• Aucun résultat trouvé

LOW AND INTERMEDIATE ENERGY HEAVY ION COLLISIONS IN THE SEMI-CLASSICAL MICROSCOPIC DESCRIPTION

N/A
N/A
Protected

Academic year: 2021

Partager "LOW AND INTERMEDIATE ENERGY HEAVY ION COLLISIONS IN THE SEMI-CLASSICAL MICROSCOPIC DESCRIPTION"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00226496

https://hal.archives-ouvertes.fr/jpa-00226496

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

LOW AND INTERMEDIATE ENERGY HEAVY ION

COLLISIONS IN THE SEMI-CLASSICAL

MICROSCOPIC DESCRIPTION

C. Gregoire, B. Remaud, F. Sebille, L. Vinet, D. Jacquet

To cite this version:

C. Gregoire, B. Remaud, F. Sebille, L. Vinet, D. Jacquet. LOW AND INTERMEDIATE ENERGY

HEAVY ION COLLISIONS IN THE SEMI-CLASSICAL MICROSCOPIC DESCRIPTION.

Interna-tional Workshop on Semiclassical and Phase Space Approaches to the Dynamics of the Nucleus, 1987,

Aussois, France. pp.C2-203-C2-209, �10.1051/jphyscol:1987229�. �jpa-00226496�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, suppl6ment au n o 6, Tome 48, juin 1987

LOW AND INTERMEDIATE ENERGY HEAVY ION COLLISIONS IN THE SEMI-CLASSICAL MICROSCOPIC DESCRIPTION

C. G R ~ G O I R E , B. REMAUD*, F. S~BILLE", L. VINET"* and

D.

JACQUET'

GANIL, BP 5027, F-14021 Caen Cedex, France

~ I R E S T E , 3, rue du Marechal Joffre, F-44041 Nantes Cedex 01,

France

**Universit6 de Nantes, 2, rue de la HoussiniBre, F-44072 Nantes,

France

" " ~ a w r e n c e Berkeley Laboratory, Nuclear Science Division,

Berkeley, CA 94720, U.S.A.

'Institut de Physique Nucleaire, BP 1, F-91406 Orsay Cedex, France

Resume : C e t t e c o n t r i b u t i o n e s t consacr6 8 l a d e s c r i p t i o n des c o l l i s i o n s c e n t r a l e s e t i p h 6 r i q u e s

1

l ' a i d e d'une dynanique Landau-Vlasov. Pour l e s c o l 1 is i o n s

peripheriques aux energies i ntermediai res, l e s c o r r 6 l a t i o n s masse-masse, l e s energies moyennes des q u a s i - p r o j e c t i l e s e t l e s d i s t r i b u t i o n s a n g u l a i r e s s o n t obtenues e t compares avec l e s donnees experimentales. Pour l e s c o l l i s i o n s centrales, on montre que l a fenEtre de f u s i o n de TDHF

2

basse Energie d i s p a r a i t avec l ' i n t r o d u c t i o n d'une i n t g r a c t i o n r g s i d u e l l e . Au-del6 de 20 MeV/u, l a f u s i o n incomplete e s t d e c r i t e avec l e t r a n s f e r t d'impulsion e t l e s ddformations

n u c l e a i r e s associees. Le couplage aux e t a t s du continuum e s t analyse dans l e s dynaniques Vlasov e t Landau-V1 asov. L ' i n t 6 r a c t i o n Coul ombienne &ant incorporee, nous presentons des r e s u l t a t s sur l e t r a n s f e r t d ' i s o s p i n e t l ' e x c i t a t i o n du mode dip01 a i r e i s o v e c t o r i e l au v o i sinage e t au-dessus de l a b a r r i e r e Coulombienne. Quelques perspectives pour l ' e t u d e d'observables physiques'sont finalement trac6es.

A b s t r a c t : It i s shown how p e r i p h e r a l and c e n t r a l heavy-ion c o l l i s i o n s can be described by Landau-V1 asov dynamics. For p e r i p h e r a l c o l l i sions a t i n t e r m e d i a t e energies, mass-mass c o r r e l a t i o n s , e j e c t i l e mean energies and angular d i s t r i b u t i o n s a r e obtained and compared w i t h fragmentation data. For c e n t r a l c o l l i s i o n s , one shows t h a t the c o l l i s i o n term destroys t h e TDHF p r o p e r t y o f transparency a t low impact parameters f o r c o l l i s i o n s c l o s e from t h e Coulomb b a r r i e r . Above 20 MeV/u incomplete f u s i o n i s described w i t h associated l i n e a r momentum t r a n s f e r and n u c l e a r deformations. One e x h i b i t s how c o u p l i n g t o t h e continuum i s obtained i n Vlasov and Landau-Vlasov dynamics. Coulomb i n t e r a c t i o n b e i n g taken i n t o account, we present a l s o r e s u l t s concerning t h e i s o s p i n t r a n s f e r and t h e e x c i t a t i o n of the i s o v e c t o r d i p o l e mode near and w e l l above the Coulomb b a r r i e r . Some p e r s p e c t i v e s t o f u r t h e r s t u d i e s o f p h y s i c a l observables are f i n a l l y drawn.

I n t r o d u c t i o n

The n u c l e a r Vlasov and Landau-Vlasov equations have been introduced i n o r d e r t o f o l l o w t h e t i m e e v o l u t i o n o f the microscopic one body d i s t r i b u t i o n f u n c t i o n f ( t , b l i n t h e phase space symplectic m a n i f o l d d e f i n e d a t the Hartree-Fock and extended Hartree-Fock l e v e l . P r o p e r t i e s and procedures f o r t h e determination of

(3)

approximate s o l u t i o n s have been w i d e l y discussed d u r i n g t h i s conference,

e s p e c i a l l y i n t h e B. Remaud's t a l k . I n t h e t a b l e I, we sketch t h e s a l i e n t f e a t u r e s c h a r a c t e r i z i n g t h e two main approches t o these nuclear k i n e t i c equations a v a i l a b l e i n the l i t e r a t u r e . A n i c e d e r i v a t i o n o f these equations can be found, on t h e o t h e r hand, i n R. M a l f l i e t ' s c o n t r i b u t i o n and i n reference [l]. It t u r n s o u t t h a t t h e r e a l and imaginary p a r t s o f the g-matrix e n t e r i n the mean f i e l d term and t h e c o l l i s i o n term r e s p e c t i v e l y . The energy and density dependence o f t h e e f f e c t i v e nucleon-nucl eon i n t e r a c t i o n f i n d s t h e r e i t s j u s t i f i c a t i o n when one deals w i t h t h e Landau-Vlasov equation.

Table I

-

Approaches t o the nuclear k i n e t i c equation : approximate s o l u t i o n s , i n g r e d i e n t s and a p p l i c a t i o n s .

LANDAU-VLASOV (Ref. [2,3,4.5,6,7,18])

Decomposition o f one-body d i s t r i b u t i o n f u n c t i o n on a movinq coherent s t a t e

Neutrons and protons ; Coulomb i n c l u - ded

.

s i m p l i f i e d Skyrme i n t e r a c t i o n s r2. 61 BOLZMANN-UEHLING-UHLENBECK (Ref. [8,9,10,11,12]) o r VLASO1'-UEHLING-UHLENBECK P a r a l l e l ensembles o f pseudo-parti- c l e s (nucleons) basis I n i t i a l n u c l e i i n t h e i r ground state, each o f them being an exact s t a t i o n - nary s o l u t i o n o f t h e Vlasov equation ( i n i t i a l s e l f - c o n s i s t e n t procedure)

b l s i n i e r a c t i o n ( l o n g range c o r r e l a -

I

t i o n s ) [ I ]

average over ensembles

Simpl i f i e d Skyrme i n t e r a c t i o n

Momentum dependent f o r c e [ l 3 1

Uehl ing-Uhlenbeck c o l l i s i o n term w i t h : unn (energy, density, i s o s p i n ) continuous r e l a x a t i o n

Slabs [ 5 ]

Spherical symmetry [ 3 ] 3D

-

d e s i n t e g r a t i o n [ 6 ] Intermediate and low energy heavy i o n c o l l is i o n s [4,18]

Uehl ing-Uhlenbeck c o l l i s i o n term w i t h : an,, = constant

continuous o r f l u c t u a t i n g [ l 4 1 re1 a x a t i o n

Intermediate and re1 a t i v i s t i c heavy i o n c o l l i s i o n s [8,9,10,11,12]

r and y emission [ l 5 1 Mu1 t i f r a g m e n t a t i o n [ l 4 1

The Vlasov equation i s w i d e l y used i n plasma physics where the mean-field i s e s s e n t i a l l y g i v e n by the electromagnetic l o n g range i n t e r a c t i o n . I n our c o n t e x t ( t h e heavy i o n c o l l i s i o n s ) , we note t h a t t h e dominant term derives from the s h o r t range s t r o n g i n t e r a c t i o n , a l l o w i n g a determination o f t h e s o l u t i o n which i s much more stable. I n t h i s c o n t r i b u t i o n , we r e p o r t on a few s i t u a t i o n s where these s o l u t i o n s were used i n o r d e r t o c a l c u l a t e physical observables and t o c h a r a c t e r i z e c o l l i s i o n processes. The f r a g ~ n e n t a t i o n mechanism i n i n t e r m e d i a t e energy heavy i o n c o l l i s i o n s i s analyzed ( s e c t i o n 1). The occurence o f f u s i o n - l i k e processes i s discussed i n s e c t i o n 2. P a r t i c u l a r a t t e n t i o n i s p a i d t o p a r t i c l e emission i n t h e continuuln i n s e c t i o n 3. I n s e c t i o n 4, we mention some r e s u l t s concerning t h e e x c i t a t i o n of i s o v e c t o r modes i n heavy i o n c o l l i s i o n s near the Coulomb b a r r i e r .

l

-

Fragmentation mechanism

As revealed by Landau-V1 asov c a l c u l a t i o n s f o r c o l l is i o n s above 30 MeV/u, t h e main p a r t o f t h e r e a c t i o n cross s e c t i o n goes i n t o t h e p r o j e c t i l e fragmentation cross section. As a m a t t e r of fact, t h e p a r t i a l waves corresponding t o deep i n e l a s t i c processes a t low energy c o n t r i b u t e a t i n t e r m e d i a t e energy t o an a b r a s i o n - l i k e mechanism. However d i f f e r e n t hebaviour i s found i n h i g h energy fragmentation

[l63

t h a t has l e d t o a model discussed i n r e f . 17. T h e f i g u r e 1

sketches t a r g e t - l i k e mass versus p r o j e c t i l e - l i k e mass c o r r e l a t i o n s f o r the k O A r

(4)

reduced r a d i u s ro = 1.36 Fm which f i t s the data ( r e f . 16) shows t h a t t h e

microscopic d e s c r i p t i o n accounts p r o p e r l y f o r the main c o r r e l a t i o n c h a r a c t e r i z i n g a fragmentation process. The t a r g e t - l i ke r e c o i l angle ( i n absolute values) versus p r o j e c t i l e - l i k e mass c o r r e l a t i o n a t 44 MeV/u i n c i d e n t energy i s described by t h e dashed area i n f i g u r e 2 f o r the experimental data and by the f u l l l i n e f o r the c a l c u l a t i o n s .

-GEOMETRICAL ro r L36 ABRASION

-LANDAU.VLASOV

F i g u r e 1 : T a r g e t - l i k e versus p r o j e c - F i g u r e 2 : Absolute value o f t h e t i l e - l i k e mass c o r r e l a t i o n i n fragmen- t a r g e t - l i ke r e c o i l angle versus t h e

t a t i o n r e a c t i o n s i n the geometrical p r o j e c t i l e - l i k e mass i n 40Ar (44 MeV/u) abrasion model ( f u l l l i n e ) and i n - t h e

+

27A1 r e a c t i o n s . The Landau-V1 asov Landau-V1 asov c a l c u l a t i o n (dashed l i n e ) c a l c u l a t i o n ( f u l l l i n e ) i s compared f o r t h e "0Ar (35 MeV/u)

+

2 7 ~ 1 r e a c t i o n . w i t h t h e d a t a o f r e f [ l 6 1 (dashed

area).

The d i p o f the c a l c u l a t e d curve corresponds t o a d e f l e c t i o n towards negatiue angles. The o r b i t i n g has a t w o f o l d o r i g i n : f i r s t t h e a t t r a c t i v e nucleus-nucleus f o r c e generated by t h e mean f i e l d ; secondly the one-body d i s s i p a t i o n (nucleon exchanges) on t h e one hand and t h e two-body d i s s i p a t i o n ( c o l l i s i o n term) on t h e o t h e r hand. For such p e r i p h e r a l reactions, i t i s worth mentioning t h a t t h e nucleon-nucleon c o l l i s i o n s a c t s t r o n g l y a t t h e surfaces o f the i n t e r a c t i n g n u c l e i i n order t o damp t h e r e l a t i v e motion. The apparent discrepancy between data and c a l c u l a t i o n s i n f i g u r e 2 c o u l d f i n d i t s o r i g i n i n t h e s t r e n g t h o f t h e two-body c o l l i s i o n term as f a r as very p e r i p h e r a l r e a c t i o n s are concerned (A

-

40).

Consequently, i t seems r e l e v a n t t o ask f o r a d d i t i o n a l experimental 8ata f o r a more p r e c i s e a n a l y s i s o f t h i s strength. For t h e mean energies o f fragmentation

products, one can mention t h a t the agreement between theory and experiments i s reasonable f o r t h e p e r i p h e r a l c o l l i s i o n s . We r e f e r t h e reader t o t h e reference

[ l 8 3 f o r d e t a i l S.

2

-

F u s i o n - l i k e processes

A comparison between V1 asov and Landau-Yl asov c a l c u l a t i o n s should answer t h e q u e s t i o n d e a l i n g w i t h t h e low l-window obtained so f a r i n TDHF c a l c u l a t i o n s (see r e f . [19]). A renewal o f t h i s question was r e c e n t l y given by t h e experimental observation o f a p o s s i b l e transparency i n 28Si

+

28Si r e a c t i o n s a t 12.4 MeV/u

(5)

( r e f . [20]). The c a l c u l a t e d time e v o l u t i o n o f t h e r e l a t i v e d i s t a n c e R 1 2 between t h e r e a c t i o n p a r t n e r s i n Vlasov dynamics i n d i c a t e s t h a t such transparency c o u l d be present i n absence o f r e s i d u a l i n t e r a c t i o n (Fig. 3). Nevertheless, t h e same c a l c u l a t i o n performed i n Landau-Vlasov dynamics shows t h a t t h i s e f f e c t i s j u s t an a r t e f a c t o f t h e TDHF approximation, as already mentionned by Tohyama e t a l . ( r e f . [21]) f o r t h e 160 t 160 system.

T I M E (frn/c)

-

m 20 U

z

3

m 15-

-

I n f a c t , t h e f u s i o n process i s very l i k e l y even a t h i g h bombarding energies (see t h e c o n t r i b u t i o n of M. P i i n t h i s conference), a t l e a s t f o r medium and heavy systems. For very l i g h t systems l i k e 40Ar t 27Al a transparency i s found again above 30 MeV/u as discussed i n t h e r e f . [ 4 ] and [12]. For t h e 40Ar (27 HkV/u)

+

23% r e a c t i o n , f o r instance, i t i s found t h a t l a r g e deformations o f t h e composite system (incomplete compound systern) are induced f o r a l o n g tirne l a g . This f e a t u r e (Fig. 4 ) combined w i t h a reasonable e s t i m a t i o n o f t h e l i n e a r and o r b i t a l momentum t r a n s f e r s ( r e f . [22]) provides us some confidence i n our microscopic d e s c r i p t i o n o f f u s i o n i n t h i s energy domain.

I c u l a t i o n s f o r t h e t i m e depen-

dence o f the r e 1 a t i v e distance between i n t e r a c t i n g n u c l e i shows t h a t the transparency i n 28Si (12 MeV/u) + 28Si w i t h a c e n t r a l impact parameter b = 1 Fm i s destroyed by t h e r e s i d u a l i n t e r a c t i o n . 0 1CC 200 300 400 500 600

-

2 8 ~ i (12 M~V/U) + 2 8 ~ i ,#(LASOV

-

b - l f m ,c' , / , / 3

-

P a r t i c l e emission i n t o t h e continuum F i g u r e 3 : A comparison between V l i d a s h e d l i n e ) and Landau-V1 asov ( f u l l l i n e ) c a l - Q

V1 asov and Landau-Vlasov dynamics a1 low a d i r e c t coup1 i ng i n t o continuum states, as soon as l a r g e c o l l e c t i v e motions a r e involved. It can be seen by a determination o f t h e f l u x o f p a r t i c l e s (neutrons and protons) c r o s s i n g a sphe- r i c a l surface surrounding t h e nuclear system. For n u c l e a r r e a c t i o n s l i k e the 'OAr (27 MeV/u)

+

27Al f o r example, the f l u x e x h i b i t s two components when t i m e increases :

F i g u r e 4 : Time dependence o f t h e r a t i o between major a x i s f o r t h e composite sys- tem formed i n t h e '+OAr (27 MeV/u)

+

238U

head-on c o l l i sion. Landau-V1 asov c a l c u l a t i o n s ( f u l l l i n e ) are compared w i t h data o f

l t o l ~ ~ ~ r e f . [22] dashed l i n e . ~ t ~ ~ ~ ~ l ~

(r 100 20 0 300 I f m / c j TIME

(6)

a p r e e q u i l i brium component ( l a r g e ani sotropy and k i n e t i c energy o f the e m i t t e d p a r t i c l e s ) d u r i n g t h e f i r s t stages o f t h e c o l l i s i o n and an evaporation component ( i s o t r o p i c and thermal k i n e t i c energy o f t h e p a r t i c l e s ) . For t h e decay o f a h o t nucleus ( r e f .

[23]),

a b u r s t o f e m i t t e d p a r t i c l e s i s obtained d u r i n g the f i r s t

4 x 10-22s ( f o r t h e 4oCa nucleus a t 15 MeV temperature i n the case o f the f i g . 6 ) .

0 30 60 W 120 150 WO 210 NO

TIME I f m / c )

F i g u r e 5 : ( a ) For a c e n t r a l c o l l i s i o n , time e v o l u t i o n f o r t h e nucleon emission f l u x ( r i g h t scale) and o f the t o t a l number o f e m i t t e d p a r t i c l e s ( l e f t scale), r e s p e c t i v e l y protons, neutrons and both.

$

'\

G I !\-a I l I l

1 8

d

60 90 120 150 183 210 2LO 270 300

TIME f m / c )

F i g u r e 5 : ( b ) For t h e same c o l l i - sion, time e v o l u t i o n o f the i n s t a n - taneous mean energy ( l e f t scale) and o f t h e a n i s o t r o p y f a c t o r ( r i g h t scale) o f t h e e m i t t e d ' nucleons.

5

-

I s o s p i n t r a n s f e r

--.

F i g u r e 6 : Decrease o f t h e e x c i t a t i o n

S

energy per nucleon (upper p a r t ) and o f

,,,

The r o l e o f t h e i s o v e c t o r g i a n t resonance o f t h e composite system f o r t h e char- ge e q u i l i b r a t i o n d u r i n g heavy i o n c o l l i s i o n s was p o i n t e d o u t by t h e observation of t h e i s o b a r i c d i s t r i b u t i o n s i n deep i n e l a s t i c r e a c t i o n s ( r e f . [251 )

.

I t s e x c i t a t i o n i s revealed by TDHF c a l c u l a t i o n s ([26,271 ) . I n f i g u r e 7, the time e v o l u t i o n o f the s c a l a r p r o d u c t between t h e v e c t o r j o i n i n g t h e neutron and p r o t o n c e n t e r o f mass r e s p e c t i v e l y and an u n i t a r y v e c t o r along t h e l i n e j o i n i n g the c e n t e r o f mass of the t h e r e s i d u a l mass ( l o w e r p a r t ) o f a

S

h°Ca nucleus i n i t i a l l y heated up t o a

temperature o f 15 MeV ( f u l l l i n e s ) and

'$

6.

' I " ' I ' I ' L

:',

40

-",

Ca

-

simultaneously compressed (dashed l i n e s ) . -

C 41-2. ,

-.

-

-

-

, 3 ~ ' l ' l s ~ s

-

The mass o f t h e r e s i d u a l nucleus - decreases smoothly a f terwords

,

as

obtained r e c e n t l y i n s p h e r i c a l TDHF

-

c a l c u l a t i o n s ( r e f . [24

1.

The two

1

previous s i t u a t i o n s il u s t r a t e t h a t LU 20.

-

'\

- c o u p l i n g i n t o t h e continuum i s v, W n a t u r a l l y contained i n o u r d e s c r i p t i o n , a l l o w i n g p r e d i c t i o n s

3

'"

-

\.

----_

---

---

_-_--_-_

__. -

:

concerning l i g h t p a r t i c l e emissions I , I I , ! ,

(7)

r e a c t i o n p a r t n e r s i s drawn f o r t h e 160 (5.5 MeV/u)

+

4 0 ~ a r e a c t i o n where t h e impact parameter b i s equal t o 6 Fm. The l o n g i t u d i n a l i s o v e c t o r d i p o l e mode i s e x c i t e d i n Landau-Vlasov as w e l l as i n Vlasov dynamics. A time s h i f t between t h e two c a l c u l a - t i o n s i s due t o t h e surface c o l l i s i o n s which favour t h e e x c i t a t i o n f o r a smaller o v e r l a p o f t h e n u c l e a r d e n s i t i e s i n the Landau-Vlasov c a l c u l a t i o n than i n t h e Vlasov case. These c a l c u l a t i o n s , p o s s i b l e o n l y because our d e s c r i p t i o n accounts f o r t h e Coulomb i n t e r a c t i o n , c o n f i r m t h a t a c o l l e c t i v e mode whose c h a r a c t e r i s t i c s have been c a l c u l a t e d i n r e f . [ 2 8 1 i s very l i k e l y responsible f o r t h e charge e q u i l i b r a t i o n , a t l e a s t d u r i n g t h e f i r s t 5.10-22s ( i . e . 150 Fm/c). - . 7 L d 100 ZOO 300

TiME

Ifm/c) .9 - 8 .7 Conclusion I . - . ' r ' - ' . I a ' ' . a ' * ' 8 -- .. .. 160

(5.5

M ~ V / U ) +"CO

We have shown, w i t h t h e h e l p o f a few examples, t h e richness o f the

semi-classical microscopic d e s c r i p t i o n f o r many physical s i t u a t i o n s occuring i n low and i n t e r m e d i a t e heavy i o n c o l l i s i o n s . F u r t h e r s t u d i e s are i n progress ; they concern g i a n t resonances a t zero and f i n i t e temperature, t h e implementation o f t i e momentum dependent Gogny e f f e c t i v e i n t e r a c t i o n , the f i s s i o n process a t f i n i t e temperature, t h e gamma and p i o n production, t h e f l u c t u a t i o n s around mean val;es o f observables. This general p r o j e c t i s i n s p i r e d by an u t t e r a n c e from Gandhi : My quest f o r t r u t h t a u g h t me t h e beauty o f compromise".

Acknowledgments

F i g u r e 7 : E x c i t a t i o n o f t h e l o n g i t u d i n a l i s o v e c t o r d i p o l e mode i n 160

+

40Ca

-

.3 .. r e a c t i o n s near t h e Coulomb b a r r i e r . The

-.

4 - o s c i l l a t i o n s are obtained as w e l l i n

The authors a r e very g r a t e f u l t o t h e i r colleagues f o r t h e i r encouragements and f o r very f r u i t f u l discussions. We thank e s p e c i a l l y P. Schuck, M. Di Toro, J. De, J. Galin, E. Suraud and M. Pi. S. Geswend i s acknowledged f o r having made q u i c k l y t h i s manuscript i s proper shape.

-.S.

.

.6..

W. Botermans, R. M a l f l i e t , Phys. L e t t . 171B (1986) 22.

1

B. Remaud, C. GrGgoire, F. SCbille, L. Vinet, Nucl. Phys. A447 (1985) 5 5 5 ~ .

[ 3 ] L. Yinet, F. S P b i l l e , C. GrPgoire, R. Remaud, P. Schuck, Phys. L e t t . 1728 (1986) 17.

[ 4 ] B. Remaud, C. Grggoire, F. S g b i l l e , L. Vinet, Phys. L e t t . 1808 (1986) 198.

[ 5 ] C. Gt-Ggoire, B. Remaud, F. S g b i l l e , L. Vinet, Y. Raffray, N l ~ c l . Phys. A465 (1987) 317.

[ 6 ] L. Vinet, C. Grggoire, P. Schuck, B. Remaud, F. SGbille, p r e p r i n t GANIL 86-28, Nucl. Phys. A ( i n press).

I

' I

\ /

Vlasov (dashed l i n e ) as i n Landau-Vlasov dynamics.

(8)

B. Remaud e t a l . t h i s conference.

G.F. Bertsch, H. Kruse, D. Das Gupta, Phys. Rev.

C29 (1984) 673.

H.

Kruse, B.V. Jacak, H. Stocker, Phys. Rev. L e t t .

54 (1985) 289.

J . A i c h e l i n , G.F. Bertsch, Phys. Rev.

C31 (1985) 1730.

J.

A i c h e l i n ,

H.

Stocker, Phys. L e t t .

1636 (1985) 59.

J. A i c h e l i n , Phys. Rev.

C33 (1986) 537.

C. Gale, G.F. Bertsch, S. Das Gupta, p r e p r i n t Minessota

(1986)

WSI

86/57.

W.

Bauer, G.F. Bertsch, S. Das Gupta, p r e p r i n t MSUCL-582

(1986).

W.

Bauer, G.F. Bertsch, W. Cassing, U. Mosel, Phys. Rev.

C34 (1986)

91 97

L L L I .

[l61

R. Dayras e t al., Nucl. Phys.

A460 (1986) 299

and R. C o n i g l i o n e e t al., Nucl

.

Phys.

A447 (1986) 95c.

A.

Bonasera, M.

Di

Toro, C. GrCgoire, Nucl. Phys.

A465 (1987) 317.

[ ]

C. GrCgoire, B. Remaud, F. S e b i l l e , L. Vinet, Phys. L e t t .

1868 (1987)

14.

19

J.W. Negele, Rev. Mod. Phys.

54 (1982) 913.

[ZO]

P. Oecowski, E.A. Batkum, P. Box, K. G r i f f i o e n , R. Kamermanr, R.J. Mejer, Bormio

(1987)

and p r e p r i n t Utrecht, A p r i l

1987.

121-

22'

'23-

124-

25'

:26'

27'

-28-

M. Tohyama, Nucl. Phys.

A437 (1985) 443.

D. Jacquet, ThGse dlEtat, Orsay

(1987).

L. Vinet, ThSse d t U n i v e r s i t6, Orsay

(1986).

P. Chomaz, N. Van G i a i , S. S t r i n g a r i , p r e p r i n t IPNOITH-87-6.

For a review see H. Freiesleben, J.V. Kratz, Phys. Rep.

106 (1984) 1.

P. Bonche, C.

Ng8,

Phys. L e t t . 1056

(1981) 17.

M. P e t r o v i c i e t al., p r e p r i n t

GSI-87-01 (1987).

Figure

Table  I  -  Approaches  t o   the  nuclear  k i n e t i c   equation  :  approximate  s o l u t i o n s ,   i n g r e d i e n t s   and  a p p l i c a t i o n s

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to