n i n g oxygen and hydrogen as a f u n c t i o n of temperature, frequency,

p o l a r i z a t i o n , c o n c e n t r a t i o n and i s o t o p e . They found a r e l a x a t i o n peak a t 2.3 K f o r 10 MHz i n t h e C' mode, but not i n t h e Cg4 mode. The r e l a x a t i o n time was found t o be A r e n i u s w i t h an a c t i v a t i o n energy of 1.8 meV ,and a frequency f a c t o r of 3.9 x

lofB. The r e l a x a t i o n s t r e n g t h did not follow a c l a s s i c a l 1/T temperature dependence, but began t o decrease a t t h e lowest t e m p e r a t u r e s , i n d i c a t i n g a low temperature quantum d e p l e t i o n of t h e s t a t e involved i n t h e r e l a x a t i o n t r a n s i t i o n . Also a l a r g e i s o t o p e e f f e c t was found, and a d e c r e a s e i n t h e v e l o c i t y below t h e r e l a x a t i o n peak was observed. The d e f e c t r e s p o n s i b l e f o r t h e peak was i d e n t i f i e d a s hydrogen t r a p p e d a t an oxygen i n t e r s t i t i a l . They d i s c u s s e d t h e c o n s t r a i n t s t h e s e r e s u l t s p l a c e on a t u n n e l i n g model, and found t h a t a l l t h e r e s u l t s could not be explained u s i n g only phonon a s s i s t e d t r a n s i t i o n s i n a TLS model, b u t could be explained u s i n g t u n n e l i n g i n a m u l t i - l e v e l model (MIS) of a t l e a s t f o u r e q u i v a l e n t s i t e s . Evidence a g a i n s t a phonon a s s i s t e d TLS model came p r i n c i p a l l y from ( 1 ) t h e temperature dependence of t h e r e l a x a t i o n time, and (2) t h e e x i s t e n c e of a r e l a x a t i o n a t a low (- 100 ppm) oxygen content. The e x p o n e n t i a l temperature dependence of t h e r e l a x a t i o n t i n r e could be explained by an Orbach process, but such a process i s not contained i n a TLS model. Also, f o r low i n t e r n a l s t r a i n corresponding t o low oxygen c o n t e n t , no r e l a x a t i o n e f f e c t is expected f o r a symmetric TLS. For high hydrogen c o n c e n t r a t i o n s , a second peak near 5.5K a t 10 MHz was o b t a i n e d with t h e same symmetry.

Huang, e t a l . [ 9 ] found t h a t when t h e specimen i s cooled r a p i d l y , a l a r g e peak a t 6K a t 10 MHz i n t h e C' mode is o b t a i n e d which i s u n s t a b l e a g a i n s t a n n e a l i n g near 90K. A s t h i s peak a n n e a l s , t h e OH peak a t 2.3K grows. The peak a n n e a l s a t t h e same temperature as t h a t found by Hanada [ l o ] i n h i s r e s i s t i v i t y quenching experiments, which he i n t e r p r e t e d a s a r i s i n g from OHn complexes.

C a n n e l l i and C a n t e l l i [ l l ] a l s o found a peak a t low temperature, but a t much lower f r e q u e n c i e s . T h i s s p e a k appears t o be not a s s o c i a t e d w i t h t h e OH peak, but may be r e l a t e d t o the second peak observed bj Poker, e t a l . , a t high c o n c e n t r a t i o n s . B e l l e s s a [12] measured t h e v e l o c i t y a t 200 MHz down t o 50 mK i n an u n o r i e n t e d specimen c o n t a i n i n g 700 ppm 0 and 1,700 ppm H, and found t h a t he could d e s c r i b e h i s r e s u l t s u s i n g t h e TLS theory given e a r l i e r by J a c k l e , e t a l . [13]. He o b t a i n e d 0.13 mev f o r t h e t u n n e l i n g gap.

Wang, e t a l . [14] measured t h e a t t e n u a t i o n i n niobium c o n t a i n i n g 1500 ppm of n i t r o g e n and 2500 ppm of hydrogen i n both t h e normal and superconducting s t a t e s between 15 and 195 MHz. In t h e superconducting s t a t e a peak was found i n agreement with t h e Poker, e t a l . r e s u l t s f o r Nb/O, but t h e peak disappeared i n -the normal s t a t e . The disappearance of t h e peak i s e x p l a i n e d by supposing t h a t t h e r e l a x a t i o n r a t e i n c r e a s e s g r e a t l y i n the normal s t a t e because of t r a n s i t i o n s s t i m u l a t e d by e l e c t r o n s c a t t e r i n g . T h i s Korringa t y p e p r o c e s s had been pfoposed e a r l i e r by Golding, e t a l . [15] t o e x p l a i n a r e l a x a t i o n r a t e of TLS i n m e t a l l i c g l a s s e s f o u r o r d e r s of magnitude l a r g e r t h a n t h a t expected f o r phonon processes. Evidence f o r an enhanced r e l a x a t i o n r a t e which d e c r e a s e s below t h e t r a n s i t i o n temperature a s t h e conduction e l e c t r o n s f r e e z e i n t o t h e BCS ground s t a t e i n amorphous superconductors has been given bj Weiss, e t a l . [16]. Supposing t h a t t h e r e l a x a t i o n r a t e is s t i l l dominated by e l e c t r o n s c a t t e r i n g i n t h e superconducting s t a t e , t h e r e l a x a t i o n r a t e is then given by [17]

where B is a constant g i v i n g t h e normal s t a t e r a t e and

A(T)

i s the BCS gap f u n c t i o n . The BCS gap A(0) a t low temperature of 1.5 meV f o r niobium i s i n reasonable agreement with t h e 1.8 mev reported by Poker, e t a l . [7]. The

e x p e r i m e n t a l peaks found by Wang, e t a l . , a r e j u s t a l i t t l e broader than t h o s e they c a l c u l a t e f o r a s i n g l e energy s p l i t t i n g . They suppose t h a t t h e agreement would be improved by i n t r o d u c i n g t u n n e l i n g systems w i t h asymmetric p o t e n t i a l s .

(4)

a l s o found t h a t t h e r e l a x a t i o n peak d i s a p p e a r s i n t h e normal s t a t e . I n a d d i t i o n , v e l o c i t y measurements showed t h a t t h e f u l l r e l a x a t i o n is achieved below 2.3 K p r o v i d i n g p o s i t i v e e v i d e n c e t h a t t h e r e l a x a t i o n r a t e was g r e a t l y i n c r e a s e d i n t h e normal s t a t e . Also, they found t h a t w h i l e t h e peak was u n a f f e c t e d by magnetic f i e l d s below Tcl, t h e peak s t r e n g t h decreased w i t h o u t changing p o s i t i o n with i n c r e a s i n g magnetic f i e l d i n t h e mixed s t a t e . In t h e second system produced by r a p i d c o o l i n g , t h e peak a l s o moves t o lower t e m p e r a t u r e s , but i n t h i s c a s e t h e response can be f u l l y measured i n t h e normal s t a t e .

The p o s s i b i l i t y t h a t e l e c t r o n s c a t t e r i n g d e t e r m i n e s t h e r e l a x a t i o n r a t e i n t h e superconducting s t a t e removes one of t h e o b j e c t i o n s l i s t e d by Poker, et a l . [81 t o t h e u s e of a TLS d e s c r i p t i o n f o r OH. A second o b j e c t i o n t h a t no r e l a x a t i o n peak s h o u l d be expected f o r t h e symmetric p o t e n t i a l expected f o r low s t r a i n (low oxygen c o n t e n t ) samples can be t e s t e d q u a n t i t a t i v e l y , s i n c e t h e v e l o c i t y measurements by themselves a r e s u f f i c i e n t t o determine a l l the parameters of t h e system, i n c l u d i n g t h e i n t e r n a l s t r a i n . These e f f e c t s w i l l be d e s c r i b e d i n some d e t a i l i n t h e r e s t of t h i s a r t i c l e . It is found t h a t t h e i n t e r n a l s t r a i n i s s u r p r i s i n g l y l a r g e , s o t h a t some r e l a x a t i o n o c c u r s even f o r 100 ppm 0 specimens, and t h a t a TLS formalism can indeed d e s c r i b e t h e r e s u l t s . T h i s does n o t prove t h a t t h e system is a two s i t e system, s i n c e only two l e v e l s of a MLS may be e f f e c t i v e .

Recently, Yu and Granato [ 191 have found t h a t t h e gap i n a TLS i n niobium s h o u l d be about 25% s m a l l e r i n t h e normal s t a t e t h a n i n t h e s u p e r c o n d u c t i n g s t a t e . T h i s e f f e c t should be most r e a d i l y observed i n t h e resonance p a r t of t h e e l a s t i c c o n s t a n t change a t t h e lowest temperatures. Evidence f o r a gap change i s found f o r t h e second (quenching) peak and shown a t t h e end of t h i s a r t i c l e .

11. Experiments

In what f o l l o w s , measurements a r e given of a t t e n u a t i o n and v e l o c i t y i n a specimen of niobium c o n t a i n i n g 100 ppm 0 and 700 ppm H. The 100 ppm 0 c o n c e n t r a t i o n d e s i g n a t i o n i s nominal. An impurity a n a l y s i s i n d i c a t e d 200 ppm Ta, 70 ppm C, 49 ppm N, and 64 ppm 0. T h i s specimen i s t h a t r e f e r r e d t o a s Specimen 2 by Poker, e t a l .

[ 8 ] , and a s Nbl by Huang, e t a l . [ 9 ] . The r e s u l t s found i n t h e s u p e r c o n d u c t i n g s t a t e a r e i n agreement w i t h those found by Huang, e t a l . The v e l o c i t y measurements a r e made w i t h an i n t e r f e r o m e t r i c method [20] i n which t h e e l a s t i c c o n s t a n t change i s d e t e c t e d a s a frequency change w i t h

The frequency s e n s i t i v i t y f o r changes w i t h t e m p e r a t u r e and s t a t e i s about 10 Hz a t 10 MHz and 20 Hz a t 30 MHz. Absolute e l a s t i c c o n s t a n t s a r e not o b t a i n e d , and a r e f e r e n c e v a l u e must be e s t a b l i s h e d from t h e measurements. A t t e n u a t i o n and v e l o c i t y a r e measured s i m u l t a n e o u s l y .

R e s u l t s f o r a t t e n u a t i o n and v e l o c i t y v e r s u s t e m p e r a t u r e a r e shown i n Fig. 1 f o r a C44 mode, which is u n a f f e c t e d by hydrogen. The l o g decrement A is o b t a i n e d from t h e a t t e n u a t i o n a measured i n db/usec through A = .I15 a/f(MHz). At low

t e m p e r a t u r e , t h e decrement c o n s i s t s of a n e l e c t r o n i c component p r o p o r t i o n a l t o t h e e l e c t r i c a l c o n d u c t i v i t y and t h e f r e q u e n c y , and a second, t e m p e r a t u r e independent component given by bond l o s s e s and d i f f r a c t i o n . The' e l e c t r o n i c component d i s a p p e a r s i n t h e s u p e r c o n d u c t i n g s t a t e below t h e t r a n s i t i o n t e m p e r a t u r e of 9.2 K and a s i s g i v e n by as/a, = 2 / ( 1

+

exp A(T)/kT), t h e BCS gap f u n c t i o n [21]. From t h e s e d a t a , t h e t e m p e r a t u r e dependence of t h e gap and t h e p u r i t y of t h e specimen can be determined. There is a l s o a change of t h e v e l o c i t y between t h e normal and

s u p e r c o n d u c t i n g s t a t e s , shown i n t h e lower p a r t of Fig. 1. I n t h e normal s t a t e , t h e e l a s t i c c o n s t a n t is of t h e form (22,231

(5)

(210-76 JOURNAL DE

PHYSIQUE

l a t t i c e f r e e energy. I n t h e s u p e r c o n d u z t i n g s t a t e , t h e r e is a d e c r e a s e below t h i s v a l u e of

-

2 KHz at 30 MHz o r

-

7 x 10- f o r 6 f / f . For C ' , t h i s change i s much s m a l l e r , competing i n magnitude w i t h t h e v e l o c i t y changes a r i s i n g from t h e t u n n e l i n g hydrogen system. For OH r e l a x a t i o n 6 f / f

-

400 Hz i s o b t a i n e d . The f r e q u e n c i e s can be measured very a c c u r a t e l y , b u t t h e e f f e c t s to. be s t u d i e d a r e s m a l l and s o p r o p e r account of a l l t h e background e f f e c t s is c r i t i c a l t o t h e a n a l y s i s .

I n Fig. 2 a r e shown a t t e n u a t i o n (decrement) and v e l o c i t y ( f r e q u e n c y ) changes i n t h e C' mode a t 10 MHz. % A s m a l l peak is observed a t 2.3 K i n t h e s u p e r c o n d u c t i n g s t a t e , b u t no peak is s e e n i n t h e normal s t a t e . The r e l a x a t i o n s t r e n g t h of t h i s peak is about t h r e e o r d e r s of magnitude s m a l l e r t h a n t y p i c a l v a l u e s f o r d i p o l a r p o i n t d e f e c t s . Also t h e d e f e c t c o n c e n t r a t i o n s a r e m c h s m a l l e r t h a n u s u a l ( t o minimize i n t e r n a l s t r a i n e f f e c t s ) . N e v e r t h e l e s s , t h e measurement accuracy i s s u f f i c i e n t t o d e f i n e t h e peak c l e a r l y . By comparison w i t h Fig. 1, one s e e s t h a t i n t h e normal s t a t e , t h e r e is an e l a s t i c c o n s t a n t r e d u c t i o n which i n c r e a s e s w i t h d e c r e a s i n g temperature. The e f f e c t i n t h e s u p e r c o n d u c t i n g s t a t e i s more

complicated, but one r e c o g n i z e s a d i s p e r s i o n which accompanies t h e r e l a x a t i o n peak i n t h e decrement, a s w e l l a s a r e d u c t i o n of t h e e l a s t i c c o n s t a n t below t h a t f o r t h e normal s t a t e due t o t h e e l e c t r o n i c e f f e c t . The r e p r o d u c i b i l i t y of t h e measurements i s e v i d e n t i n t h e o v e r l a p p i n g of t h e c u r v e s above TC.

Fig. 1 Decrement A (upper c u r v e s ) and Fig. 2 Same a s Fig. 1, but f o r frequency change 6 f ( l o w e r c u r v e s , a C' mode a t 10 MHz. e l a s t i c c o n s t a n t change 6C/C = 26f / f )

v e r s u s t e m p e r a t u r e i n t h e normal N and s u p e r c o n d u c t i n g s t a t e S f o r a C44 mode a t 30 MHz.

(6)

Fig. 3 Same a s Fig. 2, b u t a t 30 MHz a f t e r r a p i d cooling.

I

d,

--..

Fig. 4 Decrement and modulus change

I

(6C/C = 26f I f ) v e r s u s temperature. AS1 and A R 1 a r e t h e resonance and h e l a x a t i o n s t r e n g t h s , normalized by a £ / d o . Below t h e r e l a x a t i o n peak, AS1 is measured. Above t h e peak t h e

f u l l e q u i l i b r i u m AS'

+

AR1 i s measured.

111. T I S Formalism

The theory of a t t e n u a t i o n and e l a s t i c c o n s t a n t changes f o r TLS i n c r y s t a l s is b a s i c a l l y t h e same a s t h a t f o r amorphous systems, but simpler. For amorphous systems t h e r e i s not only a d i s t r i b u t i o n of s t r a i n s , b u t a l s o a d i s t r i b u t i o n of t u n n e l i n g gaps, extending down t o zero. For T I S i n c r y s t a l s , t h e r e i s a minimum g a p , Ao, and f o r u l t r a s o n i c measurements w i t h $A

<

A t h e r e i s no d i r e c t r e s o n a n t a b s o r p t i o n . The theory was given a l r e a d y bj ~ a c k l e , O e t a l . 1131 i n 1972, and a p p l i e d immediately t o amorphous systems. The same r e s u l t s f o r c r y s t a l l i n e systems a r e d e r i v e d by Granato, e t a l . 1241 i n a n o t h e r way which f a c i l i t a t e s a d i s c u s s i o n of t h e meaning of t h e r e s u l t s , p a r t i c u l a r l y of t h e s t r a i n dependence.

For TLS, made asymmetric by a s t r a i n e , t h e gap 28 i s g i v e n by t h e t h r e e parameters A O , a , E i n

where 2A0 is t h e t u n n e l s p l i t t i n g and 2 a ~ is t h e s t r a i n induced asymmetry e n e r g y , where a is a s t r a i n c o u p l i n g c o e f f i c i e n t and e i s t h e s t r a i n . The thermal e q u i l i b r i u m e l a s t i c c o n s t a n t change 6C is given bj d e f i n i t i o n a s

(7)

C10-78

JOURNAL

DE

PHYSIQUE

where Z =

1

exp(Ei/kT) ( 7 )

and f ' i s t h e number of d e f e c t s . For a TLS,

z

= 2 cosh A / ~ T ( 8 ) Using Eqs. 4,6,7, and 8 i n 5, one o b t a i n s

where

and

The f a c t o r i n round b r a c k e t s i n Eq. 10 i s t h e f a m i l i a r r e s u l t f o r t h e c l a s s i c a l Snoek e f f e c t f o r El = T a € . The sech2 A/kT f a c t o r cuts-of f t h e r e l a x a t i o n a t temperatures low en6ugh f o r t h e upper s t a t e t o become depopulated. What i s new f o r a quantum system $s t h e square b r a c k e t f a c t o r i n Eq. 10 f o r AR and Eq. 11 f o r A

.

The f a c t o r (aE/A) i n Eq. 10 shows e x p l i c i t l y t h a t f o r a symmetric p o t e n t i a l , t g e r e w i l l be no r e l a x a t i o n because t h e r e is no energy s h i f t f o r a small p e r t u r b i n g u l t r a s o n i c s t r a i n . For l a r g e s t r a i n s a&/A + 1. The new term A, i s t h e resonant response. Even though t h e r e i s no resonant a b s o r p t i o n f o r FIW

<?

Ao, t h e r e is s t i l l a response in-phase w i t h an a p p l i e d s t r a i n . A t z e r o temperature, where only t h e ground s t a t e is populated AS i s g i v e n by t h e s q u a r e bracket i n Eq. 11, a s is r e a d i l y c a l c u l a t e d u s i n g F =

+

fE1. From Eq. 5, A S is t h e c u r v a t u r e of t h i s s t a t e a s a f u n c t i o n of s t r a i n . This c u r v a t u r e goes t o z e r o f o r l a r g e s t r a i n s where El becomes l i n e a r i n s t r a i n . A t f i n i t e temperature, t h e r e i s some p o p u l a t i o n of E2 w i t h o p p o s i t e c u r v a t u r e , reducing t h e s i z e of t h e e f f e c t by t h e f a c t o r t a n h A/kT.

At f i n i t e frequency, o r low t e m p e r a t u r e s , t h e r e l a x a t i o n is incomplete and t h e r e l a x a t i o n response i s given by t h e Debye form

For a random d i s t r i b u t i o n of s t r a i n , t h e s e r e s u l t s must be averaged over a s t r a i n d i s t r i b u t i o n f u n c t i o n , w i t h t h e r e s u l t s expressed now i n terms of s o , t h e average a b s o l u t e value of t h e s t r a i n . This is i l l u t r a t e d i n Fig. 4, which shows t h e

1

e l a s t i c c o n s t a n t change (6C/C1) = (GC/C)/(a f/CAo) a s a f u n c t i o n of temperature (normalized by A / k ) f o r a norm l i z e d random s t r a i n 6

1

= a€,/AO = 1. A t h i g h t e m p e r a t u r e s 6 ~ / 8 = AS

+

A R = a f/CkT, t h e c l a s s i c a l value. Below t h e temperature f o r which

wr

= 1, t h e e l a s t i c c o n s t a n t change i s given by t h e resonant response AS. In what f o l l o w s , we focus mainly on t h e v e l o c i t y measurements.

Fig. 5 i l l u s t r a t e s t h e n a t u r e of t h e response t o be expected f o r t h e d i f f e r e n t l e v e l s of i n t e r n a l s t r a i n of 0 = 0.3 and 5. For s m a l l s t r a i n (B = 0.3) t h e

resonance i s l a r g e and r e l a x a t i o n is a s m a l l f r a c t i o n of t h e t o t a l e l a s t i c c o n s t a n t change a t high temperature. For l a r g e s t r a i n (6 = 5.0), t h e resonance i s g r e a t l y reduced, and the r e l a x a t i o n is a l a r g e r f r a c t i o n of t h e t o t a l change a t h i g h temperatures. The t o t a l change i s t h e same f o r both s t r a i n s a t high temperature. For kT

<

A,, 6C/C d e v i a t e s from t h e 1/T c l a s s i c a l high temperature response and becomes c o n s t a n t f o r kT

<<

A,.

These f e a t u r e s provide a means f o r a n a l y z i n g d a t a i n terms of a TLS formalism. In t h e superconducting s t a t e 6C/C changes from A R

+

AS a t h i g h

(8)

IV. OH Systems

The d a t a of Fig. 2 a r e p l o t t e d vs. 1/T i n Fig. 6. The d a t a have been c o r r e c t e d f o r t h e l a t t i c e c o n t r i b u t i o n and t h e e l e c t r o n i c c o n t r i b u t i o n i n t h e s u p e r c o n d u c t i n g s t a t e . The d a t a cannot be f i t by a s i n g l e ( d e l t a d i s t r i b u t i o n o f ) s t r a i n . However, they a r e w e l l f i t by a random d i s t r i b u t i o n ( s o l i d l i n e s ) w i t h t h e f i t t i n g p a r a m e t e r s - -

of A, = -85 K and 13 = as,/A0. T h i s i s a lower v a l u e of A, t h a n t h a t g i v e n e a r l i e r by Poker e t a l . [ 8 ] , u s i n g a d e l t a f u n c t i o n s t r a i n d i s t r i b u t i o n f i t . These v a l u e s a r e i n r e a s o n a b l e agreement w i t h t h o s e found from i n e l a s t i c n e u t r o n s c a t t e r i n g and show t h a t u l t r a s o n i c measurements a r e complementary t o n e u t r o n measurements i n some a s p e c t s . l& f i t t i n g a l s o t h e magnitude of t h e v e l o c i t y changes, one o b t a i n s a l l 3 parameters

v d e s c r i b i n g t h e TLS s e p a r a t e l y . These a r e

i .

i/'

a of = s t r a i n 51 m e V i s and somewhat E = 7.2 h i g h e r x t h a n T h i s t h a t v a l u e which

A,+&

might have been expected f o r a 100 ppm 0

Fig. 5 Resonant and r e l a x a t i o n i m p u r i t y l e v e l , b u t e x p l a i n s how one can s t r e n g t h s , A

'

and A

',

v e r s u s s t i l l o b t a i n a r e l a x a t i o n f o r such a

R

t e m p e r a t u r e Bor two v a l u e s of r e l a t i v e l y p u r e specimen. normalized s t r a i n 6=0.3 and 5.0,

where 8 = aeo/Ao.

V. Second System (Rapidly Cooled Specimens)

F i n a l l y , t h e v e l o c i t y d a t a f o r t h e second peak ( r a p i d l y cooled specimens) are p l o t t e d i n t h e same way i n Fig. 7. One s e e s t h a t t h e resonance i s s m a l l e r t h a n t h e r e l a x a t i o n i n t h i s case. These d a t a have n o t y e t been f u l l y a n a l y z e d , and w i l l be t h e s u b j e c t of a s e p a r a t e paper. However, independent of t h e n a t u r e of t h e t u n n e l i n g system and t h e s t r a i n d i s t r i b u t i o n , t h e t e m p e r a t u r e independent v e l o c i t y change a t low t e m p e r a t u r e must be a resonance e f f e c t . The f a c t t h a t t h i s is d i f f e r e n t i n t h e N and S s t a t e s i m p l i e s t h a t t h e t u n n e l i n g gap must a l s o have changed.

Fig. 6 F i t of d a t a i n Fig. 2 t o TLS Fig. 7 Frequency change vs 10/T f o r formalism f o r A, = 0.85 K and d a t a i n Fig. 3. The r e l a x a t i o n s t r e n g t h normalized random s t r a i n

8

= 0.5. i s l a r g e compared t o t h e resonance

(9)

C10-80

JOURNAL

DE

PHYSIQUE

V I . Summary

1. The u l t r a s o n i c e f f e c t s observed i n slowly cooled niobium 100 ppm0, 700 ppmH can be d e s c r i b e d w i t h a TIS formalism i n which e l e c t r o n s c a t t e r i n g g r e a t l y i n c r e a s e s t h e t r a n s i t i o n r a t e i n t h e normal s t a t e .

2. From an a n a l y s i s of t h e u l t r a s o n i c v e l o c i t y d a t a a l o n e of t h e t e m p e r a t u r e dependence and r a t i o of r e l a x a t i o n t o resonance s t r e n g t h s , one may o b t a i n a l l of t h e t h r e e p a r a m e t e r s s p e c i f y i n g t h e system. These a r e A. = - 8 5 K, E = 7.2 x and a = 51 meV. In t h i s r e s p e c t , t h e OH system i n niobium is a mode? TW.

3. The low t e m p e r a t u r e resonance of t h e second r e l a x a t i o n system o b t a i n e d by r a p i d c o o l i n g changes w i t h t h e N-S t r a n s i t i o n . This is e x p e r i m e n t a l e v i d e n c e t h a t t h e t u n n e l i n g gap changes w i t h t h e d e n s i t y of normal e l e c t r o n s .

Acknowledgement

We thank H. K. Birnbaum f o r p r o v i d i n g t h e specimen, W. Johnson and

E.

Johnson f o r a s s i s t a n c e w i t h t h e measurements and G. de Lorenzi f o r a s s i s t a n c e w i t h computer c a l c u l a t i o n s . T h i s work was s u p p o r t e d by t h e N a t i o n a l S c i e n c e Foundation under g r a n t number DMR84-09396. E. D.-K. was an IBM Fellow i n 1984-85.

R e f e r e n c e s

1. G. H. S e l l e r s , A. C. Anderson, and

H.

K. Birnbaum, Phys. Rev. B s , 2771 (1974). 2. C. Morkel, H. Wipf, and K. Neumaier, Phys. Rev. L e t t .

40,

947 (1978).

3. A. Magerl, V. Wagner and N. Stump, S o l i d S t a t e Comm.

33,

627 (1980). 4. 0. R i c h t e r and S. M. S h a p i r o , Phys. Rev. B a 599 (1980).

5. J. J. Rush, A. Magerl, J. M. Rowe,

D.

R i c h t e r , and H. Wipf, Bull. Am. Phys. Soc. 27, 162 (1982).

H.

w~F,

K. Neumaier, A. Magerl, A. Heidemann and W. S t i r l i n g , J. Iess Common M e t a l s

101,

317 (1984).

D. B. Poker, G. G. S e t s e r , A. V. Granato, and H. K. Birnbaum, 2. Phys. Chem. N.F.

116,

39 (1979).

D. B. Poker, G. G. S e t s e r , A. V. Granato, and H. K. Birnbaum, Phys. Rev. B E , 622 (1984).

K.-F. Huang, A. V. Granato, and H. K. Birnbaum, i n Proceedings of a Conference on E l e c t r o n i c S t r u c t u r e and P r o p e r t i e s of Hydrogen i n M e t a l s , ed. by P. J e n a and C. S a t t e r t h w a i t e , Plenum P r e s s ,

NY

(1983), p.23.

R. Hanada, Proc. 2nd I n t e r n a t . Congress on Hydrogen i n M e t a l s , P a r i s , (Oxford: Pergamon) Vol. 3, p. 1136 (1977).

G. C a n n e l l i and R. C a n t e l l i , Sol. S t a t e Comrn.

43.

567 (1982). G. B g l l e s s a , J. Phys. Lett.

44,

(1983) W87.

J. J a c k l e , 2. Phys.

257,

212 (1972); J. J a c k l e , L. P i c h e , W. Arnold, and S. Hunklinger, J. Non-Cryst. Sol.

20

(1976) 365.

J. L. Wang, G. Weiss, H. Wipf, and A. Magerl, i n P r o c e e d i n g s of a Conference on Phonon S c a t t e r i n g i n Condensed M a t t e r , ed. by W. Eisenmenger, K. Lassmann and S. D o t t i n g e r (Springer-Verlag, B e r l i n , 1984), p. 401.

B. Golding, J. E. Graebner, A. B. Kane, and J.

L.

Black, Phys. Rev. L e t t .

41,

1487 (1978).

G. Weiss, S. Hunklinger and H. N. g h n e y s e n , P h y s i c a 109 & 110 B & C, 1946 (1982).

J. L. Black and P. Fulde, Phys. Rev. L e t t .

43,

453 (1979).

E.

Drescher-Krasicka and A. V. Granato, B u l l . Am. Phys. Soc.

29,

239 (1984) and 30 274 (1985).

-3

C. C. Yu and A. V. Granato. To be published.

D. Read and J. Holder, Rev. Sci. I n s t r .

43,

933 (1972).

J. Bardeen, L. N. Cooper, and J. R. S c h r i e f f e r , Phys. Rev.

108,

1175 (1957). G. A. A l e r s and

D.

L. Waldorf, Phys. Rev. L e t t .

5

677 (1961).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to