• Aucun résultat trouvé

12 Synchronization of oscillatory activity and waves in neuronal networks with spatially structured connectivity

N/A
N/A
Protected

Academic year: 2022

Partager "12 Synchronization of oscillatory activity and waves in neuronal networks with spatially structured connectivity"

Copied!
1
0
0

Texte intégral

(1)

rencontre du non-lin´eaire 2018 1

Synchronization of oscillatory activity and waves in neuronal networks with spatially structured connectivity

Kulkarni1,2,3, Ranft1,2,3 & Hakim1

1 Laboratoire Physique Statistique, CNRS, Ecole Normale Sup´erieure, PSL Research University, Universit´e Pierre et Marie Curie, Paris, France

2 Institut de Biologie de l’ENS, CNRS, Ecole Normale Sup´erieure, PSL Research University, INSERM, Paris, France

3 equal contribution jonas.ranft@ens.fr

Neural rhythms and collective oscillations are ubiquitously recorded in neural structures. Oscillations with 10-45Hz frequency (in the so-called “β/low γ” range) have successfully been modeled in several previous works as arising from reciprocal interactions between excitatory (E) and inhibitory (I) neurons.

The synchronization properties of spatially distant E-I modules have been less studied although this knowledge would help to properly interpret recording data. Here, we analyze the dynamical regimes of two oscillatory E-I modules connected by excitatory interactions as well as those of a chain of such modules. We show that long-range excitation can either synchronize or desynchronize oscillatory activity of distinct E-I modules, depending on its strength and the specific considered connectivity. Stochastic action potential emission by individual neurons furthermore gives rise to noise at the module level that tends to disrupt synchronization and can lead to the appearance of phase gradients and of phase waves in a spatially extended network. As a result, the phase dynamics in a 1D chain of E-I modules is found to be described by the Edwards-Wilkinson, KPZ or noisy Kuramoto-Sivashinsky equations. We characterize the above-mentioned phenomena and discuss their relations to experimental observations.

c Non Lin´eaire Publications, Avenue de l’Universit´e, BP 12, 76801 Saint- ´Etienne du Rouvray cedex

Références

Documents relatifs

Univ Paris Diderot, ´ Ecole normale sup´ erieure, PSL Research University, CNRS, D´ epar- tement Math´ ematiques et Applications, 45 rue d’Ulm, 75230 Paris cedex 05, France.

On fait une boucle pour les rebonds: à chaque itération on calcule la trajectoire d’un rebond, et on donne la position et vitesse de la balle lorsque celle-ci touche de nouveau le

Pour finir, cr´eez une figure sur laquelle on voit tous les r´esultats `a la fois avec des subplot: l’image exp´erimentale, la trajectoire mesur´ee compar´ee avec la

Pour finir, cr´eez une figure sur laquelle on voit tous les r´esultats `a la fois avec des subplot: l’image exp´erimentale, la trajectoire mesur´ee compar´ee avec la

Il ne peut que constater l'absence de causalité entre l'émission d'un rayonnement par les sels d'uranium (qu'il appela rayons "uraniques") et leur préalable

Rïîð²R;ñŸòRó5ô;NQM*ëÿV èURfM}çíô ä ñIæ S&}XTaTE^UBAmõ÷ö

For those zonotopes, Ziegler proves that the space of tilings can be directed so as to get a graded poset (with a unique minimal element and a unique maximal element), for c ≤ 4. To

We explain and demonstrate why considering φ instruction replacement and renaming constraints together results in an improved coalescing of variables, thus reducing the number of