• Aucun résultat trouvé

SEMICLASSICAL CALCULATIONS OF THE IMAGINARY PART OF THE NUCLEON-NUCLEUS OPTICAL POTENTIAL

N/A
N/A
Protected

Academic year: 2021

Partager "SEMICLASSICAL CALCULATIONS OF THE IMAGINARY PART OF THE NUCLEON-NUCLEUS OPTICAL POTENTIAL"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00224227

https://hal.archives-ouvertes.fr/jpa-00224227

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

SEMICLASSICAL CALCULATIONS OF THE

IMAGINARY PART OF THE NUCLEON-NUCLEUS

OPTICAL POTENTIAL

R. Hasse, P. Schuck

To cite this version:

(2)

JOURNAL

DE

PHYSIQUE

Colloque C6, supplément a u n06, Tome 45, juin 1984 page C6-213

S E M I C L A S S I C A L CALCULATIONS OF THE I M A G I N A R Y PART OF THE NUCLEON-NUCLEUS O P T I C A L P O T E N T I A L

R.W. Hasse and P. schuck*

I n s t i t u t Laue-Langevin, 38042 Grenoble Cedex, France

* ~ n s t i t u t des Sciences Nucléaires, 38026 Grenoble Cedex, France

Résumé - On c a l c u l e pour des noyaux f i n i s , l a p a r t i e i m a g i n a i r e du p o t e n t i e l o p t i q u e noyau-nucléon s u r e t h o r s couche u t i l i s a n t l ' a p p r o x i m a t i o n du gaz de Fermi l o c a l e t une f o r c e d ' é c h a n g e à deux c o r p s a y a n t une p o r t é e f i n i e . On compare l e s r é s u l t a t s a v e c ceux o b t e n u s p a r d e s c a l c u l s p o u r l a m a t i e r e i n f i n i e e t ceux o b t e n u s s o i t pour l a d e n s i t é l o c a l e s o i t pour l ' a p p r o x i m a t i o n de G l a u b e r .

A b s t r a c t - We c a l c u l a t e f o r f i n i t e n u c l e i t h e i m a g i n a r y p a r t of t h e n u c l e u s - n u c l e o n o p t i c a l p o t e n t i a l on and o f f s h e l l by u s i n g t h e l o c a l Fermi gas a p p r o x i m a t i o n and a f i n i t e r a n g e two-body exchange f o r c e . R e s u l t s a r e compared w i t h t h o s e o b t a i n e d by i n f i n i t e n u c l e a r m a t t e r c a l c u l a t i o n s a s w e l l a s u s i n g t h e l o c a l d e n s i t y o r Glauber a p p r o x i m a t i o n . I

-

INTRODUCTION The i m a g i n a r y p a r t of t h e n u c l e u s - n u c l e o n o p t i c a l p o t e n t i a l e n t e r s d i r e c t l y i n v a r i o u s q u a n t i t i e s of i n t e r e s t i n s t a t i c p r o p e r t i e s of n u c l e i o r i n n u c l e a r r e a c t i o n t h e o r i e s , e . g . i n t h e e f f e c t i v e mass 1 1 1 and t h e s e l f e n e r g y 12-51, t h e n u c l e o n mean f r e e p a t h 16-7 / a n d q u a s i - p a r t i c l e l i f e t i m e s 1 8 1 o r i n t h e o r i e s of i n e l a s t i c s c a t t e r i n g . Whereas t h e o p t i c a l p o t e n t i a l h a s been o f t e n c a l c u l a t e d f u l l y micro- s c o p i c a l l y , s e m i c l a s s i c a l c a l c u l a t i o n s e x i s t o n l y f o r i n f i n i t e n u c l e a r m a t t e r / 3 , 9 , 1 0 / o r f i n i t e n u c l e i w i t h t h e l o c a l d e n s i t y a p p r o x i m a t i o n / 5 / . The l a t t e r a p p r o x i m a t i o n c o n s i s t s of r e p l a c i n g t h e Fermi energy

A

by i t s l o c a l e q u i v a l e n t E F (R). A r e v i e w o v e r e x i s t i n g s e m i c l a s s i c a l c a l c u l a t i o n s i s g i v e n i n r e f . 1111. I n t h i s p a p e r we a r e concerned w i t h f i n i t e n u c l e i and t a k e t h e f i n i t e s i z e e f f e c t s i n t o a c c o u n t e x a c t l y w i t h h e l p of a n a v e r a g e n u c l e a r p o t e n t i a l V(R) which we need n o t s p e c i f y e x p l i c i t l y . F u r t h e r m o r e , we a l s o c a l c u l a t e t h e o f f s h e l l b e h a v i o u r of t h e o p t i c a l p o t e n t i a l which h a s o f t e n b e e n assumed t o b e weak 171. I n o r d e r t o b e r e a l i s t i c , we employ a f i n i t e r a n g e exchange p o t e n t i a l which f o r c e s t h e o p t i c a l p o t e n t i a l t o d e c r e a s e a t h i g h e n e r g i e s . R e s u l t s w i l l a l s o b e compared w i t h t h o s e o b t a i n e d by u s e o f t h e Glauber a p p r o x i m a t i o n which n e g l e c o ; t h e P a u l i p r i n c i p l e . P r e l i m i n a r y r e s u l t s have a l r e a d y been p r e s e n t e d i n r e f s . / 1 2 , 1 3 / , II - THE MODEL Beyond Hartree-Fock, t h e f i r s t c o r r e c t i o n s t o t h e . n u c l e a r s e l f e n e r g y a r e g i v e n by c o r e p o l a r i z a t i o n and c o r r e l a t i o n c o n t r i b u t i o n s a c c o r d i n g t o F i g . 1 . F i g . 1 - The f i r s t t h r e e g r a p h s T

*

-

of t h e n u c l e a r s e l f e n e r g y .

O

Zr-lh

,

L J Z R Ip - 2 h , W LA

Hartree-Fock Polarization Correlation

(3)

C6-214 JOURNAL

DE

PHYSIQUE

W r i t t e n i n terms of t h e mass o p e r a t o r ,

-

where n , n and E a r e t h e p a r t i c l e and hole d e n s i t i e s and e n e r g i e s , r e s p e c t i v e l y , and 7t i s t h e two-body i n t e r a c t i o n , one s e e s t h a t t h e p o l a r i z a t i o n graph c o n t r i b u t e s only i f t h e energy w i s above t h e Fermi energy

X

and t h e c o r r e l a t i o n graph only i f w i s s m a l l e r t h a n

A.

Rewriting t h e imaginary p a r t of ( 1 ) i n space r e p r e s e n t a t i o n , one o b t a i n s the nonlocal imaginary p a r t of t h e o p t i c a l p o t e n t i a l ,

Here

z,

p and H a r e t h e p a r t i c l e and h o l e d e n s i t y o p e r a t o r s and t h e one p a r t i c l e Hamiltonian, r e s p e c t i v e l y .

I n o r d e r t o o b t a i n t h e c o o r d i n a t e and momentum dependent o p t i c a l p o t e n t i a l f o r a c o n t a c t exchange f o r c e

we go over t o r e l a t i v e and center-of-mass c o o r d i n a t e s a c c a r d i n g t o

-f + + +

and F o u r i e r transform with r e s p e c t t o t h e c.m. c o o r d i n a t e s , s + P, s i + p i . Then

the m a t r i x elements i n e q . ( 2 ) can be w r i t t e n i n s e m i c l a s s i c a l a p p r o x i m a t ~ o n as

and, s i m i l a r l ~ , f o r exp(-iHt). This y i e l d s

where 8 - i n d i c a t e s t h e same s t e p f u n c t i o n i n t h e s q u a r e b r a c k e t b u t taken a t

(4)

where we have i n t r o d u c e d t h e l o c a l Permi energy and t h e l o c a l Fermi momentum according t o

I n eq. ( 7 ) f i n i t e s i z e e f f e c t s e n t e r d i r e c t l y i n t h e energy conserving ô-function by t h e a d d i t i o n a l l o c a l Fermi energy.

For s i m p l i c i t y , we now use a Gaussian f o r c e of range ro i n c o o r d i n a t e o r of range k i n momentum space

+

Then the i n t e g r a t i o n over x i n eq. ( 7 ) can be performed. Furthermore, t h e momentum conserving ô-function s u g g e s t s t o i n t r o d u c e t h e r e l a t i v e and c.m. momentum t r a n s f e r s according t o

*

9 , ' F

-q/z

% = P

+ 5 / 2

(10)

and t o use t h e angle convention

(5)

C6-216 JOURNAL DE PHYSIQUE

where R i s t h e t u r n i n g p o i n t a t which V ( R ) = A .

III - ZERO RANGE FORCE

Eq. ( 1 2 ) s i m p l i f i e s c o n s i d e r a b l y i f t h e r a n g e of t h e f o r c e t e n d s t o z e r o o r k -t m.

The f i r s t l i n e o f e q . ( 1 2 ) becomes c o n s t a n t and t h e second and t h i r d l i n e s r e 8 u c e t o

The dependence of W on R h e r e i s o n l y c o n t a i n e d i n t h e l o c a l Fermi energy ( 8 ) s o t h a t e q . ( 1 3 ) c a n be employed f o r a r b i t r a r y p o t e n t i a l s . Here and i n t h e f o l l o w i n g we n o r m a l i z e W t o a t t a i n t h e v a l u e 1 / 4 X a t w = P = R = O. Momentum t r a n s f e r s a r e l i m i t e d t o

zfF(R)+

~ Z ~ ~ X - L O + L F CF))

cJ4

A

0 4

f f :

p,

( t

2

f ~ n

(w-h

+cr

CU)

w l

A

j which p r o v i d e s a l s o a s m a l l e n e r g y c u t o f f .

R e s u l t s f o r R = O a r e shown i n F i g s . 1 and 2 . One o b s e r v e s t h e w e l l known q u a d r a t i c b e h a v i o u r around w = X which p e r s i s t s even f o r l a r g e P and which i s f a i r l y indepen- d e n t of P . However, c o n t r a r y t o t h e c l a i m s i n r e f s . / 2 , 8 / , c o n t r i b u t i o n s from t h e p o l a r i z a t i o n and from t h e c o r r e l a t i o n graphs a r e n o t s t r i c t l y symmetric. This e f f e c t i s s t r o n g l y pronounced a t s m a l l P . As a consequence o f i n f i n i t e q u a s i p a r t i c l e l i f e - time a t w =

A,

W(w =

X ,

P , R) must v a n i s h . F i n a l l y , one o b s e r v e s t h a t t h e n o n l o c a l - i t y of W i s r a t h e r i m p o r t a n t f o r a l 1 e n e r g i e s excewt w A , which c a l l s i n q u e s t i o n t h e o f t e n made "innocous assumption" / 7 / of a l o c a l i m a g i n a r y p a r t of t h e o n t i c a l p o t e n t i a l . 5 F i g . 1

-

Contour p l o t of W(w, P , R = 0 ) f o r a z e r o r a n g e f o r c e . Energy E and energy t r a n s f e r p 2 / 2 r n a r e measured i n u n i t s of t h e Fermi energy. p z 3

1 ;

1 O - 3 - 2 - 1 O 1 2 3 4 5 - E

For z e r o momentum t r a n s f e r , W(w, P = O , R = 0) can b e c a l c u l a t e d a n a l y t i c a l l y

(6)
(7)

C6-218

JOURNAL

DE

PHYSIQUE

and t h e Glauber auproximation a r e shown i n Fig. 3. Here t h e Glauber r e s u l t has been o b t a i n e d by n e g l e c t i n g t h e P a u l i p r i n c i p l e , i . e . dropping t h e second and t h i r d 8-

f u n c t i o n s i n eq. ( 7 ) and n e g l e c t i n g t h e h o l e energy p12/2m i n t h e energy conserving

Local F G. 0.3

-

O1

-

- 4 -3 - 2 -1 O 1 F i g . 3

-

The imaginary p a r t of t h e o p t i c a l p o t e n t i a l a t R = O f o r v a r i o u s v a l u e s of P and i n t h e Glauber approximation.

ô-function. One s e e s t h a t t h e l o c a l e q u i v a l e n t and P = O v a l u e s a r e r a t h e r s i m i l a r f o r p o s i t i v e e n e r g i e s b u t t h a t t h e on s h e l l value d i f f e r s d r a s t i c a l l y f o r l a r g e e n e r g i e s . The Glauber approximation l i e s always above by v i r t u e of t h e a d d i t i o n a l phase space gained by n e g l e c t i n g t h e P a u l i p r i n c i p l e .

I n t u r n i n g t o f i n i t e s i z e e f f e c t s , W can be c a l c u l a t e d a n a l y t i c a l l y on s h e l l , w = p2/2m

+

v ( R ) ,

The dependence on P' h e r e i s e x a c t l y t h e same a s i n i n f i n i t e n u c l e a r m a t t e r /2,10/ b u t w i t h

X

r e p l a c e d by t h e l o c a l cF(R). However, eq. (16) i s not s t r i c t l y t h e same r e s u l t a s one would employ t h e l o c a l d e n s i t y approximation, i . e . r e ~ l a c i n g h by E ( R ) everywhere s i n c e t h e r e g i o n s of v a l i d i t ~ of t h e d i f f e r e n t branches do depend

(8)

Fig. 4 shows t h e dependence of W on E ~ ( R ) o r , i n o t h e r words, on t h e r a d i u s R. The upper curve then corresponds t o t h e n u c l e a r i n t e r i o r and t h e lower ones t o t h e s u r f a c e . I n assuming f o r i n s t a n c e a Woods-Saxon p o t e n t i a l , f o r f i x e d energy, W i s almost c o n s t a n t i n t h e i n t e r i o r and f a l l s o f f s h a r p l y a t t h e s u r f a c e . The l o c a l d e n s i t y approximation, on t h e c o n t r a r y , would y i e l d curves s h i f t e d t o t h e l e f t and, t h u s , v i o l a t i n g t h e b a s i c f e a t u r e of W(w = A, P , R) = 0.

I V

-

FINITE RANGE FORCE

Gaussian two-body e f f e c t i v e i n t e r a c t i o n s have t y p i c a l ranges of 2.25 fm 1141, i . e . k /kF = 0.625. We t h e r e f o r e solved eq. (12) numerically f o r v a r i o u s r a n g e s . The

aussia an

exp (-2q2/k02) c u t s o f f e f f e c t i v e l y t h e high momentum t r a n s f e r contribu-

t i o n s and, hence, f o r c e s W t o d e c r e a s e a t high energy a s shown i n W(w, O . S . , R = 0) of Fig. 5 . The s t r e n g t h of t h e f o r c e , h e r e a g a i n , has been a d j u s t e d t o a t t a i n

Finite range Local F. G. F i g . 5

-

Imaginary p a r t of t h e o p t i c a l p o t e n t i a l on s h e l l a t R = O f o r v a r i o u s ranges k /k of the two-body e f f e c t i v e O F Gaussian i n t e r a c t i o n .

W(w = O, P = O , R = 0) = 114 A . The l a r g e r the range, i . e . t h e s m a l l e r ko i s , t h e more c o n c e n t r a t e d i s W around small e n e r g i e s .

For f i n i t e r a d i i , W now depends a l s o on t h e n u c l e a r mass number v i a R i n t h e RI- i n t e g r a t i o n . Fig. 6 t h e r e f o r e shows W(w, O . S . , R) f o r a 4 0 ~ a h a r m o n i c O o s c i l l a t o r and ko/kF = 0.625 a t v a r i o u s E (R). A cornparison w i t h t h e z e r o range e q u i v a l e n t ,

F F~nite range Nonlocal E G. On shell k0/kF=0625

i/znw,/~

=0.154 F i g . 6

-

Imaginary p a r t of t h e on s h e l l o p t i c a l p o t e n t i a l f o r 4 0 ~ a and v a r i o u s l o c a l Fermi e n e r g i e s .

Fig. 4, shows a g a i n t h e d e c r e a s e of t h e o p t i c a l p o t e n t i a l i n t h e s u r f a c e and a c o n c e n t r a t i o n near small p o s i t i v e and n e g a t i v e e n e r g i e s .

(9)

C6-220

JOURNAL

DE

PHYSIQUE

10 I I I F i g . 7

-

Imaginary p a r t of t h e on s h e l l

w ( ~ ) Local F.G. o p t i c a l ~ o t e n t i a l a t R = O and r a n g e On shell ,-')k.=l0 ko/kF = 0.625 compared w i t h t h e Glauber

-

Finite range - a p p r o x i m a t i o n .

0.6-

O 2 4 6

phase s p a c e g a i n e d by t h e n e g l e c t i o n of t h e P a u l i p r i n c i p l e enhances W r o u g h l y by a c o n s t a n t amount f o r a l 1 e n e r g i e s .

V . SUMMARY AND OUTLOOK

We have a p p l i e d s e m i c l a s s i c a l methods f o r t h e c a l c u l a t i o n o f t h e imaginary p a r t of t h e o p t i c a l p o t e n t i a l W(w, P, R). F i n i t e s i z e e f f e c t s have been i n c o r p o r a t e d by means of t h e n o n l o c a l Fermi g a s a p p r o x i m a t i o n and a f i n i t e range e f f e c t i v e i n t e r - a c t i o n . As r e s u l t s we found t h a t t h e f i n i t e r a n g e of t h e f o r c e is r e s v o n s i b l e f o r t h e f a 1 1 o f f of W a t h i g h e n e r g i e s ; t h a t t h e n o n l o c a l i t y of W i s s t r o n g l y pronounced e s p e c i a l l y f o r s m a l l P ; t h a t t h e Glauber a p p r o x i m a t i o n y i e l d s v a l u e s of W always t o o h i g h by a b o u t a c o n s t a n t amount and t h a t t h e s t r i c t l o c a l d e n s i t y a p p r o x i m a t i o n o n l y r o u g h l y s i m u l a t e s f i n i t e s i z e e f f e c t s . F u r t h e r s t u d i e s on t h i s s u b j e c t w i l l be d e v o t e d t o t h e c a l c u l a t i o n s of t h e r e a l D a r t of t h e o p t i c a l p o t e n t i a l v i a s u b t r a c t e d d i s p e r s i o n r e l a t i o n s , t h u s o b t a i n i n g e . g . t h e c o r r e c t i o n t o t h e Hartree-Fock v o t e n t i a l and r e a l i s t i c l e v e l d e n s i t i e s around t h e Fermi e n e r g y , e f f e c t i v e masses and momentum d i s t r i b u t i o n s .

REFERENCES

/ 1 / MAHAUX C. and NGÔ H., Phys. L e t t . (1981) 285. / 2 / ORLAND H . and SCHAEFFER R., Nucl. Phys. A299 (1978) 442. / 3 / SARTOR R. and MAHAUX C . , Phys. Rev. C21 (1980) 1546.

-

/ 4 / BERNARDV. andMAHAUX C . , Phys. Rev.

C23

(1981) 888.

/ 5 / MAHAUXC. a n d ~ ~ Ô H . , N u c l . Phys.* (1983) 271.

/ 6 / NEGELE J . W . and YAZAKI K . , Phys. Rev. L e t t . (1981) 71. / 7 / M A U X C . , Phys. Rev.

C28

(1983) 1848.

/ 8 / BROWN G. i n "Many Body Problems" (North-Holland/Elsevier, Amsterdam, 1972) ch. 29.

/ 9 / GALITSKII V.M., Zh. Eksp. Teor. F i z . 34 (1958) 151 [Sov. Phys. JETP

7

(1958)

1041.

-

/ I O / B R E N I G W., Nucl. Phys. 13 (1959) 333.

/ i l / JEUKENNE J . P . , LEJEUNE

A,

and MAHAUX C., Phys. Rep.

2

(1976) 83.

1121 HASSE R.W. and SCHUCK P., P r o c . I n t . Conf. on Nuclear P h y s i c s , F l o r e n c e , 1983 ( T i p o g r a f i a Compositori, Bologna, 1983) p . 777.

1131 HASSE R.W. and SCHUCK P . , P r o c . I n t . Symp. on Highly E x c i t e d S t a t e s and N u c l e a r S t r u c t u r e , Orsay, 1983 (Orsay, 1983) p . 16.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to