• Aucun résultat trouvé

STRUCTURE OF THE GIANT ANGLE DIPOLE

N/A
N/A
Protected

Academic year: 2021

Partager "STRUCTURE OF THE GIANT ANGLE DIPOLE"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00226474

https://hal.archives-ouvertes.fr/jpa-00226474

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STRUCTURE OF THE GIANT ANGLE DIPOLE

R. Hilton, S. Iwasaki, H. Mang, P. Ring, M. Faber

To cite this version:

R. Hilton, S. Iwasaki, H. Mang, P. Ring, M. Faber. STRUCTURE OF THE GIANT ANGLE DIPOLE.

Journal de Physique Colloques, 1987, 48 (C2), pp.C2-59-C2-63. �10.1051/jphyscol:1987209�. �jpa-

00226474�

(2)

STRUCTURE OF THE GIANT ANGLE DIPOLE

R.R. HILTON, S. IWASAKI, H.J. MANG, P. RING and M. FABER',

Physics Department, Technical University Munich, D-8046 Garching.

F.R.G.

* ~ n s t i t u t e of Nuclear Physics, Technical University, A-1020 Wien.

Austria

ABSTRACT

An e x t e n s i v e i n v e s t i g a t i o n o f t h e angular analogue t o t h e Giant Dipole, t h e "Giant Angle D i p o l e " , undertaken w i t h i n t h e framework o f a s e l f - c o n s i s t e n t QRPA formalism employing Gkyrme f o r c e s , has r e v e a l e d a number o f f a c e t s about t h i s s t a t e . I n t h e case o f '="Gd, t h e QRPA s o l u t i o n s obtained showed f r a g m e n t a t i o n o f t h e B (MI) s t r e n g t h occurs w i t h o u t t h e need t o p o s t u l a t e t r i a x i a l l i t y o r o c t u p o l e deformations.

Overlaps unambiguously r e v e a l t h e dominant component o f t h e fragmented s t a t e found a t 3.41 Mev, h a v i n g BM(1)=1.49tSIa w i t h l i t t l e s p i n f l i p c o n t r i b u t i o n , t o be a c o n t r a angular r o t a t i o n a l o s c i l l a t i o n o f t h e p r o t o n and n e u t r o n d e n s i t i e s , together w i t h i s o v e c t o r p l u s i s o s c a l e r admixture o f two orthogonal shears, i n agreement w i t h t h e o s c i l l a t o r model. The i m p l i c a t i o n s o f t h i s s t a t e as a t o o l i n n u c l e a r s t r u c t u r e p h y s i c s a r e discussed.

INTRODUCTION

The i d e n t i f i c a t i o n o f t h e l o n g c o n j e c t u r e d "Giant Angle D i p o l e "

1 - 7 , i n r e c e n t e,e' s c a t t e r i n g experiments on lJ'Gd / 8 / , and i t s c o n f i r m a t i o n i n independent photo e x c i t a t i o n and f o r w a r d a n g l e p,pe measurements 1 0 - 1 2 have opened t h e way f o r a new t o o l i n n u c l e a r s t r u c t u r e physics, w i t h t h e promise o f g a i n i n g h i t h e r t o i n a c c e s s i b l e i n f o r m a t i o n . I n t h e l a s t t h r e e years w e l l over 100 t h e o r e t i c a l and experimental s t u d i e s o f t h i s s t a t e have been undertaken, d u r i n g t h e course o f w h i t h many names have been g i v e n t o t h i s mode v i z : p o s i t i v e p a r i t y quadrupole resonance; K=l' resonance; mixed symmetry mode;

s c i s s o r mode; g i a n t magnetic d i p o l e ; g i a n t M I mode and n u c l e a r wobble.

However h e r e we s h a l l r e f e r t o i t by i t s o r i g i n a l name, t h e "Giant Angle D i p o l e " , + o r f u r t h e r r e f e r e n c e s c.6. / 4 , 5 / . The p i c t u r e o f c o l l e c t i v e motion i n which p r o t o n and n e u t ~ o n d e n s i t i e s v i b r a t e a g a i n s t one another i n angular f a s h i o n about an a x i s p e r p e n d i c u l a r t o t h e symmetry a x i s o f t h e nucleus has, almost w i t h o u t exception, been t h e common b a s i s o f these many i n v e s t i g a t i o n s . However, such a p i c t u r e , b u i l t i n s t r i c t analogy w i t h t h e G i a n t Dipole, i s quantum mechanically i n c o n s i s t e n t w i t h t h e d e s c r i p t i o n o f a coherent low energy c o l l e c t i v e s t a t e /2-5/.

THE OSCILLATOR MODEL

For a l a r g e p a r t i c l e number fermion system c o n t a i n e d i n a deformed o s c i l l a t o r , c o l l e c t i v e c o o r d i n a t e s 5 and momenta

JT

corresponding t o t h e Giant Angle D i p o l e can be found. I n terms o f t h e s e v a r i a b l e s , t h e s h e l l model Hamiltonian may be shown t o d i s p l a y t h e form /2,3/

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987209

(3)

C2-60 JOURNAL DE PHYSIQUE

i n which t h e v a r i a b l e s Cql,pr> d e s c r i b e remaining degrees o f freedom o f t h e system commuting w i t h 5 and

.

The ground s t a t e i s then Q o ( q ) X o ( J ) and wavefunctions o f t h e form o f cPo(q)&(S) may be i n t e r p r e t e d as G i a n t Angle D i p o l e c o l l e c t i v e e x c i t a t i o n s , i n much t h e same s p i r i t as f o r t h e G i a n t D i p o l e /14/.

From t h e model we l e a r n t h a t t h i s e x c i t a t i o n i s a p o s i t i v e p a r i t y quadrupole e x c i t a t i o n c a r r y i n g i s o s p i n T = l ( w i t h s m a l l i s o s p i n T=O a d m i x t u r e ) , comprising a l i n e a r combination o f angular momentum z - p r o j e c t i o n M= 2 1. (For a s e l f -conjugate nucleus i t r e v e r t s t o p u r e T=1). The e x c i t a t i o n energy o f t h e G i a n t Angle D i p o l e t u r n s o u t t o be low, around 3-4 Mev f o r t h e w e l l deformed r a r e earths. T r a n s i t i o n s t r e n g t h s may a l s o be assessed, and i n t h e case of "&Gd we g a i n a B(M1) v a l u e around 7.5h2, w i t h no s p i n f l i p c o n t r i b u t i o n s s i n c e we have a s p i n s a t u r a t e d system. The e f f e c t s o f c o r r e l a t i o n s modify these values somewhat /3/. I n t h e case o f '"*Gd an energy a t 3 Mev and a B(M1) v a l u e o f around 4. 9 k 2 a r e expected. The u n d e r l y i n g p h y s i c a l n a t u r e o f t h i s s t a t e , d i s c l o s e d by examining t h e Giant Angle D i p o l e generators, show i t t o be a AN=O e x c i t a t i o n , comprising a sum o f motionsx a p u r e c o n t r a a n g u l a r r o t a t i o n a l o s q i l l a t i o n t o g e t h e r w i t h an i s o v e c t o r p l u s i e o s c a l e r admixture o f two orthogonal shears. The p i c t u r e o f p u r e c o n t r a r o t a t i o n a t t h e h e a r t o f many models, i t becomes apparent, i s i n c o m p a t i b l e w i t h t h e d e s c r i p t i o n of a low energy coherent s t a t e , a s t h e g e n e r a t o r s o f such motion l e a d t o c o l l e c t i v e e x c i t a t i o n s b u i l t o u t o f l i n e a r combinations o f s i n g l e p a r t i c l e s t a t e s coming from d i f f e r e n t o s c i l l a t o r s h e l l s , i.e. AN=O and AN=2. The o s c i l l a t o r model r e v e a l s how t o marry t h e p i c t u r e o f t h i s low energy c o l l e c t i v e e x c i t a t i o n w i t h an u n d e r l y i n g s i n g l e p a r t i c l e s t r u c t u r e c o n s i s t e n t w i t h quantum mechanics.

MICROSCOPIC DESCRIPTION

A h i g h r e s o l u t i o n search o f t h e ( e , e ' ) s c a t t e r i n g spectrum o f IabGd c a r r i e d o u t a t t h e Darmstadt L I N K r e v e a l e d a sharp 1' resonance a t 3.07 Mev, c a r r y i n g a B(M1) s t r e n g t h o f 1.31h2 /8,9/. The marked discrepancy between t h e observed B(M1) s t r e n g t h and our c o l l e c t i v e model v a l u e s t r o n g l y i m p l i e d a fragmented s t r u c t u r e t o t h e 1'. and a microscopic f o r m a l i s m was r e q u i r e d i n which t h e i n t e r p l a y between t h e s i n g l e p a r t i c l e and c o l l e c t i v e aspects o f t h e system c o u l d be t r e a t e d . To t h i s end, an e x t e n s i v e i n v e s t i g a t i o n w i t h i n t h e framework o f a s e l f - c o n s i s t e n t QRPA formalism employing Skyrme f o r c e s was undertaken.

A f u l l y s e l f - c o n s i s t e n t H. F. c a l c u l a t i o n g e n e r a t i n g t h e s i n g l e p a r t i c l e e n e r g i e s and s t a t e s served as t h e i n p u t f o r t h e QRPA formalism. F u r t h e r d e t a i l s o f n o t a t i o n and formalism a r e g i v e n i n /4,S, 15/.

For a r b i t r a r y v a r i a t i o n s 6 9 , we g a i n from t h e Schrodinger equation,

<01C6Q,CH,Q'.33:0> = (E, -Ec)<O: t(SQ,Q'.I :O>

( 2 ) R e s t r i c t i n g o u r s e l v e s t o c o l l e c t i v e o p e r a t o r s Q o f t h e form

we g a i n t h e QRPA equations

The eigenvaluee w.~. and e i g e n v e c t o r s corresponding t o (4) were t h e n c a l c u l a t e d u s i n g (3). Shown i n f i g . 1 a r e t h e B(M1) s t r e n g t h s found f o r each s t a t e up t o 5 Mev, c a l c u l a t e d from t h e expression

(4)

Fig. 1 B (Ill) strength

Here IHFB> i s t h e HFB ground state. In fig.1 the spin flip contributions are shown as dotted lines. T h e height of typical two quasi-particle grass i s indicated by the horizontal dashed line. We observe fragmentation of t h e B ( M 1 ) strength has occurred without the need t o introduce either triaxial or octupole deformations. The dominant component in t h e spectrum i s seen at 3.41 Mev, having a B ( M 1 ) strength of 1 . 4 9 k 2 with little spin flip admixture. The physical nature of t h i s state was obtained from calculating t h e overlap,

a s a function of t h e shear admixture parameter I.A s seen in fig.2 t h e overlap with a state describing pure contra rotation (?PO) i s already over 53%. However, the maximum overlap occurs at r non vanishing 1 value (l\nax=O. 2 5 )

,

unambiguous1 y demonstrating that t h e isovector component of this state comprises a pure contra rotation plus a shear, as had already been anticipated from the oscillator model. In fact t h e microscopic description indicates more shear admixture than t h e oscillator value ( T O ) .

PURE CONTRA CONTRA ROTATION ROTATION SHEAR ADMIXTURE

Fig. 2 Overlap shown a s a function of q

ISOSPIN ADMIXTURE

Fig.3 Overlap shown a s a function of E The investigation was extended and the overlap,

(5)

C2-62 JOURNAL DE PHYSIQUE

c a l c u l a t e d as a f u n c t i o n o f t h e i s o s c a l e r m i x i n g parameter E ( w i t h 9 f i x e d a t r\,,,). As seen from f ig.3, t h e o v e r l a p reaches i t s maximum value f o r ( C a r = -0.075), showing an i s o s c a l e r admixture which i s a l s o l a r g e r t h a n t h a t g i v e n by t h e o s c i l l a t o r (Eo= -0.033) a t t h e same deformation.

Fig.4 i l l u s t r a t e s t h e geometric p i c t u r e

T

of t h e motion which emerges f o r t h e

dominant component. The i soscal e r

.--.

admixture r e f l e c t s t h e f a c t t h a t t h e p r o t o n s and neutrons do n o t deform by t h e same amount d u r i n g t h e i r motion. The e x c i t e d s t a t e t h u s encapsulates t h e p r o p e r t i e s a n t i c i p a t e d a f t h e Giant Angle D i p o l e and we i d e n t i f y i t w i t h t h i s mode.

Fig. 4 P i c t o r i a l impression o f G i a n t Angle D i p o l e motion However, t h e correspondence t o t h e c o l l e c t i v e model p i c t u r e should r e a l l y be sought i n t h e subset o f fragmented s t a t e s h a v i n g s i m i l a r u n d e r l y i n g s t r u c t u r e . O f t h e s t a t e s c a r r y i n g any s i z a b l e B(M1) s t r e n g t h , o n l y those a t e n e r g i e s 2.67, 3.04, 3.65 and 4.89 Mev seem t o have p h y s i c a l s t r u c t u r e r e l a t e d t o t h e dominant component s i t u a t e d a t 3.41 Mev. Common t o a l l o f these s t a t e s i s t h e i r s m a l l s p i n f l i p t o o r b i t a l M I s t r e n g t h , and t h e f a c t t h a t t h e i r o v e r l a p s n o t i c e a b l y increase i f shear admixture i s allowed. The d i f f e r e n c e s appear i n t h e amount o f i s o v e c t o r and i s o s c a l e r admixture p r e s e n t i n each s t a t e . Although none o f these s t a t e s have o v e r l a p s (7) a s l a r g e a s t h a t f o r t h e dominant component, t y p i c a l l y t h e y l i e i n t h e range (3KL-48%). The s t r e n g t h s shown i n f i g . 1 should however be thought o f as a guide o n l y , s i n c e b a s i s t r u n c a t i o n e f f e c t s may s t i l l produce some changes /4,5/.

ACCESSIBLE INFORMATION

The experimental c o n f i r m a t i o n o f t h i s s t a t e a l l o w s u s access t o a wealth o f i n f o r m a t i o n about t h e nucleus. Knowledge o f new i n e r t i a l parameters and r e s t o r i n g f o r c e s r e l a t e d t o b o t h r o t a t i o n and deformation a r e r e q u i r e d f o r t h e d e s c r i p t i o n o f t h e G i a n t Angle D i p o l e and as a l r e a d y demonstrated / 3 / , t h e l a t t e r may d i f f e r c o n s i d e r a b l y from t h a t o b t a i n e d from a p u r e c o n t r a r o t a t i o n p i c t u r e . The c h a r a c t e r of t h e mode, as a sum o f c o n t r a r o t a t i o n and shear, accords n o t o n l y w i t h t h a t expected from an incompressible f l u i d /16/. The shear i s o s p i n admixture may a l s o be echoed i n t h e o b s e r v a t i o n s t h a t neutron and p r o t o n t r a n s f e r t i m e s a r e d i f f e r e n t /17/, i n d i c a t i n g response d i f f e r e n c e s between n e u t r o n s and p r o t o n s t o deformation changes, and hence c o l l e c t i v e f l o w p r o p e r t i e s . The form o f t t i e f r a g m e n t a t i o n spectrum a l s o promises t o shed l i g h t on t h e way t h e n u c l e u s responds t o shear. A p i c t u r e o f breakup, a t l e a s t a t lo^ energy, may be p o s s i b l e t o read o f f . Recent measurements 1 3 i m p l y v e r y small s p i n - f l i p c o n t r i b u t i o n s t o t h i s s t a t e . Since t h e s p i n - o r b i t f o r c e p l a y s a c r u c i a l r o l e here, i n these measurements we may have an instrument g i v i n g u s a p r e c i s e handle on i t s s t r e n g t h . I n f a c t more g e n e r a l l y t h e G i a n t h n g l e D i p o l e a l r e a d y appears t o act as a s o r t of t e s t bench w i t h which one w i l l be a b l e t o "weed o u t " some t y p e s of e f f e c t i v e i n t e r a c t i o n s .

A r i c h source f o r f u t u r e n u c l e a r s t r u c t u r e p h y s i c s i s c l e a r l y i n prospect.

REFERENCES

1) "A p o s s i b l e v i b r a t i o n a l mode i n heavy n u c l e i " , t a l k presented by R.R.Hilton a t I n t e r n a t i o n a l Conference on Nuclear S t r u c t u r e " , Dubna, June 1976.

(6)

i n T h e o r e t i c a l Physics, J u l y-Rug. 1977

"The G i a n t Rngle D i p o l e " , t a l k presented by R.R.Hilton a t DPG meeting, Heidelberg, March 1978 Proc. p823.

"New c o l l e c t i v e e x c i t a t i o n s i n deformed n u c l e i " , t a l k presented by R.R.Hilton a t j o i n t DPG-OPG meeting, Munich 1980 Proc. p1218.

" C o l l e c t i v e aspects o f t h e S h e l l Model", c o n t r i b u t e d paper by R.R.Hilton t o t h e I n t e r n a t i o n a l Conference on Nuclear Physics, Berkley, August 1980 Proc. p276.

2) R.R.Hilton, 2 . Physik A316 (1984) 471

3) R.R.Hilton J. de Phys. ( P a r i s ) Cb Supplement t o No.6 45 June (1984) p25S

4) R.R.Hilton, M.Faber, S. Iwasaki

,

H. J.Mang and P.Ring: Proc. "Phase Space Approach t o Nuclear Dynamics" T r i e s t e , Sept. 1985 p749, Pub.

World S c i e n t i f i c 1986, Eds. M.di t o r o , W.Noerenberg, H.Rosina, S. S t r i n g a r i

5) R.R.Hilton, M.Faber, S. Iwasaki

,

H. J.Mang and P-Ring: Proceedings

"Microscopic Approach t o Nuclear S t r u c t u r e C a l c u l a t i o n s " , Sorrento, May 1986. E d i t r i c e Compoeitori-Bologna, p357, 1986 Ed. f9.Covello 6) N. Lo I u d i c e and F. Palumbo, Phys. Rev. L e t t s . 41 (1978) 1532 and

Nucl. Phys. A326 (1979) 193

71 T.Suzuki and D.J. Rowe, Nucl. Phys. A289 (1977) 461

8) D. Bohle e t a l , Phys. L e t t s . 137B (1984) 27 and 148B (1984) 260 9) A. R i c h t e r , "Nuclear S t r u c t u r e 198S8', Proc. o f N i e l s Bohr Centennial

Conference, Copenhagen May, (1985) p469 Eds. R.Broglia, G.Hagemann, B-Herskind. N o r t h H o l l a n d 1985

10) U.E.P.Berg e t a1 Phys L e t t s . 1498 (1984) 59 and J. d e Phys.

( P a r i s ) C4 No.3, 45, March 1984, p359 and Proc. DPG meeting, Munich, March 1983 p536

11) C . D j a l a l i e t a1 Phys. L e t t s . 164B (1985) 269

12) J.A.Carr, F.Petrovich, M-J-Threapleton, 0 - S c h o l t e n and H-McManus Phys. Rev. L e t t s . 54 (1985) 881

13) C-Wesselborg e t a1 Z. Phys. R 323 (1986) 485 14) D.M.Brink, Nucl. Phys. 4 (1957) 215

15) P.Ring and P.Schuck, "The Nuclear Many Body Problem", Springer Verlag 1980

16) G.Stokes Camb. P h i l . Trans. v i i i (1845) Papers i ,80.

17) H.J.Korner, Proc o f Symposium "10 Years o f Uranium Beam a t t h e UNILOC", GSI Darmstadt, R p r i l 1986, plS8. Pub GSI Nov. 1986

ISSN:0171-4546 Eds. N.Angert, P.Kien1e

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to