• Aucun résultat trouvé

Oxidation of a cold-worked 316L stainless steel in pressuriezd water reactor primary water environment

N/A
N/A
Protected

Academic year: 2021

Partager "Oxidation of a cold-worked 316L stainless steel in pressuriezd water reactor primary water environment"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: cea-02434524

https://hal-cea.archives-ouvertes.fr/cea-02434524

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Oxidation of a cold-worked 316L stainless steel in pressuriezd water reactor primary water environment

M. Maisonneuve, C. Duhamel, C. Guerre, J. Crepin, I. de Curieres, L. Verchere

To cite this version:

M. Maisonneuve, C. Duhamel, C. Guerre, J. Crepin, I. de Curieres, et al.. Oxidation of a cold-worked 316L stainless steel in pressuriezd water reactor primary water environment. EUROCORR 2017, Sep 2017, Prague, Czech Republic. �cea-02434524�

(2)

Results

Introduction

Material and Experimental Conditions

OXIDATION OF A COLD-WORKED 316L STAINLESS STEEL

IN PRESSURIZED WATER REACTOR PRIMARY WATER ENVIRONMENT

Eurocorr 2017, September 3-7, Prague

Composition (weight %)

C S P Si Mn Ni Cr Mo Cu N

316L – this study 0,016 0,0009 0,026 0,62 1,86 10 16,54 2,03 - 0,022

• Pressurized Water Reactors (PWR) represent 76.3 % of the electrical power produced in 2015 in France [1]

• Operational feedback  intergranular Stress Corrosion Cracking (SCC) affecting cold-worked stainless steel components in PWR primary water [2]

• PWR primary water : pure hydrogenated and deaerated water, with Li and B additions, 150 bars and 290-340 °C

• Oxygen transients (oxygen injections in PWR primary water [3, 4]) = Possible detrimental factor • Dissolved oxygen in PWR primary water has an impact on the :

 Location of initiation sites (trans- or intergranular sites) [5]

 Oxide layer properties (inner layer morphology and composition) [6]

• However, the oxygen transient effect on SCC susceptibility has not been extensively investigated to date

Annealing treatment (1050°C, Ar overpressure, 1h) applied to our specimens  Isotropic austenite grains (50 ± 10 µm) and residual ferrite (1-5 % in volume)  Non-sensitized material

Nominal PWR primary water (pure water, 150 bars, 340°C, pH = 7.0 to 7.2)

Element B Li H O Chlorides, sulfates, fluorides

Concentration 1000 ppm 2 ppm 25-35 mL/kg

(TPN) < 0,01 ppm < 0,05 ppm

Marc Maisonneuve

(a,b)

, Cécilie Duhamel

(b)

, Catherine Guerre

(a)

, Jérôme Crépin

(b)

, Ian de Curières

(c)

, Léna Verchère

(a,b)

(a) Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

(b) MINES ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87 91003 Evry, France (c) IRSN, Pole sûreté nucléaire, 31 avenue de la division Leclerc, BP 17, 92262 Fontenay-aux-Roses cedex, France

0 10 20 30 40 <0 0-50 50-100 100-150 150-200 200-250 >250 Fr equen cy (%)

Localized penetration depth (nm)

0% - 500h 11% - 500h 0% - 1000h

Oxidation kinetics

Specimen Mean oxide thickness (nm) Mean localized penetration depth (nm) 500 h 140 ± 41 92 ± 78 11% - 500 h 89 ± 43 87 ± 64 1000 h 146 ± 42 105 ± 74

Objectives

Conclusions

200 nm Ni coating

Outer oxide layer Inner oxide layer

Alloy

W coating

Penetrative

filamentary oxide

First step: effect of dissolved

oxygen in PWR primary water

On oxidation kinetics and surface oxide layers nature

On localized oxide penetration kinetics, morphology and nature

Pre-strained

/

non

cold-worked

316L stainless steel specimens

Oxidation of a stainless steel specimen exposed to PWR primary water

σ σ

Alloy

Oxide

penetration Grain boundary 200 nm

PWR primary water Outer

oxide layer

Inner oxide layer

General aim: Determine the effect of dissolved oxygen on SCC susceptibility of a cold-worked stainless steel in

PWR primary water

• Hypothesis: Link between oxidation and SCC susceptibility

• In particular, localized oxide penetrations are suspected to play a crucial role in crack initiation

PWR Core Pump Steam generator Control rods © Corinne Beurtey / CEA PWR primary circuit Schematic representation of the primary circuit of a PWR

Oxidation in nominal PWR primary water C2 Oxidation time = 500 h Non cold-worked C1 Oxidation time = 1000 h Non cold-worked EP1 Oxidation time = 500 h Pre-strained (11%)

— Inner oxide layer (spinel structure)

[1] : Commissariat à l'Energie Atomique, Mémento sur l’énergie 2016, 2016 [2] : ILEVBARE, G., et al, Fontevraud 7, Avignon, 2010

[3] : COMBRADE, P., et al, Dossier Technique de L’ingénieur, bn3756, 2014 [4] : BETOVA, I., et al, rapport VTT-R-00699-12, 2012

[5] : HUIN, N., et al, EnvDeg 2015

[6] : TERACHI, T., et al, 61st NACExpo, Paper 06608, 2006

Duplex surface oxide layer

Localized oxide penetrations at grain boundaries or at slip bands Cold-working  lower mean oxide thickness

Increasing oxidation times  increase of the deepest localized penetration density 

SEM observations after oxidation tests in nominal PWR primary water

TEM characterization of a non cold-worked specimen oxidized 500h at 340°C

Inner oxide layer: randomly-oriented nano-grains of spinel structure, composition close to (Fe,Ni)(Fe,Cr)2O4

Outer oxide layer: Fe-rich, possibly magnetite Fe3O4 (to be confirmed) 

Next steps

Tests in nominal PWR primary water: oxidation kinetics and impact of cold-working on oxidation Adjustment of the experimental methodology for tests in aerated PWR primary water

Tests in aerated PWR primary water  effect of dissolved O2

STEM-HAADF micrograph of the surface oxide layer and corresponding EDS profiles

0 50 100 150 200 250 300 350 0 20 40 60 80 100 0 50 100 150 200 250 300 Sig nal associa ted to O ( a.u .) R ela tiv e pr opo rtions of Cr , F e, Ni (% me tall ic elemen ts) Alloy Inner oxide layer Outer oxide layer Cr Fe Ni O Position (nm)

Non cold-worked specimens  at grain boundaries Pre-strained specimen  at slip bands 1 µm Ni coating Alloy Localized oxide penetration

Outer oxide layer Inner oxide layer Au coating

SEM (backscattered electrons) micrograph, cross-section of C2 specimen

100 nm Alloy (grain 1) Alloy (grain 2) Inner oxide layer Outer oxide layer Pores Localized oxide penetration

Bright-field TEM micrograph, cross-section of the specimen and diffraction pattern at the alloy/inner oxide interface

5 1/nm {440} {422} {400} {311} {111} {220} : Alloy {220} planes

— Inner oxide layer (spinel structure)

Références

Documents relatifs

Abbreviations used: DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular-signal-regulated kinase; GFP, green fluorescent protein; GST, glutathione S-transferase;

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide