• Aucun résultat trouvé

Power-to-gas process with high temperature electrolysis and CO2 methanation

N/A
N/A
Protected

Academic year: 2021

Partager "Power-to-gas process with high temperature electrolysis and CO2 methanation"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: cea-00958864

https://hal-cea.archives-ouvertes.fr/cea-00958864

Submitted on 13 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Power-to-gas process with high temperature electrolysis and CO2 methanation

Myriam de Saint Jean, Pierre Baurens, Chakib Bouallou

To cite this version:

Myriam de Saint Jean, Pierre Baurens, Chakib Bouallou. Power-to-gas process with high temperature electrolysis and CO2 methanation. IRES: International Renewable Energy Storage Conference and Exhibition, Nov 2013, Berlin, Germany. pp.Session E1. �cea-00958864�

(2)

P OWER - TO -G AS P ROCESS WITH

HIGH TEMPERATURE ELECTROLYSIS

AND CO 2 METHANATION

NOVEMBER 19th 2013

IRES 2013 – Session E1|

Myriam De Saint Jean 1,2 Pierre Baurens 1

Chakib Bouallou 2

1 LTH LITEN CEA & 2 MINES ParisTech

Contact : myriam.desaintjean@cea.fr

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and

methanation

| PAGE 1

(3)

CONTENTS

1. Energy background

2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis and CO2 methanation

1. Power-to-SNG : architecture studied 2. High temperature steam electrolysis

• Presentation

• Modelling 3. CO2 methanation

• Presentation

• Modelling

4. Full power-to-SNG process 3. Results and conclusion

1. Parametric study results 2. Conclusion

| 2 e

e

e

t

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation

(4)

ENERGY BACKGROUND

| PAGE 3

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and

methanation

(5)

POWER-TO-SNG : A SOLUTION FOR ELECTRICITY STORAGE

| 4 Cli ue su l’icône de la zone

• High consumption periods

• Excess electric production

• Transportation of energy from production areas to consumption areas

Substitute Natural Gas

(methane)

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation Energy background

Source : Spetch et al. 2011

(6)

A LINK BETWEEN TWO NETWORKS

| 5 Cli ue su l’icône de la zone

Avantages PtSNG and GtP

• Use of existing natural gas network

• Mid or long term storage

• Transportation

• Production of electricity

Connection of the 2 netwoks Electric ressource

• Unstorable

• Irregular production

• Network congestion

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation

Irregular production

Gas-to-heat

Gas-to-mobility

Gas-to-power Excess

Production = Consumption

Distribution and storing Natural gas network

Final user Electrical Network

Gas-to-chemistry

Energy background

(7)

POWER-TO-SNG PROCESS

WITH HIGH TEMPERATURE STEAM

ELECTROLYSIS AND CO

2

METHANATION

| PAGE 6

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and

methanation

(8)

STUDIED POWER-TO-SNG PROCESS ARCHITECTURE

| 7 Cli ue su l’icône de la zone

Recycling CO2, H2O and H2 Methanation

Thermal integration HTSE

NG type H NG type L HHV (kWh/Nm3) 10,7 – 12,8 9,5 – 10,5 W (kWh/Nm3) 13,4 – 15,7 11,8 – 13 Composition (%vol) CO < 2, CO2 < 3, H2 < 6

(mg/Nm3) H2O < 55 Steam reforming HT Fuel Cell

W obbe index

= HHV

W ρ

S

TORING

R

ECOVERY

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation

Thermal integration

Power-to-SNG : HSTE + CO2 methanation Architecture

(9)

HIGH TEMPERATURE STEAM ELECTROLYSIS

| 8

HTSE avantages

• High temperature : ∆H decrease

• Irreversibility decrease

• High efficiency

• Reversible (SOEC /SOFC techno)

• Thermal behaviours :

Exo, auto et endothermal

• Reactants : H2O and / or CO2 : co-electrolysis

Source : Graves et al. 2011

HTSE current limitations

• R&D

• Cost

• Long-term degradation of performances

Cathode

Solid Oxide Electrolyte Anode

H2O H2

O2 e-

e-

H2O + 2e- H2 + O2-

O2- 1/2 O2 + 2e- O2-

H

2

O

(g)

H

2

+ ½ O

2

T = 1073 K

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation

Power-to-SNG : HSTE + CO2 methanation HTSE Presentation

(10)

SIMULATION : HTSE MODELLING AND VALIDATION

| 9 Cli ue su l’icône de la zone

To determine Pelec and Ncell for a incoming flow

• SOEC technology

• Uop = Utn and SC : fixed values

• Molar and energy balances : Pelec

• Electrochemical modelling : exp. law

• Determination of Ncell (and j)

• Correction with pressure and stack effects

Experimental and phenomenological laws

ncath, cell = -0,829 SC + 83,2 with air sweep ncath, cell = -0,727 SC + 81,8 with O2 sweep

Req = (Uop– UNernst)/j Ω.cm² Pressure effect and stack effect

Req = Req, P°P-0,09 for P [1;10 bar]

Req, Stack = (Req ,cell + 0,034) Ncell .

.

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation

Modelling : Calculation of j and Ncell with errors up to 40% cell dispersion effect

Power-to-SNG : HSTE + CO2 methanation HTSE Modelling

cath,cell

n Experimental data and interpolated law linking

and SC for T = 1073 K, P = 1 bar, Uop = Utn, H2 / H2O = 10 / 90, on cells referenced C 941, C 944, D 261, E 15 et E 16.

.

(11)

CO

2

METHANATION

| 10

Equilibrum at P = 15 bar for H2/CO2 = 4

Avantages of CO2 methanation

• No CO at moderate T

• High CH4 selectivity

• Exothermal reaction

• High conversion yield

• Existing catalysts

Current limitations of CO2 methanation

• Poor literature on kinetic laws

• Not a lot of experiemental data

published, preference given to syngas (CO + H2) methanation

Sabatier reaction CO2 + 4 H2 CH4 + 2 H2O RWGS reaction CO2 + H2 H2O + CO CO methanation CO + 3 H2 CH4 + H2O Carbon craking CO2 + 2 H2 C(s) + 2 H2O

• Catalysed reaction

• Favorable operating conditions for CH4 production : P et T

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation Power-to-SNG : HSTE + CO2 methanation CO2 methanation Presentation

(12)

SIMULATION : METHANATION MODELLING

| 11 Cli ue su l’icône de la zone

.

2 4

2 2

2n n H O CH

-1 -3 3 -64121/RT n 4n

CO H n

éq

r mol.s m = 2691.7.10 e P P - P P

K (T)

 

   

     

-3 eq

28183 17430

K (T) = exp + - 8.254 lnT + 2.87.10 T + 33.17

T² T

 

 

 

Plug-flow reactor with fixed-bed catalyst and boundary conditions

• 1D plug-flow reactor modelling

• Kinetic law (cat Ru)

• Pressure ≈ 16 bar

• Adiabatic behaviour

• Inlet temperature = 573 K

• Outlet temperature < 973 K

Kinetic law from literature (Cat Ru) [Lunde 1974, Ohya 1997]

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation Power-to-SNG : HSTE + CO2 methanation CO2 methanation Modelling

Simulation and experimentation agreement for n = 0.5 (P = 2 bar ) for P

exp

[3.4 ; 7]

Higher P, lower gap between simulation and experimentation, n used

Pressure (bar) 1 2 30

n 0.225 0.5 1

(13)

SIMULATION : PERIMETER AND HYPOTHESES

| 12 Cli ue su l’icône de la zone

Electric heaters η = 0.90 Cold unit (273 K)

EER

elec

= 1.73

ηAC / DC= 0.92 ΔPhexch = 0.2 bar ΔThexch = 100-150 K

H2/H2OHTSE = 1 / 9 H2/CO2 meth = 1 / 4

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation Power-to-SNG : HSTE + CO2 methanation Full process

(14)

| 13

SNG SNG

elec, HTSE elec, mech elec, hot elec, cold

n HHV

η = P + P + P + P

SNG SNG

elec, HTSE

n HHV

η = = 0.

P

H2O H2O

O2 O2

CO2

CO2 Absorber

H2O Absorber

Reactor R1

Reactor R2

Reactor R3 SOEC

1073 K 17,1 bar

314 K

573 K 16 bar

836 K 573 K

740 K 573 K

642 K 13,4 bar

293 K

345 K 12,8 bar

300 K 12,6 bar

SNG 293 K 4 bar

293 K 18 bar

293 K 1 bar

293 K 100 bar

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation Power-to-SNG : HSTE + CO2 methanation Full process

Electric heater

H

2

production

CH

4

production

Purification

H2O SNG H2 CO2 O2 CO / H2

TEG MEA

(15)

SIMULATION RESULTS & CONCLUSION

| PAGE 14

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and

methanation

(16)

SIMULATION : PARAMETRIC STUDY

| 15 Cli ue su l’icône de la zone

• Injection on H or L gas network : no influence on energy efficiency η

• Kind of network (transportation or distribution): high influence on η

• CO

2

origine (separation or storage) : high influence on η

• P

HTSE

: very high influence on η : loss of 7.4 pts (9.6%) regarding ref. case U

op

= U

tn

, SC = 75%, H

2

/CO

2

= 4 , P

meth

= 16 bar, T

HTSE

= 1073 K

Reference case : P

CO2

= 100 bar P

SNG

= 4 bar P

HTSE

= 17 bar H gas Sensitivity : P

CO2

= 5 bar P

SNG

= 16 and 80 bar P

HTSE

= 2.5 bar B gas

η

HP

77%

η

LP

70%

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation Results and conclusion Parametric study results

Ref PSNG = 16 PSNG = 80 PCO2 = 5 L gas PHTSE = 2.5 Ref P Ref PSNGSNG = 16 P = 16 PSNGSNG = 80 P = 80 PCO2CO2 = 5 gaz B P = 5 L gas PEVHTHTSE = 2,5 = 2.5

Pmech Phot Pcold PHTSE

Electricity consumption except HTSE

(17)

CONCLUSION

| 16 Cli ue su l’icône de la zone

Adequation between modelling results and experimental

data HTSE modelling

for sizing with experimental law

Kinetic law and modelling of methanation

Adequation between simulation results

and observed performances

Purification of produced SNG Scale-up of

methanation stage

Two gas qualities (H and L) are

achievable Production of

SNG matching with the specifications

Higher efficiency if

CO2 from industrial storage is

used The process

is operated at high pressure

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and methanation

Results and conclusion Conclusion

(18)

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Grenoble | 38054 GRENOBLE Cedex 09

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de la Recherche Technologique

Liten

| PAGE 17

P

OWER

-

TO

-G

AS

P

ROCESSWITH

HIGH

TEMPERATURE ELECTROLYSIS AND METHANATION

IRES 2013 | myriam.desaintjean@cea.fr

Myriam De Saint Jean IRES 2013 Power-to-SNG process with HTSE and

methanation

Références

Documents relatifs

This work addresses the integrated design of the High Temperature Steam Electrolysis (HTSE) and Biomass to Liquid (BtL) hybrid process.. The comprehensive gate-to-gate

Keywords Concept algebras · Negation · Weakly dicomplemented lattices · Representation problem · Boolean algebras · Field of sets · Formal concept analysis Mathematics

The reactor-exchanger design relies on an innovative arrangement of bayonet tubes that allows, at large scale, multiple heat exchanges between hot pressurized flue gas, natural gas

This paper evalu- ates power and performance of native and Java workloads across a selection of IA32 processors from five technology generations (130nm, 90nm, 65nm, 45nm, and 32nm).

8 ـ 1 :ةرسلأاو فنعلا ـ ـ 1 ـ 1 :اهتابجاوو اهقوقحو ةرسلأا موهفم ـ ربتعت هرودب مسقني عمتجملا يف ةميدقلا رهاوظلا نم يرسلأا فنعلا ةرهاظ يلإ ةأرملا دض

The most likely hypothesis explaining the ratio of 0.26 found for the Rhône River is the occurrence of badlands, also subjected to gullying, in its catchment and the fact that this

ters with measured 50% lower cut-o ff diameters of 5.4 and 9.6 nanometers, a SMPS (Scanning Mobility Particle Sizer) measuring particle size distribution between three.. O’Dowd et

indicates that the variability is controlled by the planetary wave activity up to 65 km, with typical periods ranging from 1 week to 1 month, and by the breaking of