• Aucun résultat trouvé

Finite-size ensemble Kalman filters (EnKF-N) - Iterative ensemble Kalman smoothers (IEnKS)

N/A
N/A
Protected

Academic year: 2021

Partager "Finite-size ensemble Kalman filters (EnKF-N) - Iterative ensemble Kalman smoothers (IEnKS)"

Copied!
35
0
0

Texte intégral

(1)

HAL Id: hal-00947750

https://hal.inria.fr/hal-00947750

Submitted on 21 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Finite-size ensemble Kalman filters (EnKF-N) - Iterative ensemble Kalman smoothers (IEnKS)

Marc Bocquet

To cite this version:

Marc Bocquet. Finite-size ensemble Kalman filters (EnKF-N) - Iterative ensemble Kalman smoothers

(IEnKS). International Conference on Ensemble Methods in Geophysical Sciences, Nov 2012, Toulouse,

France. �hal-00947750�

(2)

Finite-size ensemble Kalman filters (EnKF-N) Iterative ensemble Kalman smoothers (IEnKS)

Marc Bocquet

Universit´e Paris-Est, CEREA, joint lab ´Ecole des Ponts ParisTech and EdF R&D, France INRIA, Paris-Rocquencourt Research center, France

Collaborator: Pavel Sakov, BOM, Australia.

(bocquet@cerea.enpc.fr)

(3)

Outline

1 The primal EnKF-N

2 The dual EnKF-N

3 The iterative ensemble Kalman filter & smoother

4 Conclusions

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 2 / 29

(4)

Failure of the raw ensemble Kalman filter (EnKF)

◮With the exception of Gaussian and linear systems, EnKF fails to provide a proper estimation on most systems.

◮To properly work, it needs fixes: lo- calisation andinflation.

0 1000 2000

Analysis cycle 0.1

1

RMSE analysis

EnKF without inflation EnKF with inflation λ=1.02 EnKF-N

Lorenz ’95 N=20 ∆t=0.05

◮EnKF relies for its analysis on the first and second-order empirical moments:

x= 1 N

N n=1

xk, P= 1 N−1

N k=1

(xk−x) (xk−x)T. (1) Yet,xandPmay not be the true moments of the true filtering distribution (assuming there is one!). Hidden true moments of the true filtering distribution: xbandB.

(5)

Getting more from the ensemble

◮Idea: even under Gaussian assumptions of the true distribution, the pdf p(x|x1, . . . ,xN) extracts more information thanp(x|x,P).

◮Using Gaussian assumptions, and being only interested in the filtering problem, one can get (hierarchical reasoning):

p(x|x1, . . . ,xN) = 1 p(x1, . . . ,xN)

Z

dxbdBp(x|xb,B)p(x1, . . . ,xN|xb,B)p(xb,B). (2)

◮p(x|xb,B): the standard Gaussian prior but based on the true statistics.

◮p(x1, . . . ,xN|xb,B) =∏Nk=1p(xk|xb,B)

◮p(xb,B): prior for the background statistics!

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 4 / 29

(6)

Choosing priors for the background statistics

◮To progress, we need to make assumptions on the background statisticsp(xb,B): the statistics of the error statisticsorhyperpriors.

A very simple choice is aweakly informative prior: the Jeffreys’ prior[Jeffreys 1961]with an additional assumption of independence forxb andB:

p(xb,B)≡pJ(xb,B) =pJ(xb)pJ(B) and

pJ(xb) = 1, pJ(B) =|B|M+12 .

◮With Jeffreys prior, it is possible to perform the integral (with additional complications due to rank-deficiency usually not dealt with by mathematicians).

(7)

Principle of the EnKF-N

◮The prior of EnKF andthe prior of EnKF-N:

p(x|x,P)∝exp

−1

2(x−x)TP1(x−x)

p(x|x1,x2, . . . ,xN)∝(x−x) (x−x)TN(N−1)P

N

2 , (3)

withεN= 1(mean-trusting variant), orεN= 1 +N1 (original variant).

◮Ensemble space decomposition (ETKF version of the filters): x=x+Aw.

◮The variational principle of the analysis (in ensemble space):

J(w) =1

2(y−H(x+Aw))TR1(y−H(x+Aw)) +N−1 2 wTw J(w) =1

2(y−H(x+Aw))TR1(y−H(x+Aw)) +N 2ln

εN+wTw

. (4)

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 6 / 29

(8)

EnKF-N: algorithm

1 Requires: The forecast ensemble{xk}k=1,...,N, the observationsy, and error covariance matrixR

2 Compute the meanxand the anomaliesAfrom{xk}k=1,...,N.

3 ComputeY=HA,δ=y−Hx

4 Find the minimum:

wa= min

w

n

(δ−Yw)TR1(δ−Yw) +Nln

εN+wTw o

5 Computexa=x+Awa.

6 ComputeΩa=

YTR1Y+N(εN+waTwa)IN2wawTa N+wTawa)2

1

7 ComputeWa={(N−1)Ωa}1/2U

8 Computexak =xa+A Wak

(9)

The Lorenz ’95 model

◮The toy-model[Lorenz and Emmanuel 1998]:

It represents a mid-latitude zonal circle of the global atmosphere.

M= 40 variables{xm}m=1,...,M. Form= 1, . . . ,M:

dxm

dt = (xm+1−xm2)xm1−xm+F, whereF= 8, and the boundary is cyclic.

Chaotic dynamics, topological dimension of 13, a doubling time of about 0.42 time units, and a Kaplan-Yorke dimension of about 27.1.

◮Setup of the experiment: Time-lag between update: ∆t= 0.05 (about 6 hours for a global model), fully observed,R=I.

0 100 200 300 400 500

0 5 10 15 20 25 30 35

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 8 / 29

(10)

Application to the Lorenz ’95 model

◮EnKF-N: analysis rmse versus ensemble size, for ∆t= 0.05.

5 10 15 20 25 30 35 40 45 50

Ensemble size

0.2 0.3 0.4 0.5 1 2 3 4 5

Average analysis rmse

ETKF (optimal inflation) ETKF-N εN=1+1/N ETKF-N εΝ=1

rank-deficient regime rank-sufficient regime

(11)

Application to the Lorenz ’95 model

◮Local version: LETKF-N, withN= 10 (beware ∆t= 0.01 requires a correction).

0.05 0.10 0.15 0.20 0.30 0.40 0.60

0.01 0.02 0.03 0.80

Time interval between updates ∆t

0.20 0.30 0.40 0.50 0.60 0.70 0.80

Average analysis rmse

LETKF-N (optimal localisation) LETKF (optimal inflation and localization)

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 10 / 29

(12)

Forced 2D turbulence model

◮Forced 2D turbulence model

∂q

∂t +J(q,ψ) =λq+ν∆2q+F, q= ∆ψ, (5) whereJ(q,ψ) =∂xq∂yψ−∂yq∂xψ,qis the vorticity 2D field,ψ is the current function 2D field,F is the forcing,λ amplitude of the friction,ν amplitude of the biharmonic diffusion, grid: 64×64 small enough to be in the sufficient-rank regime.

◮Setup of the experiment: Time-lag between update: ∆t= 2, fully observed,R= 0.1I.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Vorticity q, t =251

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Vorticity q, t =252

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Vorticity q, t =253

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2

(13)

Application to forced 2D turbulence

◮Comparison of: EnKF with uniform inflation, EnKF-N, adaptive inflation EnKF (EnKF-ML),N= 80 (rank-sufficient regime). Starting away or close from the truth.

10 20 40 80 160 320

Cycle 0.01

0.1 1

Vorticity rmse analysis

Reference EnKF λ=1.02 EnKF-ML EnKF-N EnKF λ=1 EnKF λ=1.02 EnKF-ML EnKF-N

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 12 / 29

(14)

Also tested on . . .

◮EnKF-N also tested on:

Lorenz ’63 model,[Lorenz, 1963]

Kuramato-Sivashinski model,

[Kuramato, 1975; Sivashinski, 1977]

NEDyM economical model,

[Hallegate, Ghil and co-authors, 2008-2012] 00 50 100 150 200 250 20

40 60 80 100

Credit:http://images.math.cnrs.fr

(15)

Outline

1 The primal EnKF-N

2 The dual EnKF-N

3 The iterative ensemble Kalman filter & smoother

4 Conclusions

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 14 / 29

(16)

Lagrangian duality

◮TheprimalEnKF-N cost function:

J(w) =1

2(y−H(x+Xw))TR1(y−H(x+Xw)) +N 2ln

εN+wTw

. (6)

◮Idea: Split the radial degree of freedom ofw, that is√

wTw, from its angular degrees of freedom, that isw/√

wTw.

◮Lagrangian:

L(w,ρ,ζ) =1

2(δ−Yw)TR1(δ−Yw) +1 2ζ

wTw−ρ +N

2ln (εN+ρ), (7) whereδ=y−Hx.

◮Saddle point equations:

ζ=N/(εN)

ζw=−YTR1(δ−Yw) ⇒

( ρ=N/ζ−εN

w= ζ+YTR1Y1

YTR1δ (8)

(17)

Non-convex strong duality

◮Dualcost function defined forζ>0 by D(ζ) = inf

w sup

ρ≥0L(w,ρ,ζ)

= 1

T

R+Yζ1YT 1

δ+εNζ 2 +N

2lnN ζ −N

2. (9)

◮Dual and primal problems:

∆ = inf

ζ>0D(ζ) and Π = inf

wJ(w). (10)

◮Strong dualityresult (non quadratic, non-convex case!):

∆ = Π. (11)

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 16 / 29

(18)

The dual EnKF-N scheme

1 Requires: The forecast ensemble{xk}k=1,...,N, the observationsy, and error covariance matrixR

2 Compute the meanxand the anomaliesAfrom{xk}k=1,...,N.

3 ComputeY=HA,δ=y−Hx

4 Find the minimum:

ζa= min

ζ]0,N/εN]

δT

R+Yζ1YT1

δ+εNζ+NlnN ζ −N

(12)

5 Computewa= YTR1Y+ζa1

YTR1δ.

6 Computexa=x+Awa.

7 ComputeΩa=n

YTR1Y+ζa

N

N ζa−1o1

8 ComputeWa={(N−1)Ωa}1/2U

9 Computexak =xa+AWak

(19)

Outline

1 The primal EnKF-N

2 The dual EnKF-N

3 The iterative ensemble Kalman filter & smoother

4 Conclusions

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 18 / 29

(20)

Iterative ensemble Kalman filters

◮The iterative extended Kalman filter[Wishner et al., 1969; Jazwinski, 1970]IEKF

◮The iterative extended Kalman smoother[Bell, 1994]IEKS

(21)

Iterative ensemble Kalman filters

◮The iterative extended Kalman filter[Wishner et al., 1969; Jazwinski, 1970]IEKF

◮The iterative extended Kalman smoother[Bell, 1994]IEKS

☎ Much too costly + needs the TLM and the adjoint−→ensemble methods ✆

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 19 / 29

(22)

Iterative ensemble Kalman filters

◮The iterative extended Kalman filter[Wishner et al., 1969; Jazwinski, 1970]IEKF

◮The iterative extended Kalman smoother[Bell, 1994]IEKS

☎ Much too costly + needs the TLM and the adjoint−→ensemble methods ✆

◮The iterative ensemble Kalman filter[Sakov et al., 2012; Bocquet and Sakov, 2012]IEnKF

◮The iterative ensemble Kalman smoother[This talk. . . ] IEnKS

(23)

Iterative ensemble Kalman filters

◮The iterative extended Kalman filter[Wishner et al., 1969; Jazwinski, 1970]IEKF

◮The iterative extended Kalman smoother[Bell, 1994]IEKS

☎ Much too costly + needs the TLM and the adjoint−→ensemble methods ✆

◮The iterative ensemble Kalman filter[Sakov et al., 2012; Bocquet and Sakov, 2012]IEnKF

◮The iterative ensemble Kalman smoother[This talk. . . ] IEnKS

☎ It’s TLM and adjoint free!✆

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 19 / 29

(24)

Iterative ensemble Kalman filters

◮The iterative extended Kalman filter[Wishner et al., 1969; Jazwinski, 1970]IEKF

◮The iterative extended Kalman smoother[Bell, 1994]IEKS

☎ Much too costly + needs the TLM and the adjoint−→ensemble methods ✆

◮The iterative ensemble Kalman filter[Sakov et al., 2012; Bocquet and Sakov, 2012]IEnKF

◮The iterative ensemble Kalman smoother[This talk. . . ] IEnKS

☎ It’s TLM and adjoint free!✆

☎ Don’t want to be bothered by inflation tuning?✆

(25)

Iterative ensemble Kalman filters

◮The iterative extended Kalman filter[Wishner et al., 1969; Jazwinski, 1970]IEKF

◮The iterative extended Kalman smoother[Bell, 1994]IEKS

☎ Much too costly + needs the TLM and the adjoint−→ensemble methods ✆

◮The iterative ensemble Kalman filter[Sakov et al., 2012; Bocquet and Sakov, 2012]IEnKF

◮The iterative ensemble Kalman smoother[This talk. . . ] IEnKS

☎ It’s TLM and adjoint free!✆

☎ Don’t want to be bothered by inflation tuning?✆

◮The finite-size iterative ensemble Kalman filter[Bocquet and Sakov, 2012]IEnKF-N

◮The finite-size iterative ensemble Kalman smoother[This talk. . . ] IEnKS-N

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 19 / 29

(26)

Iterative ensemble Kalman filters

◮A fairly recent idea:

[Gu & Oliver, 2007]: The idea.

[Kalnay & Yang, 2010]: A step in the right direction.

[Sakov, Oliver & Bertino, 2011]: The “pi`ece de r´esistance”

[Bocquet & Sakov, 2012]: Correction of the bundle scheme + ensemble transform form.

◮IEnKF cost function in ensemble space:

Jf(w) = 1

2(y2−H2(M12(x1+A1w)))TR21(y2−H2(M12(x1+A1w))) +1

2(N−1)wTw. (13)

◮Gauss-Newton scheme:

w(p+1)=w(p)−Hf(p)1∇Jf(w(p))

∇Jf(p)=−YT(p)R21

y2−H2M12(x+A1w(p))

+ (N−1)w(p),

Hf(p)= (N−1)IN+YT(p)R21Y(p), Y(p)= [H2M21A1](p), (14)

(27)

Iterative ensemble Kalman filters

◮SentivitiesY(p)computed by ensemble propagation without TLM and adjoint.

◮Finite-size versions of the filter are just defined by substituting the prior:

N−1

2 wTw−→ N 2ln

εN+wTw

. (15)

◮As a variationalreducedmethod, one can use Gauss-Newton[Sakov et al., 2012], Levenberg-Marquardt[Bocquet and Sakov, 2012; Chen and Oliver, 2012], etc, minimisation schemes (not limited to quasi-Newton).

◮Essentially a lag-one smoother. Does the job of a lag-one 4D-Var, with dynamical error covariance matrix and withoutthe use of the TLM and adjoint! Very efficient in very nonlinear conditions if one can afford the multiple ensemble propagations.

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 21 / 29

(28)

Finite-size iterative ensemble Kalman filters

◮Setup: Lorenz ’95,M= 40,N= 40, ∆t= 0.05−0.60,R=I.

◮Comparison of EnKF-N, EnKF (optimal inflation), IEnKF-N (bundle and transform), IEnKF (bundle and transform, optimal inflation)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time interval between updates 0.15

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Analysis rmse EnKF-N

EnKF (opt. infl.) IEnKF (bundle, opt. infl.) IEnKF-N (transform) IEnKF (transform, opt. infl.) IEnKF-N (bundle)

N=40

(29)

Iterative ensemble Kalman smoothers

◮In a mildly nonlinear context (built on linear and Gaussian hypotheses)

Many earlier studies, see[Cosme et al., 2012]for a review, and[Cosme et al., 2010]for an application to oceanography.

◮In a non-sequential but very non-linear context

Many earlier studies, for instance[Evensen and van Leeuwen, 2000]

[Chen & Oliver, 2012]in the context of reservoir modelling

◮Sequential nonlinear context: [This talk]

The IEnKS cost function is just the extension of the IEnKF cost function for a temporal window ofLcycles.

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 23 / 29

(30)

Finite-size iterative ensemble Kalman smoothers

◮Setup: Lorenz ’95,M= 40,N= 20, ∆t= 0.05,R=I.

◮Comparison of EnKF-N, IEnKS-N, Lin-IEnKS-N, EnKS-N, IEnKS-N with a large inflation (reduced-rank 4D-Var?), withL= 20.

0 2 4 6 8 10 12 14 16 18 20

Lag (number of cycles) 0.10

0.18 0.20

0.16 0.14 0.12 0.22

0.08

Re-analysis rmse

EnKF-N Lin-IEnKS-N EnKSIEnKS-N λ=10 IEnKS-N

(31)

Finite-size iterative ensemble Kalman smoothers

◮Setup: Lorenz ’95,M= 40,N= 20, ∆t= 0.30,R=I.

◮Comparison of EnKF-N, IEnKF-N, IEnKS-N, ETKS-N, withL= 10.

◮Lin-IEnKS-N has (understandably) diverged.

0 1 2 3 4 5 6 7 8 9 10

Lag (number of cycles) 0.10

0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.90 0.80

Re-analysis rmse

EnKF-N EnKS-N IEnKS-N IEnKF-N

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 25 / 29

(32)

Finite-size iterative ensemble Kalman smoothers

◮Setup: 2D turbulence, 64×64,N= 40, ∆t= 2,R= 0.1I.

◮Comparison of EnKF-N, IEnKF-N, IEnKS-N, ETKS-N, withL= 20.

0 2 4 6 8 10 12 14 16 18 20

Lag (number of cycles) 0.003

0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016

Vorticity re-analysis rmse

EnKF-N Lin-IEnKS-N EnKS-N IEnKS-N

(33)

Outline

1 The primal EnKF-N

2 The dual EnKF-N

3 The iterative ensemble Kalman filter & smoother

4 Conclusions

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 27 / 29

(34)

Conclusions

A new prior for the ensemble forecast meant to be used in an EnKF analysis has been built. It takes into accountsampling errors.

It yields a new class of filtersEnKF-N, thatdoes not seem to require inflation supposed to account for sampling errors.

Local variants (both LA and CL) available.

Dual variant EnKF-N is an EnKF with built-inoptimalinflation (accounting for sampling errors).

Almost linear regime more problematic because of Jeffreys’ prior. Another hyperprior is needed.

The iterative ensemble Kalman filter has been generalised to an iterative ensemble Kalman smoother (IEnKF). It is anEn-Varmethod.

It istangent linear and adjoint free. It is, by construction,flow-dependent.

Though based on Gaussian assumptions, it can offer better retrospective analysis than standard Kalman smoothers in midly nonlinear conditions.

When affordable, it beats other Kalman filter/smoothers in strongly non-linear conditions.

(35)

Main references I

Bocquet, M., 2011. Ensemble Kalman filtering without the intrinsic need for inflation. Nonlin.

Processes Geophys. 18, 735–750.

Bocquet, M., Sakov, P., 2012. Combining inflation-free and iterative ensemble kalman filters for strongly nonlinear systems. Nonlin. Processes Geophys. 19, 383–399.

Chen, Y., Oliver, D. S., 2012. Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44, 1–26.

Cosme, E., Brankart, J.-M., Verron, J., Brasseur, P., Krysta, M., 2010. Implementation of a reduced-rank, square-root smoother for ocean data assimilation. Mon. Wea. Rev. 33, 87–100.

Cosme, E., Verron, J., Brasseur, P., Blum, J., Auroux, D., 2012. Smoothing problems in a bayesian framework and their linear gaussian solutions. Mon. Wea. Rev. 140, 683–695.

Evensen, G., van Leeuwen, P. J., 2000. An ensemble Kalman smoother for nonlinear dynamics. Mon.

Wea. Rev. 128, 1852–1867.

Gu, Y., Oliver, D. S., 2007. An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE Journal 12, 438–446.

Sakov, P., Oliver, D., Bertino, L., 2012. An iterative EnKF for strongly nonlinear systems. Mon. Wea.

Rev. 140, 1988–2004.

M. Bocquet Int. Conf. Ens. Meth. Geo. Sc., Toulouse, France, 12-16 November 2012 29 / 29

Références

Documents relatifs

La sécurité des structures en béton armé vis-à-vis des phénomènes d’instabilité, ne peut être valablement appréhendée que par des calculs tenant compte d’une part des

Nous appelons prolage de textes l'utilisation d'outils de calibrage donnant des in- dications sur l'emploi du vocabulaire, mais aussi de catgories et de patrons morpho-

Here, we generate three different datasets (true state, noisy observations and analog database) using the ex- act Lorenz-63 differential equations with the classical parameters ρ =

We present experimental evidence for real dynamic texture that using only a catalog database of historical data and without having any assumption on the model, the proposed

Quora propose un service où tout un chacun peut venir poser une question et en récolter les réponses d’autres utilisateurs, tout ceci organisé par sujet.(Robbins,

Section 1.1 presents the nonlinear filtering problem discussed in the article, the Extended Kalman-Bucy filter, the associated nonlinear McKean Vlasov diffusion and its mean

Strongly coupled EnKF was implemented in [61] to recover the Atlantic merid- ional overturning circulation (AMOC) with simulated observations in a low-order coupled

The continuous time version of the sample variance equations stated in Theorem 3.1 also coincides with the one-dimensional stochastic Riccati equation discussed in [22], see also