• Aucun résultat trouvé

DIRECT EXCITATION OF HIGHER MULTIPOLE RESONANCES IN HEAVY NUCLEI

N/A
N/A
Protected

Academic year: 2021

Partager "DIRECT EXCITATION OF HIGHER MULTIPOLE RESONANCES IN HEAVY NUCLEI"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00224079

https://hal.archives-ouvertes.fr/jpa-00224079

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DIRECT EXCITATION OF HIGHER MULTIPOLE RESONANCES IN HEAVY NUCLEI

H.-P. Morsch

To cite this version:

H.-P. Morsch. DIRECT EXCITATION OF HIGHER MULTIPOLE RESONANCES IN HEAVY NU- CLEI. Journal de Physique Colloques, 1984, 45 (C4), pp.C4-185-C4-200. �10.1051/jphyscol:1984414�.

�jpa-00224079�

(2)

J O U R N A L DE PHYSIQUE

Colloque C4, supplCment au n03, Tome 45, mars 1984 page C4-185

DIRECT EXCITATION OF HIGHER MULTIPOLE RESONANCES I N HEAVY NUCLEI

H.-P. Morsch

I n s t i t u t fiir Kemphysik, Kernfo~schungsan Zage JuZich, 0-5170 JiiZich, F.R.G.

Resume - Nous revoyons l e s 6tudes rgcentes de rgsonances g6antes de haute m u l t i p o l a r i t 6 dans l e s noyaux lourds. Nous discutons l a rgsonance octupo- l a i r e g6ante S haute gnergie, puis l e s composantes de hautes m u l t i p o l a r i - t@s dans l a r6gion d ' e x c i t a t i o n de 2 % ~ . Enfin nous prPsentons l e s premiers r g s u l t a t s d ' exp6riences s u r l e fond continu dont on peut d6duire des ren- seignements s u r l e mecanisme d ' e x c i t a t i o n e t l a mu1 t i p o l a r i t 6 moyenne.

Abstract - A review i s given on recent g i a n t resonance s t u d i e s i n heavy nuclei i n v e s t i g a t i n g higher multipole e x c i t a t i o n s . Three t o p i c s a r e d i s - cussed: t h e high 1 ing g i a n t octupole resonance, higher mu1 t i p o l e components in t h e region of 2Kw e x c i t a t i o n s , and f i r s t i n v e s t i g a t i o n s of t h e continuum background which can y i e l d information about e x c i t a t i o n mechanism and average mu1 t i p o l a r i t y .

I - INTRODUCTION

During the l a s t decade a rapid development of t h e f i e l d of g i a n t resonances took place. Whereas i n the s e v e n t i e s mainly t h e i s o s c a l a r g i a n t quadrupole resonance(GQR) was s t u d i e d i n hadron s c a t t e r i n g experiments, a t present the main i n t e r e s t l i e s in two p o i n t s : f i r s t the study of compressional modes of e x c i t a t i o n with mu1 t i p o l a r i ty L=O and 1 ( t h i s i s discussed i n d e t a i l i n the t a l k by M . Buenerd), and second higher multipole e x c i t a t i o n s which a r e discussed i n t h i s t a l k . Nuclear shape o s z i l l a t i o n s of h i g h e r mu1 t i p o l a r i ty a r e expected t o be important a l s o i n heavy ion c o l l i s i o n s . Of s p e c i a l i n t e r e s t i s the damping mechanism of t h e s e s u r f a c e v i b r a t i o n s r e l a t e d t o the question whether i t i s due t o one-body o r two-body d i s s i p a t i o n .

To a l a r g e e x t e n t t h e r e c e n t progress i n s t u d i e s of g i a n t resonances was due t o l a r g e improvements of experimental techniques mainly through the p o s s i b i l i t y t o study i n e l a s t i c a l l y s c a t t e r e d p a r t i c l e s a t extremely small angles including OO. This i s f e a s i b l e only by extremely good beam qua1 i ty and magnetic spectrometer systems i n combination with r a t h e r s o p h i s t i c a t e d d e t e c t o r devices

.

Here t h e pioneering work of the Texas and Grenoble groups /1/ should be mentioned. The importance of small angle experiments is shown i n f i g . 1 which gives d i f f e r e n t i a l c r o s s s e c t i o n s f o r c o l l e c t i v e e x c i t a t i o n s of d i f f e r e n t mu1 t i p o l a r i t y c a l c u l a t e d f o r 172 MeV a s c a t t e r i n g from 208Pb. These cross s e c t i o n s a r e c a l c u l a t e d within a DWBA approach using f o l d i n g type form f a c t o r s ( s e e r e f . 2 ) . The advantage of using t h i s f o l d i n g method i s t h a t hadronic c r o s s s e c t i o n s a r e derived c o n s i s t e n t with electromagnetic p r o p e r t i e s . Fur- t h e r , an a b s o l u t e comparison can be made between r e s u l t s from d i f f e r e n t s c a t t e r i n g systems. A t extremely small angles B $ 3O only low multipole e x c i t a t i o n s a r e impor- t a n t whereas a t somewhat l a r g e r angles a l s o higher L e x c i t a t i o n s c o n t r i b u t e . In the angular region B < 8' a l l m u l t i p o l a r i t i e s can be d i s t i n g u i s h e d unambiguously. This i s not t h e case a t l a r g e r angles.

In t h i s t a l k I want t o discuss mainly multipole e x c i t a t i o n s with L ? 3 although in t h e case of Pb (where some confusion has e x i s t e d ) a l s o the L=2 s t r e n g t h i s b r i e f l y discussed. (Ex a 30 A d ] 3MeV) has been i n v e s t i g a t e d / 3 / . Recently, by improved energy r e s o l u t i o n A ready f o r a number of y e a r s the low lying

I

l h w octupole e x c i t a t i o n and decay experiments t h i s i n t e r e s t i n g e x c i t a t i o n has been s t u d i e d q u i t e e x t e n s i v e l y

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984414

(3)

C4-186 J O U R N A L D E PHYSIQUE

a + 208pb Ea=172 MeV

(see c o n t r i b u t i o n s t o t h i s conference) T h i s s h o u l d n o t be d i s c u s s e d here.

I w i l l c o n c e n t r a t e on t h r e e p o i n t s : - E x c i t a t i o n o f t h e g i a n t o c t u p o l e r e -

sonance (3kw e x c i t a t i o n )

- H i g h e r m u l t i p o l a r i t y e x c i t a t i o n i n t h e 2hw resonance r e g i o n

- S t u d i e s o f t h e i n e l a s t i c continuum background u n d e r l y i n g the g i a n t r e - sonances. Here experiments a r e d i s - cussed w h i c h can g i v e i n f o r m a t i o n on t h e r e a c t i o n mechanism and t h e mul- t i p o l a r i ty d i s t r i b u t i o n o f t h e con- tinuum.

F i g u r e 1 : A n g u l a r d i s t r i b u t i o n s f o r g i a n t resonance e x c i t a t i o n s o f d i f f e r e n t m u l t i p o l a r i t i e s c a l c u l a t e d w i t h i n a m i c r o s c o p i c DWBA approach u s i n g f o l d i n g t y p e f o r m f a c t o r s .

I1 - EXCITATION OF THE GIANT OCTUPOLE RESONANCE fGOR)

P.round 1980 from r a t h e r d i f f e r e n t s c a t t e r i n g experiments, 130 MeV 3 ~ e s c a t t e - r i n g /4/ 172 MeV a s c a t t e r i n g /5/ and 800 MeV p s c a t t e r i n g / 6 / evidence has been p r e - sented f o r t h e GOR. S p e c t r a f r o m these experiments f o r t h e case o f 20*Pb a r e shown i n f i g . 2. A r a t h e r b r o a d s t r u c t u r e i s observed a t a h i g h e x c i t a t i o n energy o f about 20 MeV w e l l above t h e g i a n t quadrupole and monopole resonances. A summary of d i f f e r e n t experiments i s g i v e n i n t a b l e 1. I n a l l these experiments /4-10/ t h e GOR i s c l e a r l y observed. Whereas m o s t l y one resonance i s observed o u r J u l i c h r e s u l t s i n d i - c a t e a t l e a s t two resonances, t h e GOR and t h e i s o s c a l a r d i p o l e resonance / 5 / , a compressional mode o f e x c i t a t i o n .

I n t h e a n a l y s i s o f t h e d i f f e r e n t d a t a ( f i g . 2) r a t h e r d i f f e r e n t background shapes have been s u b t r a c t e d . I n t h e 3He and a work a t t e m p t s were made t o e s t i m a t e t h e continuous background below t h e g i a n t resonance whereas i n t h e a n a l y s i s o f t h e (p,pl) s p e c t r a o n l y a f l a t t a i l from t h e quadrupole and monopole resonances was s u b t r a c -

(4)

"t- h !\

urnn 'Oapb

1

800 MeV (P,P') Los Alamos. May 1980 Phys.Rev.Lett. 45. 239 (1980)

140 MeV ( 3 ~ e , 3 ~ e 1 ) Osaka, October 1980 Phys.Rev. C23, 937 (

172 MeV ( a . a l ) dUlich, A p r i l 1980

Phys.Rev.Lett. 45, 337 (1980)

Figure 2 : Comparison of spectra from the s c a t t e r i n g of d i f f e r e n t p r o j e c t i l e s .

(5)

C4-188 JOURNAL DE PHYSIQUE

Pro-

j e c - Einc Exp. Mu1 ti -

t i l e p o l a r i t y T a r g e t s Refs.

3 ~ e 130 Osaka 1979,80 L=3 90zr,116,118,120Sn,144Sm,208pb

172 J u l i c h 1980 L=3,1 208pb ,23ZTh ,238" 5

p 800 LAMPF 1980 L=3 4 0 ~ a ,'16sn , 2 0 8 ~ b 6

p 200 TRIUMF 1981 L=3 9 0 ~ r , 1 2 0 ~ n , 2 0 8 ~ b 7

p 200 Orsay 1 9 8 1 L=1(3) '08pb 8

a 340,480 S a c l a y 1981,82 L=3 '16sn, '08pb 9

a 172 J u l i c h 1982 L=3 12OSn-238" 10

T a b l e 1: Evidence f o r new i s o s c a l a r g i a n t resonances a t h i g h e r Ex i n hadron s c a t t e r i n g .

t e d g i v i n g r i s e t o r e l a t i v e l y s m a l l e r c r o s s s e c t i o n s . A t t h i s p o i n t a few comments on' t h e background problem i n h i g h e r energy hadron s c a t t e r i n g s h o u l d be made. D i f f e r e n t f r o m l o w e r i n c i d e n t e n e r g i e s where more c o m p l i c a t e d processes c o n t r i b u t e t o t h e background, i n i n e l a s t i c s c a t t e r i n g a t h i g h e r e n e r g i e s t h e i n e l a s t i c continuum i s expected t o be dominated by d i r e c t e x c i t a t i o n /11/ which may be i n t e r p r e t e d by b r o a d o v e r l a p p i n g d i s t r i b u t i o n s o f many d i f f e r e n t ( m o s t l y h i g h e r ) m u l t i p o l a r i t i e s / 1 2 / . So, we have a s i t u a t i o n i n which b o t h resonance e x c i t a t i o n and p a r t o f t h e continuum a r e o f s i m i l a r d i r e c t c h a r a c t e r . I n t h i s case, r a t h e r t h a n t o e x t r a c t c r o s s s e c t i o n s o f resonances i n an a b s o l u t e manner i n which t h e f u l l u n c e r t a i n t i e s o f t h e back- ground e n t e r , one can determine resonance y i e l d s f o r g i v e n background shapes. Such cross s e c t i o n s depend, o f course, on t h e background h e i g h t . N e v e r t h e l e s s , i f t h e background l i n e i s drawn s u f f i c i e n t l y low, t h a n f o r d i f f e r e n t background choices a m u l t i p o l e decomposition s h o u l d y i e l d t h e same amount o f l o w e r mu1 t i p o l a r i t y r e - sonant s t r e n g t h . An example i s g i v e n i n r e f . 5 where t h e d i f f e r e n t i a l c r o s s sec- t i o n of t h e 13.8 MeV resonance i s e x t r a c t e d f o r two r a t h e r d i f f e r e n t background shapes. B o t h s e t s o f d a t a /2,5/ w i t h d i f f e r e n t a b s o l u t e c r o s s s e c t i o n y i e l d t h e same amount o f L=O ( a n d I ) s t r e n g t h , t h e data s e t d e r i v e d f r o m t h e l o w e r back- ground y i e l d s a d d i t i o n a l c o n t r i b u t i o n s o f h i g h e r mu1 t i p o l a r i ty ( d e s c r i b e d b y L=4 and 6). T h e r e f o r e i n t h i s approach i t i s o n l y i m p o r t a n t t o s u b t r a c t t h e continuum i n a c o n s i s t e n t way f o r a l l angles and energies. I n o u r g i a n t resonance analyses we used always t h e f o l l o w i n g procedure: The background i s f i t t e d above t h e r e s o - nances t o t h e h i g h e r energy continuum. T h i s i s connected t o t h e low energy d i s - c r e t e spectrum by a p o l y n o m i a l f i t o f l e a s t c u r v a t u r e .

I n t h e f o l l o w i n g t h e mass s y s t e m a t i c s o f t h e GOR / l o / i s discussed, p a r t i c u l a r l y i n view o f d e f o r m a t i o n e f f e c t s . J t i s w e l l known t h a t t h e g i a n t d i p o l e resonance i n deformed n u c l e i s p l i t s i n t o t h e K=O- and 1- components. F o r resonances o f h i g h e r m u l t i p o l a r i t y one e x p e c t s a b r o a d e n i n g o f t h e resonance r a t h e r t h a n a s p l i t t i n g be-

cause o f a l a r g e r number o f K components, t h e energy o f which a r e more c l o s e l y spaced. F o r t h e GQR i n deformed n u c l e i o n l y a r a t h e r s m a l l b r o a d e n i n g o f t h e o r d e r o f 0 . 4 - 1 MeV has been observed. T h i s q u a n t i t y has l a r g e u n c e r t a i n t i e s aue t o s e p a r a t i o n of t h e n e i g h b o u r i n g g i a n t monopole resonance (GMR) which a l s o shows d e f o r m a t i o n e f f e c t s .

The GOR can be s t u d i e d v e r y n i c e l y i n 172 MeV a s c a t t e r i n g i n t h e a n g u l a r range 3-5'. A t these angles t h e GOR i s t h e o n l y s t r o n g e x c i t a t i o n i n t h e 3 % ~ e x c i t a t i o n r e g i o n ( f i g . 3). S p e c t r a taken a t 4' f r o m o u r J u l i c h work a r e g i v e n i n f i g . 4 f o r d i f f e r e n t t a r g e t n u c l e i between 120Sn and 238U. They show r a t h e r c l e a r l y t h e GOR peak i n a d d i t i o n t o t h e GQR and GMR resonances. E x t r a c t e d resonance parame- t e r s and sum r u l e s t r e n g t h s a r e summarized i n f i g . 5 and compared w i t h o t h e r i n - v e s t i g a t i o n s /4,6,7/. A c l e a r d e v i a t i o n i n w i d t h and e x c i t a t i o n energy f r o m a smooth A dependence i s o b t a i n e d f o r deformed n u c l e i . We observe an i n c r e a s e i n

(6)

F i g u r e 3: D i f f e r e n t i a l cross sections f o r the GOR e x c i t a t i o n i n 208Pb i n comparison w i t h DWBA c a l c u l a t i o n s f o r d i f f e r e n t mul- t i p o l a r i t i e s i n t h e 3 % ~ e x c i t a t i o n region.

w i d t h up t o about 2 MeV. Somewhat s u r p r i - sing, a l s o the e x c i t a t i o n energy shows de- formation e f f e c t s which are opposite i n r a r e e a r t h and a c t i n i d e n u c l e i . I n general a good agreement o f o u r r e s u l t s w i t h o t h e r data i s obtained. A s t r e n g t h i n t h e o r d e r o f 40-70 % o f the EWSR s t r e n g t h has been e x t r a c t e d . Adding the lhw octupole e x c i t a - t i o n s /3/ p r a c t i c a l l y the whole i s o s c a l a r L=3 s t r e n g t h i s observed. From 800 MeV (p,pl) a much smaller sum r u l e s t r e n g t h has been r e p o r t e d /6/. This i s due t o a too h i g h background s u b t r a c t i o n , f u r t h e r an i n - e l a s t i c form f a c t o r was used which does n o t g i v e r e l i a b l e sum r u l e strengths.

F i g u r e 4: Small angle s p e c t r a a t 4' o f 172 MeV u s c a t t e r i n q from d i f f e - r e n t n u c l e i .

From the q u i t e l a r g e increase i n resonance w i d t h from L=2 t o L=3 g i a n t resonances ( f o r 208Pb from 2.6t0.2 MeV t o 5 . 0 i - 0 . 9 MeV) i t i s obvious t h a t h i g h e r L resonances a t h i g h e x c i t a t i o n s have q u i t e l a r g e widths and are t h e r e f o r e extremely d i f f i c u l t t o d e t e c t experimentally. Using a macroscopic damping model /13/ t h e w i d t h o f t h e g i a n t hexadecapole resonance i s estimated t o be a t l e a s t 9-10 PeV. Experimental attempts t o f i n d h i g h e r n u l t i p o l e resonancesat l a r g e e x c i t a t i o n energies have been made so f a r o n l y by t h e Saclay group using h i g h e r energy p a r t i c l e s 191.

(7)

JOURNAL DE PHYSIQUE

F i g u r e 5: Mass dependence o f e x c i t a t i o n energy, w i d t h and energy weighted sum r u l e s t r e n g t h of the GOR e x c i t a t i o n . The s o l i d li es i n d i c a t e

EX = 112 A-l73 MeV and r = 73 A - l / 2 MeV.

The s o l i d p o i n t s are from r e f . 10, the open p o i n t s are from r e f s . 4 , 6 , 7 .

W i t h i n a s h e l l model p i c t u r e h i g h e r m u l t i p o l e e x c i t a t i o n s are n o t expected o n l y a t h i g h energies b u t a l s o a t lower e x c i t a t i o n . For a closed s h e l l nucleus l i k e 208Pb c o l l e c t i v e L=4 e x c i t a t i o n s are ex e c t e d i n t h e r e g i o n of 2hw energies and a t 4hw, L=6 e x c i t a t i o n s a t 2kw,L4hw and 6#w. S i m i l a r l y , the odd p a r i t y L=3 e x c i t a t i o n has con- t r i b u t i o n s a t 160~ and 3hw (discussed i n t h e l a s t s e c t i o n ) . O f l a r g e i n t e r e s t i n the moment i s t h e question whether h i g h e r m u l t i p o l e com onents c o n t r i b u t e t o t h e cross s e c t i o n i n t h e & w r e g i o n (GQR and GMR). As i n the 2

!

w r e g i o n s t r u c t u r e s are n o t ex- petted t o be as broad as a t h i g h e x c i t a t i o n s i t may be advantageous t o study these e f f e c t s . This question i s r e l a t e d t o t h e problem of the L=2 i s o s c a l a r sum r u l e s t r e n g t h i n t h e GQR o f 208Pb which was found t o be very small i n low energy e l e c t r o n s c a t t e r i n g /14/ i n disagreement w i t h hadron s c a t t e r i n g data (see e.g. r e f . 2) and al;

so h i g h e r energy (e,e1) /15/. Therefore I w i l l mainly concentrate on t h e case o f 2Q8Pb.

I n d i c a t i o n s f o r L c o n t r i b u t i o n s d i f f e r e n t from L=2 i n the GQR r e g i o n were f i r s t ob- t a i n e d from angular d i s t r i b u t i o n s . I n several d i f f e r e n t s c a t t e r i n g systems d i f f e r e n - t i a l cross s e c t i o n s f o r t h e GQR were measured which d i d n o t show a pronounced d i f f r a c - t i o n p a t t e r n c h a r a c t e r i s t i c f o r pure m u l t i p o l a r i t y . P a r t i c u l a r l y , i n a and d s c a t t e - r i n g /2/ r a t h e r f l a t angular d i s t r i b u t i o n s were observed which i n d i c a t e c l e a r l y a m i x t u r e o f d i f f e r e n t L values ( f i g . 6 ) . Attempts t o f i t t h e data w i t h an a d d i t i o n a l L=4 component o n l y were n o t s a t i s f a c t o r y . For d s c a t t e r i n g L=4 c o n t r i b u t i o n s g i v e r i s e t o a s i g n i f i c a n t smearing o u t o f t h e d i f f r a c t i o n p a t t e r n as observed experimen- t a l l y /2/ whereas i n 172 MeV a s c a t t e r i n g L=4 angular d i s t r i b u t i o n s a r e n o t much o u t o f phase w i t h t h a t o f L=2 and thus c r e a t e t o o much s t r u c t u r e . Therefore, a c o n s i s t e n t d e s c r i p t i o n o f the data i n f i g . 6 a r e obtained o n l y by assuming L=2, 4 and 6 e x c i t a - t i o n /2/. A l t e r n a t i v e l y , t h e data c o u l d be described a l s o by a L=2, 4 a x a s t r o n g

(8)

F i g u r e 6: D i f f e r e n t i a l cross s e c t i o n s f o r t h e e x c i t a t i o n o f t h e 10.9 MeV resonance i n a and d s c a t t e r i n g i n comparison w i t h m i - croscopic DWBA c a l c u l a t i o n s (see r e f . 2).

L=3 e x c i t a t i o n . However, t h i s i s n o t c o n s i s t e n t w i t h t h e r e s u l t o f a concentrated GOR a t h i g h e r e x c i t a t i o n (previous s e c t i o n ) . Our i n d i c a t i o n s . f o r a s t r o n g L=6 com- ponent i n t h e GQR r e g i o n are supported by r e s u l t s o f a 208Pb(a,a'n) c o r r e l a t i o n ex- periment /16/ i n which a s t r o n g decay i n t o t h e 13/2+ s t a t e o f 207Pb has been observed.

This decay can o n l y be favourably populated from a L=6 e x c i t a t i o n .

Now I w i l l discuss r e c e n t small angle 208Pb(a,a') experiments from J u l i c h which y i e l d more d e t a i l e d i n f o r m a t i o n . The angular r e g i o n s t u d i e d was 1.5 - 8O. I n f i g . 7 small angle spectra a r e given. The background s u b t r a c t i o n was done i n t h e f o l l o w i n g way: the shape was f i x e d a t 4' as discussed i n sect. 2. This background shape was used a l s o f o r t h e o t h e r s m a l l e r angle spectra. I n a d d i t i o n a h i g h energy background was assumed (dashed l i n e ) due t o t h e t a i l o f t h e e l a s t i c peak. This was adjusted t o t h e 2' spectrum and scaled f o r the o t h e r angles w i t h t h e e l a s t i c cross section. To- wards s m a l l e r angles a decrease o f t h e 10.9 MeV resonance (GQR) i s observed w i t h a cross s e c t i o n minimum o f about 70 mb/sr. As f o r these angles h i g h e r L components are small t h i s determines q u i t e we1 1 t h e L=2 s t r e n g t h . I t corresponds t o about 60 % o f the i s o s c a l a r EWSR c o n s i s t e n t w i t h o l d e r r e s u l t s /2/. This i s a f a c t o r o f two more than e x t r a c t e d from lower energy e l e c t r o n s c a t t e r i n g /14/.

As discussed i n f i g . 4 the spectra a t 3-4O are w e l l described by t h r e e Gaussian peaks which represent GQR, GMR and GOR. I n f i j . 8 a comparison i s made between 4O spectrum and those taken a t l a r g e r angles o f 6-8 . I n t h i s r e g i o n we expect l a r g e r c o n t r i b u - t i o n s of h i g h e r m u l t i p o l a r i t y ( f i g . 1 ) . Indeed, by comparing t h e 4O spectrum w i t h t h e

(9)

C4-192 JOURNAL DE PHYSIQUE

s p e c t r a a t 6 and 8' we observe s i g n i f i - c a n t d i f f e r e n c e s . T h i s i s seen on t h e l e f t s i d e o f f i g . 8 i n which t h e same Three-Gaussian f i t which d e s c r i b e s w e l l t h e 40 spectrum i s a p p l i e d t o t h e 6 and 80 s p e c t r a . D e f i c i e n c i e s o f t h e s e f i t s a r e observed a t t h r e e e x c i t a t i o n s i n d i c a t e d by t h e dashed arrows. A t t h e e x c i t a t i o n energy above t h e GOR t h e e x t r a y i e l d i s i n t e r p r e t e d t o be due t o t h e h i g h l y i n g

300 L = l e x c i t a t i o n /5/ which i s weakly e x c i -

t e d a t 4O. A t t h e o t h e r two p o s i t i o n s ,

200 a t Ex = 12.5 MeV and 16 MeV,new s t r u c -

100 t u r e s were i n t r o d u c e d i n o r d e r t o o b t a i n

a good f i t t o t h e s p e c t r a ( r i g h t s i d e ,

v, f i g . 8 ) . F o r l a r g e r angles t h e y i e l d s

I- show a decrease o f t h e 12.5 MeV

Z 300 s t r u c t u r e and a r i s e a t 16 MeV. The d i f -

=) 200 f e r e n t i a l c r o s s s e c t i o n s g i v e n i n f i g . 9

g 100 a r e d e s c r i b e d by L=4 (Ex = 12.5 MeV)

and L=6 ( E x = 16 MeV) w i t h EWSR s t r e n g t h o f 14 and 15 %, r e s p e c t i v e l y . The h i g h l y i n g s t r u c t u r e s a r e w e l l d e s c r i b e d by

400 L=3 and 1, r e s p e c t i v e l y . The 16 MeV

200 s t r u c t u r e , which has an a n g u l a r d i s t r i b u -

t i o n q u i t e s i m i l a r t o t h a t o f L=3 a t l a r g e r angles, i s r e s p o n s i b l e f o r t h e f a c t t h a t i n t h e e a r l i e r (a,al) s t u d y

600 ( r e f . 5 ) t h e GOR was e x t r a c t e d a t t o o

400 low an e x c i t a t i o n energy. The f a c t t h a t

200 i n t h e r e g i o n o v e r l a p p i n g w i t h t h e GMR

a r a t h e r s t r o n g L=4 c o n t r i b u t i o n was 30 20 10 found e x p l a i n s why i n a s c a t t e r i n g t o o

Ex(MeVl l a r g e monopole cross s e c t i o n s have been e x t r a c t e d /2/.

Summaring up t h e d i f f e r e n t L components

Figure 7: a spectra 2 0 8 p b . from peaks assumed a t 10.9, 12.5, 13.8

C o n s i s t e n t background f i t s a r e shown (see and 16 MeV we obtain the multipole

t e x t ) . s t r e n g t h d i s t r i b u t i o n s g i v e n i n f i g . 10.

These d i s t r i b u t i o n s a r e q u i t e d i f f e r e n t f r o m Gaussian o r L o r e n t z i a n shapes w i t h a r a t h e r narrow w i d t h f o r L=2 e x c i t a t i o n ( r 2.7 MeV), a l a r g e r w i d t h f o r L=4

( r

-

4.5 MeV) and a l a r g e w i d t h f o r L=6 ( r % 7.8 MeV). One s h o u l d n o t f o r g e t t o men- t i o n t h a t i n such a c o m p l i c a t e d a n a l y s i s i n v o l v i n g many d a t a t h e r e ace s i z a b l e un- c e r t a i n t i e s m a i n l y due t o t h e used resonance shapes, m u l t i p o l a r i t y a m b i g u i t i e s (main- l y f o r L=O and 2) and a l s o t h e used background shape. F o r L=O and 2 i s o s c a l a r sum r u l e s t r e n g t h s o f 90 t 20 % and 70 + 20 % have been d e r i v e d , r e s p e c t i v e l y . Those f o r L=4 and 6 were i n t h e o r d e r o f 30 %. These r e s u l t s a r e i n good q u a l i t a t i v e agreement w i t h RPA c a l c u l a t i o n s /12/. The L=2 and 4 s t r e n g t h d i s t r i b u t i o n s a r e i n good agree- ment w i t h t h e r e s u l t s f r o m h i g h e r energy a s c a t t e r i n g / 9 / .

There a r e v e r y r e c e n t l y p u b l i s h e d d a t a /17/ f o r GQR and GMR e x c i t a t i o n i n 3 ~ e s c a t t e - r i n g s t r e s s i n g t h e importance o f L=4 c o n t r i b u t i o n s . However, p o s s i b l e L=6 s t r e n g t h which was c r u c i a l t o d e s c r i b e a s c a t t e r i n g d a t a ( f i g . 6 ) was n o t mentioned a t a l l . Based on o u r a s c a t t e r i n g r e s u l t s d i s c u s s e d above we c a l c u l a t e d t h e c o r r e s p o n d i n g 3He s c a t t e r i n g c r o s s s e c t i o n s which a r e g i v e n t o g e t h e r w i t h t h e d a t a /17/ i n f i g . 11.

F o r a check we c a l c u l a t e d a l s o a b s o l u t e c r o s s s e c t i o n s f o r t h e low l y i n g 3- e x c i t a t i - on which a r e i n e x c e l l e n t agreement w i t h t h e d a t a i n f i g . 11. Using o u r m u l t i p o l e assignments we o b t a i n a p e r f e c t d e s c r i p t i o n f o r t h e GMR r e g i o n (13.7 MeV), f o r t h e GQR r e g i o n t h e e s t i m a t e d c r o s s s e c t i o n (dashed l i n e ) i s s l i g h t l y below t h e data. Using a d d i t i o n a l s t r e n g t h o f L-4 and 6 ( 6 % EWSR s t r e n g t h each) y i e l d s a l s o i n t h i s case a

(10)

F i g u r e 8: Comparison o f 4' spectrum w i t h t h e measured spectra a t l a r g e r angles 6-8'. L e f t hand side: t h r e e Gaussian f i t s t o t h e g i a n t resonances w i t h t h e energies i n d i c a t e d . E x c i t a t i o n regions w i t h l a r g e d e f i c i e n c i e s o f the f i t s a r e marked by dashed arrows.

R i g h t hand side: f i t s t o t h e resonances i n c l u d i n g a d d i t i o n a l s t r u c t u r e s a t 12.5, 16 and 21.3 MeV.

(11)

C4-194 JOURNAL DE PHYSIQUE

- a+za8Pb Ea=172 MeV

-

-

4 Ex 4 1 8 MeV

'1 *p

L = 6 Ex=16MeV

L ul

k E k\,L=4 &=12.5M.V

-

F i g u r e 9: D i f f e r e n t i a l cross sec- t i o n s f o r d i f f e r e n t resonances i n t h e angular r e g i o n 5-8O i n compa- r i s o n w i t h DWBA c a l c u l a t i o n s . The upper l i n e s a r e due t o e x c i t a t i o n o f t h e g i a n t monopole resonance w i t h some a d d i t i o n a l c o n t r i b u t i o n s o f h i g h e r mu1 t i p o l a r i t y .

600 m

I-

Z 3 0 0

LOO

200

F i g u r e 10: R e l a t i - ve m u l t i p o l e s t r e n g t h d i s t r i b u - t i o n s f o r even m u l t i p o l a r i t i e s obtained from t h e a n a l y s i s o f t h e resonances a t 10.9, 12.5, 13.8 and 16 MeV.

(12)

F i g u r e 11: D i f f e r e n t i a l cross sections f o r e x c i t a t i o n o f the low l y i n g 3- s t a t e and t h e g i a n t resonances a t 10.9 and 13.7 MeV i n 140 MeV 3He s c a t t e r i n g (data a r e from r e f . 17) i n comparison w i t h microscopic DWBA c a l c u l a- t i o n s w i t h m u l t i p o l e s t r e n g t h s c o n s i s t e n t w i t h a s c a t t e r i n g r e - s u l t s .

good account o f t h e data ( s o l i d l i n e ) . The f a c t t h a t somewhat s m a l l e r cross sections a r e p r e d i c t e d f o r t h e GQR from our a s c a t t e r i n g data i s presumably due t o a somewhat d i f f e r e n t background s u b t r a c t i o n i n the two experiments analysed completely indepen- dent. The f i t s t o t h e data i n f i g . 11 based on o u r a s c a t t e r i n g r e s u l t s a r e much b e t t e r than those given i n r e f . 17. D i f f e r e n t from t h e conclusions o f t h e authors they support our r e s u l t s o f a s t r o n g L=2 e x c i t a t i o n and the importance o f L=6 con- t r i b u t i o n s . There are a l s o new ( p , p S ) experiments which support o u r r e s u l t s o f con- c e n t r a t e d L=4 s t r e n g t h around 12 MeV /18/. As compared t o a s c a t t e r i n g ( f i g . 1) the s i t u a t i o n i n 200 MeV p r o t o n s c a t t e r f r r g i s somewhat d i f f e r e n t i n so f a r t h a t h i g h e r m u l t i p o l e e x c i t a t i o n s have l a r g e cross sections o n l y a t much l a r g e r s c a t t e r i n g angles a t which low mu1 t i p o l e e x c i t a t i o n s have a l r e a d y dropped o f f considerably

(see f i g . 12). Indeed, t h e l a r g e angle proton spectra i n f i g . 13 c o u l d be f i t t e d o n l y assuming a L=4 resonance peak a t 12 MeV.

A few attempts have been made a l s o t o study t h e d e t a i l s o f t h e 2kw e x c i t a t i o n s i n l i g h t e r n u c l e i . I n h i g h e r energy a s c a t t e r i n g / 9 / L=4 s t r e n g t h has been found i n t h e Sn r e g i o n q u i t e c o n s i s t e n t t o t h a t i n 2Q8Pb. I n c o n t r a s t , i n t h e same mass r e g i o n p r o t o n s c a t t e r i n g angular d i s t r i b u t i o n s /7/ gave i n d i c a t i o n f o r o n l y very small L=4 y i e l d .

(13)

C4-196 JOURNAL DE PHYSIQUE

4 4 0

6 8 10 12 14 16 18 2 0 2 2 2 4 EXCITATION ENERGY (MeV)

F i g u r e 12: Angular d i s t r i b u t i o n s f o r g i a n t F i g u r e 13: Spectra o f 200 MeV p s c a t t e - resonance e x c i t a t i o n s o f d i f f e r e n t m u l t i - r i n g form r e f . 18. The l a r g e r angle p o l a r i t i e s i n 200 MeV p r o t o n s c a t t e r i n g spectra (14 and 16O) c o u l d be f i t t e d

/18/. o n l y assuming a L=4 resonance a t 12 MeV.

I V - STUDY OF THE INELASTIC CONTINUUM UNDERLYING THE GIANT RESONANCES

I n t h e g i a n t resonance peaks discussed i n t h e previous sections l a r g e sum r u l e s t r e n g t h s a r e found o n l y f o r low m u l t i p o l a r i t i e s up t o L=3. This i s o n l y a small f r a c - t i o n o f t h e t o t a l i n e l a s t i c y i e l d which i n v o l v e s e x c i t a t i o n s up t o l a r g e m u l t i p o l a r i - t i e s . The l a r g e r p a r t o f the i n e l a s t i c s t r e n g t h i s found i n t h e continuous background below t h e sharp g i a n t resonances. To g e t i n f o r m a t i o n about t h e features o f h i g h mul- t i p o l e v i b r a t i o n s one has t o study t h e p r o p e r t i e s o f t h e background, t h i s i s a l s o o f general i n t e r e s t .

A t t h e beam energies used i n t h e experiments reviewed we expect t h a t t h e i n e l a s t i c continuum i s t o a l a r g e e x t e n t due t o d i r e c t e x c i t a t i o n . Under t h i s assumption we can c a l c u l a t e t h e background continuum using microscopic o r macroscopic models/12,13/.

Using t h e macroscopic model o f r e f . 13 a continuum i s obtained as shown by t h e dashed l i n e i n f i g . 14. I n t h i s c a l c u l a t i o n o n l y surface v i b r a t i o n s ( m u l t i p o l a r i t y L=2 - 10) were assumed. The c e n t r o i d energies increase w i t h i n c r e a s i n g mu1 t i p o . l a r i t y , a1 so t h e widths a r e s t r o n g l y L dependent. The resonance widths were c a l c u l a t e d u s i n g two-body d i s s i p a t i o n , t h i s gives a q u i t e remarkable agreement w i t h o u r experimental f i n d i n g s f o r t h e widths o f L=2 and 3 resonances. I n f i g . 12 these r e s u l t s (dashed l i n e ) a r e compared w i t h an a ' spectrum taken a t 15' which extends up t o h i g h e r e x c i t a t i o n ener- gies. Although t h e absolute magnitude i s o f f by a l a r g e amount a q u a l i t a t i v e agree- ment w i t h t h e experimental s p e c t r a l form i s obtained, i n p a r t i c u l a r i n t h e h i g h e r e x c i t a t i o n region. A t lower e x c i t a t i o n s the y i e l d i s r a t h e r s m a l l . This can be s i g - n i f i c a n t l y improved by adding t o t h e macroscopic model I 1 3 1 features o f t h e s h e l l mo- d e l as discussed i n s e c t i o n 111. These a r e L c o n t r i b u t i o n s a t lower energies, as e.g.

(14)

F i g u r e 14: Higher mu1 t i p o l e continuum f o r a s c a t t e r i n g

(lower dashed and s o l i d l i n e s ) c a l c u l a t e d by use o f macrosco- p i c models (see r e f . 13) i n comparison w i t h experimental data from r e f . 5.

L=4 s t r e n g t h a t 2 h ~ e x c i t a t i o n and n o t o n l y a t 4%~. The r e s u l t s o f such a schematic model c a l c u l a t i o n are shown by t h e lower s o l i d l i n e i n f i g . 12 which shows a s p e c t r a l form q u i t e s i m i l a r t o those used experimentally. The widths o f t h e h i g h l y i n g broad resonances were assumed t o be t h e same as i n t h e macroscopic model, those a t lower e x c i t a t i o n were taken from RPA c a l c u l a t i o n s /12/ o r d i r e c t l y from our experiment.

S t i l l the problem o f the absolute background h e i g h t i s n o t solved. I n t h e c a l c u l a - t i o n s presented o n l y e x c i t a t i o n s up t o L=10 were included, f u r t h e r compression modes were n o t assumed. Both e f f e c t s can g i v e r i s e t o a s i g n i f i c a n t increase o f t h e d i r e c t y i e l d .

A t t h e end I l i k e t o discuss two types o f experiments from which i n f o r m a t i o n on t h e n a t u r e o f t h e background can be obtained. The f i r s t i s r e l a t e d t o t h e question o f d i r e c t e x c i t a t i o n , t h e second type o f experiments probes the average m u l t i p o l a r i t y o f t h e continuum.

The f i r s t question may be answered i n c o r r e l a t i o n experiments. As an example I want t o discuss a f i s s i o n decay coincidence experiment s t u d i e d a t J u l i c h . We measured angu- l a r c o r r e l a t i o n s of f i s s i o n fragments i n t h e 23*~(a,a'flf2) r e a c t i o n . The idea o f t h i s experiment was t o measure t h e l i n e a r momentum t r a n s f e r r e d t o t h e nucleus, t h i s gives r i s e t o an angle between t h e f i s s i o n products o f l e s s than 180'. The f i s s i o n products were measured by two p o s i t i o n s e n s i t i v e p a r a l l e l p l a t e detectors c o i n c i d e n t w i t h i n - e l a s t i c a l l y s c a t t e r e d a p a r t i c l e s detected a t 11'. F i s s i o n angle spectra a r e shown i n f i g . 15. For d i f f e r e n t outgoing a ' energies they peak r a t h e r c l o s e t o 180'. This i s very d i f f e r e n t from t h e i n c l u s i v e 238U(a,flf2) r e a c t i o n . I n t h e lower p a r t t h e average f i s s i o n angle and t h e t r a n s f o r m a t i o n t o t h e momentum p a r a l l e l t o the beam d i r e c t i o n i s p l o t t e d versus t h e outgoing a ' energy. The p a r a l l e l momentum t r a n s f e r c a l c u l a t e d i n two-body kinematics i s shown by t h e upper l i n e . Deviations from t h i s l i n e are observed which are due t o f a s t nucleon emission d u r i n g t h e s c a t t e r i n g pro- cess. I n t h e data t h e r e i s l i t t l e d e v i a t i o n from t h e two-body kinematical l i n e up t o

(15)

C4-198 JOURNAL DE PHYSIQUE

Figure 15: Fission angle s p e c t r a from t h e r e a c t i o n 2 3 8 ~ ( a , n ' f l f 2 ) and momen- t u m t r a n s f e r p a r a l l e l t o t h e beam a x i s ( P I / ) and corresponding average f i s s i o n ang e a s a f u n c t i o n o f outgoing I X ' energy. Two-body and three-body kine- matical 1 in e s a r e i n d i c a t e d .

Figure 16: Spectral form and angular d i s t r i b u t i o n of t h e continuum c a l c u l a t e d i n a quasl'free s c a t t e r i n g model ( s o l i d l i n e s ) i n comparison with 800 MeV pro- ton s c a t t e r i n g /19/.

(16)

30-40 MeV o f e x c i t a t i o n , t h i s supports t h e p i c t u r e o f a l a r g e d i r e c t e x c i t a t i o n i n the background y i e l d i n the r e g i o n o f t h e observed g i a n t resonances. Other type o f c o r r e l a t i o n experiments d e t e c t i n g d i f f e r e n t secondary p a r t i c l e s may g i v e s i m i l a r o r complementary i n f o r m a t i o n .

A second type o f experiment i s t h e i n v e s t i g a t i o n of t h e background behaviour a t ex- treme small angles. A t l a r g e r angles t h e background behaviour shows an exponential slope /ill. This i s expected t o change a t small angles due t o t h e f a c t t h a t f o r the dominant l a r g e angular momenta small momentum t r a n s f e r i s s t r o n g l y reduced i n d i r e c t s c a t t e r i n g . A f i r s t experiment was performed a t Los Alamos u t i l i z i n g 800 MeV proton s c a t t e r i n g /19/ which i n d i c a t e s a r e d u c t i o n o f t h e background y i e l d a t small angles (see f i g . 16). Both, s p e c t r a l form o f t h e background and t h e angular d i s t r i b u t i o n ( f i g . 16) are w e l l described using a q u a s i f r e e s c a t t e r i n g model /11,19/. By these c a l c u l a t i o n s and those presented i n f i g . 14 t h e usual background shape s u b t r a c t e d (discussed i n sect. 11) appears t o be j u s t i f i e d a p o s t e r i o r i . P r e l i m i n a r y r e s u l t s o f g i a n t resonance s t u d i e s i n ( a y e ' ) and a l s o ( 3 ~ e , t ) a t J u l i c h show t h e same t r e n d b u t a r a t h e r f l a t small angle behaviour. From these angular d i s t r i b u t i o n s t h e average m u l t i p o l a r i t i e s i n the e x c i t a t i o n o f t h e background continuum can be deduced.

SUMMARY

Giant resonance e x c i t a t i o n s i n hadron s c a t t e r i n g experiments have been reviewed which g i v e i n f o r m a t i o n on h i g h e r m u l t i p o l e e x c i t a t i o n s . Apart from t h e g i a n t quadrupole r e - sonance s t u d i e d f o r almost a l l s t a b l e n u c l e i t h e g i a n t octupole resonance i s t h e o n l y r a t h e r concentrated resonance o f h i g h e r m u l t i p o l a r i t y f o r which a systematic study i s possible. Resonances w i t h L 2 4 a r e expected t o have widths o f t h e o r d e r o f 10 MeV o r more, which appear t o be extremely d i f f i c u l t t o d e t e c t experimentally. Such h i g h L e x c i t a t i o n s have components i n t h e lower e x c i t a t i o n region; these could be s t u d i e d i n t h e case o f 208Pb f o r L=4 and L=6 e x c i t a t i o n s . I t i s c e r t a i n l y o f l a r g e i n t e r e s t t o study these type o f e x c i t a t i o n s a l s o f o r o t h e r n u c l e i . To l e a r n more about e x c i - t a t i o n s o f h i g h m u l t i p o l e s t r u c t u r e s i t i s important t o study t h e i n e l a s t i c continuum be1 ow t h e narrow resonances. Two examples of such experiments were discussed, c o r r e - l a t i o n experiments and small angle s t u d i e s which can g i v e i n f o r m a t i o n on mechanism and average mu1 t i p o l a r i t y . The comparison o f experimental background shapes w i t h t h e o r e t i c a l estimates confirms t h e importance o f h i g h L c o n t r i b u t i o n s a t lower ex- c i t a t i o n energies. F u r t h e r i t may g i v e i n s i g h t i n t o t h e nuclear damping mechanism i n t h e regime o f h i g h mu1 t i p ~ l a r i t i e s .

I n t h i s t a l k experimental r e s u l t s o n l y from proton and l i g h t i o n s c a t t e r i n g were co- vered which g i v e very u s e f u l complementary r e s u l t s . S p e c i f i c aspects of heavy i o n s c a t t e r i n g were n o t discussed; t h i s i s the s u b j e c t of several c o n t r i b u t i o n s t o t h i s meeting.

1 thank my colleagues P. Decowski, M. Rogge, P. Turek, L. Zem40, C. Mayer-Boricke, S.A. Martin, G.P.A. Berg, J. MeiBburger and J.G.M. Romer w i t h whom I have worked on t h e d i f f e r e n t a s c a t t e r i n g experiments discussed. Further, a very f r u i t f u l c o l l a b o r a - t i o n i n t h e c o r r e l a t i o n experiments w i t h G. Gaul, R. Glasow, 6. Ludewigt, R. Santo and W. Schumcher from the I n s t i t u t Fur Kernphysik, U n i v e r s i t y o f M i n s t e r , i s acknow- 1 edged.

References:

1. D.H. Youngblood e t a l . , Phys. Rev. L e t t . 39 (1977) 1188;

M. Buenerd e t a l . , Phys. L e t t . 84B ( 1 9 7 9 ) 3 0 5 2. H.P. Morsch e t a l . , Phys. Rev. (1980) 489 3. J.M. Moss e t a l . , Phys. Rev. C l n 1 9 7 8 ) 741 4. T. Yamagata e t a1 . , Phys. R e v 3 2 3 (1981) 937 5. H.P. Morsch e t a l . , Phys. Rev. Lett. 45 (1980) 337

(17)

C4-200 JOURNAL DE PHYSIQUE

T.A. Carey e t a1 ., Phys. Rev. L e t t . 45 (1980) 239 F.E. B e r t r a n d e t a l . , Phys. L e t t . 1 0 x (1981) 326 C. O j a l a l i e t a l . , Nucl. Phys. A 3 8 m 9 8 2 ) 42

N. Alamanos e t a l . , proc. i n t e r = symposium on " n u c l e a r f i s s i o n and r e l a t e d c o l l e c t i v e phenomena and the p r o p e r t i e s o f heavy n u c l e i " , Bad Honnef, 1981, p. 287 and B. Bonin, t h e s i s , Saclay 1983

H.P. Morsch e t a l . , Phys. L e t t . 119B (1982) 311 H.C. Chiang and J . Hiifner, Nucl . - w s . A349 (1980) 466;

G.F. B e r t s c h and 0. Scholten, Phys. R e v 3 2 5 (1982) 804

R. de Haro, S. Krewald and J. Speth, N u c l 7 h y s . (1982) 265 and r e f s . t h e r e i n

3.R. N i x and A.J. S i e r k , Phys. Rev. C21 (1980) 396 G. K i h n e r e t a l . , Phys. L e t t . 104B ( m 1 ) 189 N. Sasao and Y. Torizuka, Phys.=v. C15 (1977) 217 H. Steuer e t a l . , Phys. Rev. L e t t . 4 7 7 9 8 1 ) 1702 T. Yamagata e t a l . , Phys. L e t t . 123E-(1983) 169

J.R. T i n s l e y e t a l . , p r e p r i n t 1 9 E n d F.E. B e r t r a n d , proc. o f t h e conference on " S t u d y i n g N u c l e i w i t h i n t e r m e d i a t e energy p r o t o n s " , Edmonton, 1983

J.M. Moss e t a1 . , Phys. Rev. L e t t . 48 (1982) 789

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to