• Aucun résultat trouvé

Ventilation measurements in a basement fallout shelter

N/A
N/A
Protected

Academic year: 2021

Partager "Ventilation measurements in a basement fallout shelter"

Copied!
23
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1962-03

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=37db03b9-fb45-4b71-beae-b317911f7813 https://publications-cnrc.canada.ca/fra/voir/objet/?id=37db03b9-fb45-4b71-beae-b317911f7813

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20358447

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Ventilation measurements in a basement fallout shelter

(2)

NATIONAL RESEARCH COUNCIL CANADA

DIVISION O F BUILDING RESEARCH

VENTILATION MEASUREMENTS IN A BASEMENT F A L L O U T S H E L T E R b y G. T . T a m u r a I n t e r n a l R e p o r t . No. 246 of t h e Division of Building R e s e a r c h OTTAWA M a r c h 1962

(3)

P R E F A C E

T h e Government of Canada h a s published a booklet,

Blueprint f o r Survival No. 1, "Your B a s e m e n t Fallout S h e l t e r , and h a s r e c o m m e n d e d t h e construction of fallout s h e l t e r s t o t h e g e n e r a l public. T h e Division h a s undertaken t o study s o m e of the p r o b l e m s of heating and ventilating of s u c h s h e l t e r s , a s a n a s s i s t a n c e t o t h e

E m e r g e n c y M e a s u r e s Organization. A s h e l t e r of t h e type r e c o m m e n d e d h a s been constructed in a house m a d e available for the p u r p o s e by

E M 0 through C e n t r a l Mortgage and Housing Corporation and h a s been under study for t h e p a s t y e a r . The r e s u l t s of the two winter t r i a l s and two s u m m e r t r i a l s thus f a r conducted a r e d e s c r i b e d i n DBR I n t e r n a l R e p o r t No. 243. T h e ventilation m e a s u r e m e n t s a r e now d e s c r i b e d for t h e benefit of t h o s e having s p e c i a l i n t e r e s t in such techniques, t h e r e s u l t s having been s u m m a r i z e d i n the g e n e r a l r e p o r t .

T h e author, a m e c h a n i c a l engineer and a r e s e a r c h officer with t h e Building S e r v i c e s Section, h a s been engaged on s t u d i e s of chimneys and of the indoor c l i m a t e of dwellings with s p e c i a l r e f e r e n c e to ventilation.

Ottawa M a r c h 1962

N. B. Hutcheon, A s s i s t a n t D i r e c t o r .

(4)

VENTILATION MEASUREMENTS IN A BASEMENT FALLOUT SHELTER

G. T . T a m u r a

A s e r i e s of t e s t s was c a r r i e d out to m e a s u r e the n a t u r a l ventilation r a t e s of t h e s h e l t e r and t h e b a s e m e n t , a s p a r t of t h e

fallout s h e l t e r s t u d i e s on b a s e m e n t and s h e l t e r c l i m a t e being conducted b y t h e Division of Building R e s e a r c h . T h e ventilation m e a s u r e m e n t s w e r e obtained d u r i n g t h e winter and s u m m e r t r i a l s a s d e s c r i b e d

in the DBR R e p o r t No. 243 " B a s e m e n t Fallout Shelter C l i m a t e Studies l961I1 ( 1 ) .

T h e r a t e of s h e l t e r ventilation i s one of the f a c t o r s t h a t a f f e c t s t h e living conditions within a fallout s h e l t e r . B e c a u s e t h e a i r drawn into t h e s h e l t e r f r o m t h e b a s e m e n t is a m i x t u r e of the outdoor a i r and t h e a i r exhausted f r o m t h e s h e l t e r , t h e b a s e m e n t ventilation r a t e a l s o influences the s h e l t e r c l i m a t e . T h e s e ventilation r a t e s affect t h e t e m p e r a t u r e , humidity and t h e dour l e v e l of the a i r i n s i d e t h e

s h e l t e r . They a l s o affect the oxygen and c a r b o n dioxide content in the s h e l t e r a i r by supplying f r e s h a i r and displacing a i r consumed and expelled b y t h e occupants and b y t h e h e a t e r s and l a m p s u s e d for cooking, h e a t i n g and lighting.

T h e s h e l t e r and b a s e m e n t ventilation r a t e s w e r e obtained during t e s t No. 1 (unheated t r i a l s ) and t e s t No. 2 (heated t r i a l s ) of t h e winter t e s t s e r i e s with t h e door c l o s e d t o c o n s e r v e h e a t i n s i d e t h e s h e l t e r . B e c a u s e t h e door to t h e s h e l t e r was left open during t e s t s Nos. 3 and 4, p e r m i t t i n g u n r e s t r i c t e d exchange between s h e l t e r and b a s e m e n t a i r , b a s e m e n t ventilation r a t e s only w e r e r e c o r d e d during t h e s u m m e r t e s t s . T h e r e s u l t s of t h e s e ventilation t e s t s a r e now r e p o r t e d .

Method

T h e ventilation r a t e s of t h e fallout s h e l t e r and t h e b a s e m e n t w e r e d e t e r m i n e d by the t r a c e r g a s technique using h e l i u m a s t h e t r a c e r . T h e t h e r m a l conductivity of the helium g a s i s s i x t i m e s t h a t of a i r and t h e v a r i a t i o n of t h e t h e r m a l conductivity of t h e t r a c e r g a s - a i r m i x t u r e i s m e a s u r e d t o d e t e r m i n e the r a t e of d e c a y of helium concentration with t h e a i r change in the e n c l o s u r e . T h e change i n t h e t h e r m a l c o n - ductivity of t h e t r a c e r g a s - a i r m i x t u r e was m e a s u r e d u s i n g t h e

k a t h a r o m e t e r designed by t h e National B u r e a u of S t a n d a r d s (2) with c e r t a i n design modifications.

(5)

A s s u m i n g a homogeneous m i x t u r e of helium and a i r throughout the e n c l o s u r e , the r e l a t i o n between t h e change in helium concentration and t h e ventilation r a t e i s given by:

w h e r e V

=

volume of e n c l o s u r e

K

=

a i r i n f i l t r a t i o n r a t e

c = volume concentration of helium t = t i m e .

Integration of t h i s e x p r e s s i o n gives:

K

w h e r e

-

-

v

-

a i r change r a t e

At constant ventilation r a t e t h e plot of concentration v e r s u s t i m e gives a s t r a i g h t l i n e on s e m i - l o g a r i t h m i c g r a p h p a p e r .

After t h e helium i s r e l e a s e d in t h e s h e l t e r , s o m e of i t l e a v e s t h e s h e l t e r a s a r e s u l t of ventilation and e n t e r s the b a s e m e n t . P a r t of i t r e t u r n s to t h e s h e l t e r and the r e m a i n d e r flows u p s t a i r s and

o u t d o o r s owing t o t h e ventilation of t h e b a s e m e n t . B e c a u s e t h e volume of the b a s e m e n t i s a p p r o x i m a t e l y t e n t i m e s t h a t of t h e s h e l t e r , t h e r e s u l t a n t helium concentration in t h e b a s e m e n t a s c o m p a r e d with that of the s h e l t e r i s quite low. Since t h e b a s e m e n t ventilation r a t e i s s m a l l , t h e r a t e of decay of helium i s lower in the b a s e m e n t . Over the s h o r t p e r i o d when t h e ventilation r a t e is d e t e r m i n e d t h i s b a s e m e n t

concentration i s a s s u m e d t o be constant. T h e r e f o r e t h e helium concen- t r a t i o n in t h e b a s e m e n t should be s u b t r a c t e d f r o m t h e helium concen- t r a t i o n in t h e s h e l t e r t o obtain t h e c o r r e c t ventilation r a t e of t h e

s h e l t e r . T h e equation for the s h e l t e r ventilation r a t e would then b e c o m e :

w h e r e c = helium concentration in s h e l t e r c , = helium concentration in b a s e m e n t .

Two k a t h a r o m e t e r s and t h e i r a n c i l l a r y r e c o r d i n g equipment w e r e used to m e a s u r e the helium concentration in the b a s e m e n t a s well a s i n the

(6)

s h e l t e r . The basement h a s two horizontally pivoted windows with a total l i n e a l ' c r a c k of 16. 2 ft. T h e s e windows w e r e fitted with s t o r m windows and w e r e not weatherstripped.

T h e k a t h a r o m e t e r used for m e a s u r i n g helium concentration c o n s i s t s of two matched t h e r m i s t o r s enclosed in the cavities of a b r a s s block. One t h e r m i s t o r (sensing) i s s e a l e d with the exception of four

1/32-in. d i a m e t e r holes in the b r a s s block. T h e other t h e r m i s t o r ( s t a n d a r d ) i s sealed in a g l a s s envelope inside the b r a s s block with one end forming a s m a l l open tube which i s filled with light oil ( F i g . 1 ) .

The t h e r m i s t o r s f o r m the two l e g s of a Wheatstone bridge c i r c u i t ( F i g . 2). T h e helium -air m i x t u r e e n t e r s the cavity that contains the sensing t h e r m i s t o r by diffusion through the s m a l l holes in the b r a s s block. This r e s u l t s in an i n c r e a s e d r a t e of h e a t l o s s f r o m t h e sensing t h e r m i s t o r by a n amount depending on the helium concentration, since the t h e r m a l conductivity of helium i s g r e a t e r than t h a t of a i r . As a r e s u l t of the lowering of t e m p e r a t u r e of the t h e r m i s t o r the e l e c t r i c a l r e s i s t a n c e of the t h e r m i s t o r i s a l t e r e d . T h i s r e s u l t s in an imbalance of the bridge c i r c u i t , which i s m e a s u r e d on a single point millivolt r e c o r d e r

.

Because t h e s e t h e r m i s t o r s a r e sensitive t o ambient a i r t e m p e r a t u r e change, the standard t h e r m i s t o r in a g l a s s envelope which f o r m s the second l e g of the Wheatstone bridge c i r c u i t i s chosen s o that i t s r e s i s t a n c e c h a r a c t e r i s t i c i s closely matched t o that of the sensing t h e r m i s t o r . In t h i s manner any changes in the b r a s s block t e m p e r a t u r e will affect the r e s i s t a n c e s of both t h e r m i s t o r s

equally. Although c a r e i s taken t o m a t c h the t h e r m i s t o r s , deviations in t h e i r c h a r a c t e r i s t i c s do occur and t h e r e f o r e t h e k a t h a r o m e t e r i s mounted on the s i d e of a n insulated copper container filled with w a t e r . With t h i s a r r a n g e m e n t f a i r l y good t e m p e r a t u r e control i s obtained over a s h o r t duration.

It was found that the k a t h a r o m e t e r i s a l s o s e n s i t i v e t o changes in b a r o m e t r i c p r e s s u r e . The oil in the g l a s s tube of the s t a n d a r d t h e r m i s t o r allows for the fluctuation in the b a r o m e t r i c p r e s s u r e s o that the t h e r m i s t o r s a r e subjected to p r e s s u r e s of a

constant difference. In addition t o the change in the b a r o m e t r i c p r e s s u r e , the r e l a t i v e humidity of the a i r m a y a l s o change during the

c o u r s e of a t e s t . T h e r e f o r e the s a m p l e helium a i r m i x t u r e i s p a s s e d through a drying bottle filled with calcium chloride b e f o r e exposing the gas t o the k a t h a r o m e t e r .

(7)

In t h i s way t h e effect of t h e changes in t h e a m b i e n t a i r condition on t h e k a t h a r o m e t e r i s reduced. To c o m p e n s a t e f u r t h e r f o r t h i s e f f e c t and, a l s o , f o r the v a r i a t i o n in the d - c power supply voltage, a t h i r d l e g was added t o t h e Wheatstone b r i d g e c i r c u i t . T h i s l e g h a s a fixed r e s i s t o r (200 o h m s ) and the balance between t h e second and t h i r d l e g of the c i r c u i t i s o b s e r v e d with a millivolt a m m e t e r and maintained by adjusting the d - c power supply voltage.

In t h i s m a n n e r the r e s i s t a n c e of t h e s t a n d a r d t h e r m i s t o r i s kept a t a constant value.

The k a t h a r o m e t e r was c a l i b r a t e d in the l a b o r a t o r y by d e t e r m i n i n g t h e a i r change r a t e of a box ( 4 by 8 by 8 f t ) using t h e t r a c e r gas technique and by m e a s u r i n g the a i r flow into the box with a v a r i a b l e a r e a flow m e t e r . T h e r e s u l t of the c a l i b r a t i o n showed c l o s e a g r e e m e n t up t o 4 a i r changes p e r hour but above t h i s r a t e the k a t h a r o m e t e r gave a lower value of a i r change r a t e . T h i s l a c k of a g r e e m e n t was a t t r i b u t e d t o t h e f a c t t h a t t h e r a t e of diffusion of the

s a m p l e helium a i r m i x t u r e into t h e k a t h a r o m e t e r through t h e four 1/32-in. d i a m e t e r h o l e s was not r a p i d enough f o r t h e t h e r m i s t o r t o s e n s e t h e r e a l r a t e of change of helium concentration with t h e ventilation r a t e above 4 a i r changes p e r h o u r . Sufficient t e s t s w e r e

conducted t o obtain a c a l i b r a t i o n c u r v e up t o 10 a i r changes p e r hour

T e s t s

T h e layout of t h e b a s e m e n t ( F i g . 3) shows t h e o r i e n t a t i o n of t h e s h e l t e r in t h e b a s e m e n t and the location of the b a s e m e n t windows. F o u r c o n c r e t e blocks laid on t h e i r s i d e s , 2 in t h e f i r s t c o u r s e , and 2 in the eighth c o u r s e of t h e s h e l t e r wall, e a c h block with two 4 - by 5-in. c o r e s f o r m e d t h e upper and lower openings for s h e l t e r ventilation. Other s o u r c e s of a i r exchange between t h e s h e l t e r and t h e b a s e m e n t a i r w e r e c r a c k s and i n t e r s t i c e s around the door and in t h e ceiling and walls of the s h e l t e r .

T o evaluate the t i g h t n e s s of the ceiling c o n s t r u c t i o n of t h e s h e l t e r , a s e r i e s of a i r l e a k a g e t e s t s was conducted p r i o r t o t h e

ventilation t e s t s . T h e ceiling c o n s i s t e d of two c o u r s e s of 4-in. c o n c r e t e blocks ( j o i n t s u n m o r t a r e d ) on 1 -in. b o a r d s with flat s i d e s laid on 2 -

by 8-in. wood j o i s t s . With a l l vent openings c o v e r e d and the s h e l t e r door closed and s e a l e d , two c e n t r i f u g a l f a n s w e r e u s e d to p r e s s u r i z e t h e s h e l t e r . T h e a i r flow d e l i v e r e d t o t h e s h e l t e r w a s m e a s u r e d with pitot and s t a t i c p r e s s u r e p r o b e s i n s t a l l e d in t h e fan outlet ducts; t h e

p r e s s u r e developed i n s i d e the s h e l t e r was m e a s u r e d with a m i c r o m a n o m e t e r ( F i g . 4). T o c o m p a r e t h e roof l e a k a g e r a t e with t h a t of t h e ventilation

(8)

opening, one opening ( 4 in. by 5 in. ) was uncovered and the a i r leakage t e s t was repeated.

Winter T e s t s

During t e s t s Nos. 1 and 2 of the winter t r i a l s , the door t o t h e s h e l t e r was kept closed to c o n s e r v e h e a t inside the s h e l t e r . T h e two k a t h a r o m e t e r s t o m e a s u r e the ventilation r a t e s of the s h e l t e r and the

basement w e r e placed on a table located centrally in the basement (Fig. 5). T h e helium bottle was placed c l o s e t o t h e outer wall of the s h e l t e r and p l a s t i c tubing was r u n f r o m the valve of the helium bottle into the

s h e l t e r . With this a r r a n g e m e n t helium was r e l e a s e d inside the s h e l t e r for approximately 10 seconds a t 10 p s i p r e s s u r e f r o m outside the

s h e l t e r by manually controlling the valve. T h i s amounted t o 1 t o 2

p e r cent of the volume of the s h e l t e r . Because the t i m e taken to complete the t e s t was approximately 3 h r , t h e control box and the

r e c o r d i n g i n s t r u m e n t s w e r e placed in the kitchen, s o that the o p e r a t o r would not d i s t u r b t h e condition of the basement and the s h e l t e r ( F i g .

6).

During t e s t No. 1 four m e a ~ u r e m e ~ l t s of s h e l t e r ventilation r a t e and t h r e e of the b a s e m e n t w e r e taken. During t e s t No. 2 four m e a s u r e m e n t s of s h e l t e r ventilation r a t e and two of the basement w e r e r e c o r d e d . A

typical helium concentration decay c u r v e for the s h e l t e r and the b a s e m e n t i s shown in Fig. 7 .

Summer T e s t

Ten basement ventilation r a t e m e a s u r e m e n t s w e r e made during t e s t s Nos. 3 a n d 4 . The door t o the s h e l t e r was l e f t open. T h e

basement windows and door to the u p s t a i r s w e r e kept closed. U p s t a i r s d o o r s and windows w e r e allowed t o be opened and closed according t o the n e e d s of the occupants. Nine ventilation r a t e s w e r e r e c o r d e d during the day, with one of the nine r e c o r d e d with the u p s t a i r s doors and

windows closed and locked, and one ventilation r a t e was m e a s u r e d at night.

R e s u l t s and Discussion

The a i r leakage c h a r a c t e r i s t i c of the s h e l t e r ceiling construction i s shown in Fig. 8. It should be noted that p a r t of this i s due to a i r

leakage through the walls and extraneous c r a c k s around t h e s h e l t e r

.

Comparison of t h e a i r leakage r a t e of the ceiling and of the one 4 - by 5-in. ventilation opening a t p r e s s u r e differentials expected under actual

(9)

conditions shows t h a t t h e f o r m e r i s about one half of t h a t of the one ventilation opening. T h i s would indicate that the construction of t h e roof i s f a i r l y tight and t h a t the outflow of a i r through the r o o f i s a p p r o x i m a t e l y

10 p e r cent of t h e t o t a l a i r outflow with t h e s h e l t e r under winter conditions. S h e l t e r ventilation r a t e s m e a s u r e d during t e s t s Nos. 1 and

2 a r e shown in T a b l e I . Shelter ventilation i s due t o t h e s t a c k effect c a u s e d by the t e m p e r a t u r e difference between t h e s h e l t e r and the b a s e m e n t a i r ; t e m p e r a t u r e difference v s ventilation r a t e i s plotted in F i g .

9.

During t h e unheated t r i a l s t h e a v e r a g e t e m p e r a t u r e d i f f e r e n c e was 1 3 ° F and the c o r r e s p o n d i n g ventilation r a t e was 4. 1 a i r changes p e r h o u r . During t h e heated t r i a l s t h e a v e r a g e t e m p e r a t u r e difference was 2 6 ° F and t h e ventilation r a t e w a s 7 . 8 a i r changes p e r hour. With t h e s h e l t e r volume of 400 cu f t the a i r f l o w r a t e s a r e 27. 4 and 52. 0 cfm and t h e c o r r e s p o n d i n g Reynolds n u m b e r s f o r the ventilation openings a r e 2100 and 3900 r e s p e c t i v e l y . It would a p p e a r t h a t t h e

a i r f l o w r a t e i s a l m o s t l i n e a r with t e m p e r a t u r e d i f f e r e n c e in t h i s r a n g e of Reynolds n u m b e r . F o r p u r p o s e s of c o m p a r i s o n , a i r f l o w s can be calculated by t r e a t i n g t h e vent h o l e s a s o r i f i c e s . Since t h e flow is

in t h e t r a n s i t i o n region s u b s t a n t i a l difference in t h e values of t h e coefficient of d i s c h a r g e can be expected f o r the two c a s e s . Actual values of the coefficient of d i s c h a r g e , however, a r e lacking. If a

coefficient of d i s c h a r g e of 0. 60 and an exponent of flow of 1/2 a r e taken for both c a s e s the calculated ventilation r a t e s a r e 5. 8 and 8. 1 a i r

changes p e r hour. T h i s might b e r e g a r d e d a s s o m e support for t h e values of ventilation r a t e s obtained e x p e r i m e n t a l l y .

Although t h e s h e l t e r ventilation r a t e s f o r t h e heating t r i a l s w e r e well above 4 a i r changes p e r h o u r , a s d e t e r m i n e d f r o m equation ( 3 ) , i t was not n e c e s s a r y t o apply c o r r e c t i o n s f o r high ventilation r a t e s i n c e t h e a c t u a l r a t e of decay of helium in t h e s h e l t e r was well below that n o r m a l l y r e p r e s e n t i n g 4 a i r changes due t o t h e r e t u r n of helium f r o m t h e b a s e m e n t .

T h e r e s u l t s of t h e b a s e m e n t ventilation m e a s u r e m e n t s f o r both winter and s u m m e r t e s t s a r e given in T a b l e 11. T h e r a t e of a i r change in the b a s e m e n t will affect the amount of f r e s h outdoor a i r brought i n t o t h e s h e l t e r

-

b a s e m e n t a r e a . T h e b a s e m e n t ventilation r a t e is s u b j e c t t o both wind effect and t o t h e s t a c k effect c a u s e d by t h e d i f f e r e n c e s in t e m p e r a t u r e between the outdoor and u p s t a i r s o r b a s e m e n t a i r , and between u p s t a i r s and b a s e m e n t a i r . Considering t h e n u m b e r of v a r i a b l e f a c t o r s t h a t m a y influence t h e ventilation r a t e s , t h e n u m b e r of t e s t s was quite limited. The m i n i m u m ventilation r a t e obtained during the winter t e s t s w a s 0. 24 a i r change p e r hour. In

(10)

r a t e p e r hour. With a b a s e m e n t volume of 5800 cu f t , t h e s e r a t e s give a i r f l o w s of 24 to 48 cfm, which a r e l e s s than t h e a i r f l o w in a heated s h e l t e r .

T h e b a s e m e n t ventilation r a t e s obtained during the s u m m e r t e s t s w e r e s u b s t a n t i a l l y lower than t h o s e obtained during t h e winter t e s t s . Both t h e o u t s i d e - t o - b a s e m e n t t e m p e r a t u r e difference and the p r e v a i l i n g wind velocity w e r e lower during the s u m m e r months. The m i n i m u m a i r change r a t e r e c o r d e d was 0. 11 a i r change p e r h o u r . In

Fig. 10 t h e a i r t e m p e r a t u r e s of outdoor, u p s t a i r s and b a s e m e n t a r e plotted a g a i n s t t i m e , together with the ventilation r a t e r e a d i n g

m e a s u r e d during t h e day. As c a n b e s e e n f r o m t h e g r a p h , outside a i r t e m p e r a t u r e i s higher during the day than the b a s e m e n t a i r t e m p e r -

a t u r e and, c o n v e r s e l y , t h e o u t s i d e a i r t e m p e r a t u r e i s lower t h a n t h e b a s e m e n t a i r t e m p e r a t u r e a t night - t i m e . T h e c r o s s -over t a k e s p l a c e a t 6. 00 t o 10. 00 a . m . and again at 6 . 0 0 t o 10.00 p . m . when the t e m p e r a t u r e difference between t h e basem'ent and o u t s i d e a i r i s z e r o . On a c a l m day the ventilation r a t e can b e expected t o b e negligible during t h e s e p e r i o d s . One ventilation r a t e r e a d i n g taken a t night indicated t h a t the ventilation r a t e i s higher c o m p a r e d t o t h e d a y t i m e ventilation r a t e under s i m i l a r conditions, p r o b a b l y due t o t h e r e v e r s a l of a i r flow t h r o u g h the b a s e m e n t . One ventilation r a t e r e c o r d e d with t h e u p s t a i r s d o o r s and windows closed and locked

s e e m s t o indicate that the ventilation r a t e i s s u b s t a n t i a l l y the s a m e whether t h e d o o r s and windows a r e left open o r closed.

S u m m a r y

T h e ventilation t e s t s gave an indication of t h e ventilation r a t e t h a t c a n b e expected in t h e fallout s h e l t e r and t h e b a s e m e n t of a t y p i c a l s m a l l house. The b a s e m e n t ventilation r a t e a p p e a r s t o b e

higher during t h e winter than in t h e s u m m e r due t o t h e higher p r e v a i l i n g wind and the g r e a t e r t e m p e r a t u r e difference between the o u t d o o r s and b a s e m e n t a i r t e m p e r a t u r e s . T h e winter t e s t s showed t h a t the a i r flow into the b a s e m e n t f r o m outdoors m a y b e lower than t h e a i r flow into t h e heated s h e l t e r , t h a t i s , t h e amount of f r e s h a i r brought into the

s h e l t e r m a y be r e s t r i c t e d by the b a s e m e n t ventilation r a t e . T h e s u m m e r t e s t s indicated t h a t , due t o t h e t e m p e r a t u r e i n v e r s i o n of t h e b a s e m e n t and outdoor a i r , t h e r e m a y be p e r i o d s of negligible a m o u n t s of v e n t i - lation on a c a l m day.

Acknowledgments

(11)

a s s i s t a n c e in s e t t i n g up i n s t r u m e n t a t i o n and in c a r r y i n g out t h e t e s t s . T h e author a l s o acknowledges t h e guidance given t o t h i s p r o j e c t by M r . A. G. Wilson and Dr. N. B. Hutcheon.

R e f e r e n c e s

( I ) Kent, A. D. and N. B. Hutcheon. Basement fallout s h e l t e r c l i m a t e s t u d i e s . National R e s e a r c h Council, Division of Building R e s e a r c h , I n t e r n a l R e p o r t No. 243, Ottawa, 1962.

( 2 ) Coblenz, C. W. and P. R . Achenbach. Design and p e r f o r m a n c e of a p o r t a b l e infiltration m e t e r . T r a n s a c t i o n s , A m e r . Soc. of Heating and A i r -Conditioning E n g i n e e r s , Vol. 63,

1957, p. 477-482.

( 3 ) T a m u r a , G. T . P e r f o r m a n c e of k a t h a r o m e t e r for i n f i l t r a t i o n m e a s u r e m e n t s . ( T o be i s s u e d a s a n I n t e r n a l R e p o r t of the Division of Building R e s e a r c h , NRC. )

(12)

TABLE I

SHELTER VENTILATION RATES DURING WINTER TESTS

Date Shelter B a s em ent T e m p Ventilation R a t e , A i r T e m p , A i r T e m p , Diff, Air change/hr

"F "F O F

T e s t No. 1 ( W i n t e r )

12. 1 . 6 1

T e s t No. 2 ( W i n t e r )

(13)

TABLE I 1

BASEMENT VENTILATION RATES DURING WINTER AND SUMMER TESTS ,

Date B a s e m e n t U p s t a i r s Outside Wind Ventilation R a t e , A i r T e m p , Air T e m p , A i r T e m p , mph A i r change/hr O F O F O F (HT G) T e s t No. 1 ( W i n t e r ) T e s t No. 2 ( W i n t e r ) 23. 2 . 6 1 49 46 2 9 13 E . 2 4 28. 2. 6 1 5 1 49 35 12 W . 3 7 T e s t No. 3 ( S u m m e r ) 20. 7 . 6 1 76 86 86 2 SE

.

16 21. 7.61 75 77 8 3 3 SW .ll 24. 7. 6 1 76 7 9 8 4 5 SW . 2 2 25. 7 . 6 1 7 6 77 82 2 SW .ll 25. 7 . 6 1 76 75 7 0 1 W . 1 7 26. 7 . 6 1 76 80 8 1 5 NW . 2 1 T e s t No. 4 ( s u m m e r ) 29.8.61 7 4 75 75 5 W . 1 7 3 0 . 8 . 6 1 76 7 2 7 9 1 W - 1 2 1 . 9 . 6 1 7 7 83 85 3 S

.

16 6 . 9 . 6 1 76 7 5 72 5 E . 3 2

(14)
(15)

SENSING

THERMISTOR

STANDARD

AA

V) C J 0

>

U 0

t

\ M I L L I V O L T

RECORDER

K A T H A R O M E T E R L E A D S S H I E L D E D

F I G U R E

2

K A T H A R O M E T E R C I R C U I T DIAGRAM

(16)
(17)
(18)
(19)
(20)
(21)

h

I

I

1

I

I

-

-

REGION O F P R E S S U R E Dl F F E R E N T I A L

U N D E R A C T U A L S H E L T E R CONDITION

0

2

4

6

8

10

S H E L T E R P R E S S U R E

,

mrn

H , 0

F I G U R E

8

S H E L T E R R O O F LEAKAGE C H A R A C T E R I S T I C S

(22)

10

I

I

I

I

I

I

I

I

I

I

I

I

I

I

-

-

LEGEND:

8

- 0

TEST No. I (UNHEATED TRIALS)

TEST No.

2 (HEATED TRIALS)

/@

7-

-

0

-

6

-

-

-

-

0

4

-

a

0

-

-

-

-

-

I

I

I

I

I

I

I

I

0

4

8

12

16

20

24

28

SHELTER

-

BASEMENT TEMPERATURE DIFFERENCE, OF

FIGURE 9

SHELTER VENTILATION RATE

(23)

l l o 100 L L

d

9 0 oz 3 I- a a w 8 0 a I W I- 7 0 6 0 1 2 2 4 6 8 1 0 1 2 2 4 6 8 1 0 1 2 2 4 6 8 1 0 1 2 2 4 6 8 1 0 1 2

MIDNIGHT JULY 2 4 1961 MIDNIGHT JULY 2 5 1961 M l D N IGHT

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

-21 AIR CHANGE PER HOUR

- WIND 5 M.F? H. N.W. E N D OF S H E L T E R -

-17 AIR CHANGE PER HOUR

-

-

UPSTAIRS WINDOWS

-

-

I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 -

- 2 2 A I R CHANGE PER HOUR WIND 5 M.F?H. S.W.

1 2 2 4 6 8 1 0 1 2 2 4 6 8 1 0 1 2 2 4 6 8 1 0 1 2 2 4 6 8 1 0 1 2 M I D N I G H T JULY 2 6 1961 M I D N I G H T J U L Y 2 7 1961 MIDNIGHT

1 1 1 1 l 1 1 1 1 1 1 1

-

.

II AIR CHANGE PER HOUR WIND 2 M.F?H. S.W.

FIGURE 10 BASEMENT VENTILATION CONDITIONS TEST NO. 3 ( S U M M E R ) - -

.

-

-

.

L OUTSIDE AIR

.\-

-

I I I I I I I I I I I I I I I I I I I I I I I

Figure

FIGURE  9  SHELTER  VENTILATION  RATE
FIGURE  10  BASEMENT  VENTILATION  CONDITIONS  TEST  NO.  3  ( S U M M E R )  -  - . - -

Références

Documents relatifs

i) The calculated intensities are very close to those obtained by the software CaRIne, ii) There is a difference between the calculated intensities and those given by the base

c Department of Chemical Engineering , Saad Dahlab University of Blida , Blida , Algeria d Laboratory of Environmental Biotechnologies BIOGEP , Ecole Polytechnique d’Alger—10

Par contre si le scénario d’accords agricoles alternatifs a augmenté les prix aux producteurs et l’équité, il a aussi augmenté les dépenses publiques pour le financement

اًﻮْﻀُﻋ ﺔﻴﻧﺪﻤﻟا ﺔﻴﻟوﺆﺴﻤﻟا ﻦﻣ ﻦﻴﻣﺄﺘﻟا ﺠﻟا نﻮﻧﺎﻘﻟا ﻲﻓ روﺮﻤﻟا ثداﻮﺣ جﺎـــــــﺤﻟوأ ﺪـــــــﻨﺤﻣ ﻲـــــــــﻠﻛأ

The nominal result and statistical uncertainty is given in black, while the results of the dominant systematic variations to the nominal model (per Sec. VI ) are given by the

راد ،(ةنراقم ةسارد) كلهتسملا ةيامح دعاوق ءوض يف ةحايسلا دوقع يف ةمالسلا نامضب مازتلالا ،حاتفلا دبع ديلف دباع رهاقلا ،ةيبرعلا ةضهنلا ،ة 2006 ص ، 26..

detection of flooded areas on the 526 MODIS images, chosen to monitor the annual and interannual variations of the flood. The IDL routine automatically computed

the criteria towards design and accepting the latter two as constraints, a proposal for the total form of the campus for 1980 is suggested. The existing