• Aucun résultat trouvé

MAGNETO-OPTICS IN MODULATION-DOPED QUANTUM WELLS

N/A
N/A
Protected

Academic year: 2021

Partager "MAGNETO-OPTICS IN MODULATION-DOPED QUANTUM WELLS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00226787

https://hal.archives-ouvertes.fr/jpa-00226787

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MAGNETO-OPTICS IN MODULATION-DOPED QUANTUM WELLS

T. Rötger, J. Maan, P. Wyder, F. Meseguer, K. Ploog

To cite this version:

T. Rötger, J. Maan, P. Wyder, F. Meseguer, K. Ploog. MAGNETO-OPTICS IN MODULATION- DOPED QUANTUM WELLS. Journal de Physique Colloques, 1987, 48 (C5), pp.C5-389-C5-392.

�10.1051/jphyscol:1987583�. �jpa-00226787�

(2)

MAGNETO-OPTICS IN MODULATION-DOPED QUANTUM WELLS

T.

ROTGER, J. C. MAAN, P. WYDER, F. MESEGUER* and K. PLOOG' * M a x - P l a n c k - I n s t i t u t f u r F e s t k b r p e r f o r s c h u n g , H o c h f e l d -

flagnetlabor,

BP 166x, F - 3 8 0 4 2 G r e n o b l e C e d e x ,

France

I n s t i t u t o

de

~ i s i c a

de Materiales ( C S I C ) and D e p a r t a m e n t o de

~ i s i c a

A p l i c a d a C-4, U n i v e r s i d a d A u t d n o m a , E - 2 8 0 4 9 Madrid,

Spain

it * M a x - P l a n c k - I n s t i t u t fiir F e s t k d r p e r f o r s c h u n g , H e i s e n b e r g s t r a s s e 1, 0 - 7 0 0 0 S t u t t g a r t 8 0 , F.R.G.

Les s p e c t r e s de photoluminescence e t d ' e x c i t a t i o n de p u i t s quantiques

2

modula- t i o n d e dopage t y p e n dans d e s champs magn'etiques j u s q u t & 22 T montrent que l e s d i s t a n c e s inter-sous-bandes changent de manisre p'eriodique avec l e champ. Nous montrons que ce comportement e s t d6 au t r a n s f e r t d f ' e l e c t r o n s e n t r e des sous-bandes

1

e x t e n s i o n s p a t i a l e d i f f e r e n t e , q u i modifie l e p o t e n t i e l de charge d f e s p a c e . La v a r i a t i o n d f i n t e n s i t ' e d e luminescence observ'ee e n f o n c t i o n du champ e s t 'egalement expliqu'ee p a r ce modsle.

Photoluminescence and e x c i t a t i o n s p e c t r a i n n-modulation-doped quantum w e l l s w i t h 3 occupied subbands i n magnetic f i e l d s up t o 22 T show t h a t t h e i n t e r s u b b a n d d i s t a n c e s change w i t h f i e l d i n a p e r i o d i c manner. This behaviour i s shown t o be due t o t h e t r a n s f e r of e l e c t r o n s between subbands w i t h d i f f e r e n t s p a t i a l e x t e n s i o n , t h e r e b y modifying t h e space charge p o t e n t i a l . The observed v a r i a t i o n of t h e luminescence i n t e n s i t y w i t h f i e l d i s a l s o explained by t h i s model.

I n modulation-doped quantum w e l l s ( M D Q W ' S ) [ I ] both p r o p e r t i e s of undoped quantum w e l l s ( s i z e q u a n t i z a t i o n ) a s w e l l a s t h a t of modulation-doped s i n g l e h e t e r o - j.unctions ( t r a n s p o r t p r o p e r t i e s ) a r e combined. I n r e l a t i v e l y t h i c k GaAs l a y e r s between doped GaAlAs l a y e r s a two-dimensional e l e c t r o n gas i s formed a t t h e i n t e r - f a c e s , l i k e i n s i n g l e h e t e r o j u n c t i o n s , which allows magnetotransport experiments [ 2 j . On t h e o t h e r hand, i n t h e same'samples one can perform photoluminescence measure- ments [3-71, because c o n t r a r y t o h e t e r o j u n c t i o n s t h e e l e c t r o n and h o l e wavefunctions o v e r l a p s u f f i c i e n t l y t o have a s u b s t a n t i a l o p t i c a l a b s o r p t i o n [ 8 j .

Our measurements were done on n-modulation-doped GaAs/GaAlAs m u l ~ i p l e quantum w e l l s [ 9 ] w i t h a l a r g e GaAs x e l l width (500

a ) ,

and a c a r r i e r concenzration of

1.6*1012 cm2. I n t h e s e wide w e l l s , a t t h e s e d e n s i t i e s t h e subband e n e r g i e s f o r t h e lowest two subbands a r e mainly determined by t h e s t r o n g band bending and a r e l o c a l i z e d a t t h e two i n t e r f a c e s as i n a double h e t e r o j u n c t i o n .

To a v o i d t h e u s u a l l y poor q u a l i t y o f t h e " i n v e r t e d " Ga.As/GaAlAs i n t e r f a c e [ 2 ] , t h e a c t u a l samples used were s l i g h t l y asymmetric a s can be seen i n t h e i n s e t of Fig. 1. N e v e r t h e l e s s , s i n c e t h e p o t e n t i a l i s mainly determined by t h e e l e c t r o s t a - t i c s , t h e a c t u a l b a n d s t r u c t u r e i s v e r y s i m i l a r t o a symmetric w e l l [ 6 , 1 0 1 w i t h two almost d e g e n e r a t e subbands l o c a l i z e d ar, t h e i n t e r f a c e s and a t h i r d subband c e n t e r e d i n t h e w e l l .

We performed luminescence and e x c i t a t i o n measurements a t 1.7 K i n a magnetic f i e l d p e r p e n d i c u l a r t o t h e sample s u r f a c e (z-di.rection) between 0 and 22 T. For t h e luminescence, we used e x c i t a t i o n wavelengths around 1.60 eV ( s l i g n t l y above t h e bandgap of G a A s ) t o avoid e l e c t r o n h e a t i n g . A s shown i n Fig. 1 , t h e luminescence shows two main peaks: a s h a r p e r one ( A ) s i t u a t e d a t 1521 meV a t B=O, and a b r o a d e r one ( B ) a t 1506 meV. We a s s i g n peak A t o a t r a n s i t i o n between t h e e l e c t r o n subband E2 and t h e h i g h e s t hole l e v e l Ho, which i s t h e only one occupied a t low temperatures, and peak B t o one between t h e quasi-degenerate Eo and E l , and

Ho.

The h o l e l e v e l , b e i n g common f o r a l l e l e c t r o n - h o l e t r a n s i t i o n s allows us t o determine d i r e c t l y i n t e r s u b b a n d d i s t a n c e s .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987583

(3)

C5-390 JOURNAL

DE

PHYSIQUE

With i n c r e a s i n g magnetic f i e l d , luminescence peak energy i n c r e a s e s , and one s e e s a c l e a r s p l i t t i n g o f peak A i n t o s e v e r a l Landau l e v e l s ( L L ' s ) UI, t o about 2.7 T; a t h i g h e r f i e l d s t h e luminescence comes only from t h e lowest LL, due t o t h e r m a l i z a t i o n . Furthermore t h e peak e n e r g i e s do not i n c r e a s e any more as t h e

GaAs AIAs G a A l k

1.50 1,51 1.52 1,53 I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~

0 5 1 0 1 5 20 25

E~urninescence IeV1 Mognetic field [TI

Fig. 1 : Photoluminescence s p e c t r a a t Fig. 2: S o l i d c i r c l e s : Luminescence peak T = 1 . 7 K and d i f f e r e n t mag- p o s i t i o n s a s a f u n c t i o n of magne- n e t i c f i e l d s . The p o s i t i o n s t i c f i e l d . Very weak t r a n s i t i o n s of t h e lowest e x c i t a t i o n peaks a r e i n d i c a t e d by s m a l l e r symbols.

a r e marked by arrows. The in- Open c i r c l e s : E x c i t a t i o n peaks.

s e t shows t h e p o t e n t i a l d i a - gram of t h e samples used h e r e .

c y c l o t r o n energy, a s expected ( E L w ( ~ ) = ELum(B=O)+hwc/2), but d e v i a t e from it i n a s t e p - l i k e manner, t h e s t e p s becomlng more pronounced with i n c r e a s i n g f i e l d , a s shown i n Fig. 2. The most s t r i k i n g f e a t u r e , however, i s t h a t t h e s e p a r a t i o n between t h e peaks A and B d e c r e a s e s from 1 5 meV a t B=O t o 10 meV a t about 1 7 T. I n a d d i t i o n

above t h i s f i e l d , t h e i n t e n s i t y o f peak B, which had been much l e s s t h a n A a t a l l lower magnetic f i e l d s , i n c r e a s e s s t r o n g l y and becomes 3x t h e i n t e n s i t y of A a t 20 T.

The magneto-luminescence i n t e n s i t i e s f o r peak A and B, both i n o+ and 0- c i r c u l a r p o l a r i z a t i o n , a r e shown i n Fig. 3 and compared t o t h e measured two-point magneto- r e s i s t a n c e . Except f o r B = l l t o 1 4 T , where a s p i n s p l i t t i n g seems t o manifest more s t r o n g l y i n t h e dc e l e c t r i c a l measurement, t h e luminescence i n t e n s i t i e s c l o s e l y follow t h e same behaviour a s t h e e l e c t r i c a l measurement.

We f u r t h e r m o r ~ . m e a s u r e d e x c i t a t i o n s p e c t r a (Fig. 2, open c i r c l e s ) by d e t e c t i n g both luminescence of peak A and peak B a s a f u n c t i o n of t h e e x c i t i n g r a d i a t i o n energy. T r a n s i t i o n s from HO t o a l l LL's of E2 a s w e l l as t h o s e i n v o l v i n g l i g h t h o l e s ( s i t u a t e d 'b4 meV above t h e corresponding heavy h o l e t r a n s i t i o n ) a r e observed.

A s a b s o r p t i o n can o n l y occur above EF, t h e e l e c t r o n LL involved must be t o t a l l y empty o r a t most p a r t i a l l y f i l l e d . I n t h e l a t t e r c a s e , where EF i s i n s i d e t h e LL i n q u e s t i o n , luminescence i s a l s o p o s s i b l e from t h e same l e v e l , and t h e luminescence and e x c i t a t i o n peaks should o v e r l a p w i t h i n t h e LL width, i . e . 1 t o 2 meV. This i s t h e case f o r t h e lowest e x c i t a t i o n peak and t h e luminescence from E2 0 (lowest LL, N=0, of E2) i n t h e whole magnetic f i e l d range above 2,7 T, t h e f i e l d ' a t which luminescence from h i g h e r LL's has t o t a l l y disappeared, and f o r N=l between 1 . 4 and 2.2 T. T h i s p i n n i n g of EF t o E2 0 f o r a long B i n t e r v a l i s i n c o n t r a s t with t h e u s u a l p i c t u r e of a Fermi energy &aking a more o r l e s s abrupt jump between l e v e l s a t each i n t e g e r f i l l i n g f a c t o r . This u s u a l p i c t u r e i m p l i c i t l y assumes t h a t t h e i n t e r - subband s e p a r a t i o n does not depend on t h e occupation of t h e subbands [ 11 ].

(4)

peaks A and B , both c i r c u l a r p o l a r i z a t i o n r e s o l v e d . A t low f i e l d s , t h e s o l i d l i n e shows t h e t o t a l i n t e n s i t y of peak A , t h e dashed l i n e only t h a t o r i g i - n a t i n g from LL 0.

b ) Magnetoresistance.

0 5 10 15 20 25 Magnetic field

[TI

I n o r d e r t o i n t e r p r e t t h e s e r e s u l t s , we c a l c u l a t e d t h e band bending and t h e energy l e v e l s by a simple s e l f - c o n s i s t e n t c a l c u l a t i o n by s a t i s f y i n g simultaneously P o i s s o n ' s and S c h r t i d i n g e r ' s equation. We o b t a i n two almost degenerate lower sub- band l e v e l s E o and E l , t h e corresponding charge d i s t r i b u t i o n s being concentrated on each of t h e t r i a n g u l a r w e l l s . The wave f u n c t i o n of t h e next subband, E2, spreads over t h e whole width of t h e QW.

With i n c r e a s i n g magnetic f i e l d , t h e f i l l i n g f a c t o r v=nh/eB diminishes, and a s t h e LL's of t h e d i f f e r e n t subbands c r o s s each o t h e r , t h i s causes an o s c i l l a t o r y change i n t h e r e l a t i v e occupation of eaCh subband. A s t h e charge d i s t r i b u t i o n i n z - d i r e c t i o n f o r each subband i s d i f f e r e n t , t h i s changes t h e t o t a l charge d i s t r i b u - t i o n and t h u s t h e band bending, and consequently a l s o t h e energy eigenvalues. As t h e charge p a s s e s from E2 (extended d i s t r i b u t i o n ) t o E o and E l ( c o n c e n t r a t i o n on t h e e d g e s ) , t h e t r i a n g u l a r w e l l becomes s h a r p e r , and t h e s t r o n g e r confinement r a i s e s EO and E l w i t h r e s p e c t t o E2, which remains e s s e n t i a l l y pinned t o t h e band edge maximum. T h i s diminution of intersubband d i s t a n c e i s observed above 17 T (v=k, i . e . 2 LL's o c c u p i e d ) , where E2 i s t o t a l l y emptied. A t lower f i e l d s , however, t h e h i g h e r LL's of EO and E l a r e a l s o occupied. A t t h e p o i n t s where t h e y c r o s s E2 0, charge p a s s e s from t h e lower subband t o E2 w i t h i n c r e a s i n g f i e l d . As ex- plLined above, t h i s charge t r a n s f e r i n c r e a s e s t h e subband d i s t a n c e , i n a way a s t o counter-balance t h e moving away of t h e c r o s s i n g LL's, and both l e v e l s o v e r l a p over a f i n i t e f i e l d range, c a u s i n g EF t o be pinned t o E2 0. This i s experimentally indeed observed by t h e coincidence of t h e h i g h e s t l b i n e s c e n c e and t h e lowest e x c i t a t i o n peaks. As t h e e l e c t r o n s a r e e a s i l y t r a n s f e r r e d between t h e s e overlapping l e v e l s , a l l of them can c o n t r i b u t e t o peak A luminescence a s w e l l a s t o e l e c t r i c a l conduction. Under t h e s e circumstances t h e minimum i n t h e d e n s i t y of s t a t e s a t EF corresponds t o f i l l i n g f a c t o r s 4 , 8 , e t c . (two s p i n l e v e l s and t h e two almost de- g e n e r a t e lower subbands). This e x p l a i n s t h e p e r i o d o f magnetoresistance o s c i l l a - t i o n s t o be ~ ( 1 1 ~ ) = 0.060 T-1, which i s j u s t t h e double of t h e expected value f o r n = l . 6 * 1 0 ~ ~ g i v e n by low-field H a l l measurement and corresponding w e l l t o v=4 a t 17 T , where emptying of E2 i s observed. As t h e peak A luminescence i n t e n s i t y depends on t h e d e n s i t y of occupied s t a t e s i n t h e h i g h e s t l e v e l , t h e sane o s c i l l a t i o n p e r i o d i s observed.

I n c o n c l u s i o n , we have determined t h e subband e n e r g i e s ' o f modulation-doped quantum w e l l s w i t h 3 occupied subbands by luminescence spectroscopy, and have shown t h a t t h e intersubband d i s t a n c e changes with a magnetic f i e l d , depending on t h e r e l a t i v e occupation of t h e subbands. I n t h e range between 3 and 17 T , EF i s ?inned t o E2,g, which would not be p o s s i b l e i f intersubband d i s t a n c e s were c o n s t a n t . The same e f f e c t i n p r i n c i p l e a l s o occurs i n s i n g l e h e t e r o s t r u c t u r e s , although l e s s pronounced.

We t h a n k H. Krath f o r t h e e x c e l l e n t t e c h n i c a l a s s i s t a n c e .

(5)

C5-392 JOURNAL DE PHYSIQUE

1. R. Dingle, H.L. StBrmer, A.C. Gossard and W. Wiegmann, Appl. Phys. L e t t . 33, 665 (1978)

2. S. S a s a , J. S a i t o , K. Nanbu, T. Tshikawa, S. Hiyamizu and M. Inoue, Jpn. J. Appl. Phys.

a;

~ 2 8 1 (1985)

3. A. Pinczuk, J . Shah, R.C. M i l l e r , A.C. Gossard and W. Wiegmann, S o l i d S t a t e Comm. 5 0 , 735 (1984)

4. A. Pinczuk, J. Shah, H.L. StBrmer, R.C. M i l l e r , A.C. Gossard and W. Wiegmann, S u r f . S c i .

&,

492 (1984)

5 . J . M . Worlock, A.C. Maciel, A. P e t r o u , C.H. P e r r y , R.L. Aggarwal, M. Smith, A.C. Gossard and W. Wiegmann, S u r f . S c i .

B,

486 (1984)

6. F. Meseguer, J . C . Maan and K. Ploog, Phys. Rev. 2505 (1987)

7. M.C. Smith, A. P e t r o u , C.H. P e r r y , J . M . Worlock, S u r f . S c i .

174,

136 (1986) 8. C. Delalande, J. Orgonasi, M.H. Meynadier, J . A . Brum, G. B a s t a r d , G. Weimann

and W. Schlapp, S o l i d S t a t e Comm.

59,

613 (1986)

9. K. Ploog, H. F o r n i u s and A. F i s c h e r , Appl. Phys. L e t t .

2,

1237 (1987) 10. K. Inoue, H. S a k a k i , J. Yoshino, Jpn. J. Appl. Phys.

3,

L767 (1984)

11. J . C . P o r t a l , R.J. Nicholas, M.A. Brummel, A.Y. Cho, K.Y. Chang and T.P. P e a r s a l l , S o l i d S t a t e Comm.

9,

907 ( 1982)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to