• Aucun résultat trouvé

A GENERAL ITERATION SCHEME FOR THE CALCULATION OF LEVEL DENSITIES, AND RESULTS USING A SEMICLASSICAL APPROXIMATION

N/A
N/A
Protected

Academic year: 2021

Partager "A GENERAL ITERATION SCHEME FOR THE CALCULATION OF LEVEL DENSITIES, AND RESULTS USING A SEMICLASSICAL APPROXIMATION"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00224229

https://hal.archives-ouvertes.fr/jpa-00224229

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A GENERAL ITERATION SCHEME FOR THE

CALCULATION OF LEVEL DENSITIES, AND

RESULTS USING A SEMICLASSICAL

APPROXIMATION

A. Blin, B. Hiller, R. Hasse, P. Schuck

To cite this version:

(2)

A GENERAL I T E R A T I O N SCHEME FOR THE C A L C U L A T I O N OF L E V E L D E N S I T I E S , AND RESULTS U S I N G A S E M I C L A S S I C A L A P P R O X I M A T I O N

A . H . B l i n , B . H i l l e r , R.W. as se* and P. ~chuck**

Centre dlEtudes Nucléaires de Grenoble, Laboratoire de Physique Nucléaire, 85 X, 38041 Grenoble Cedex, France

* ~ n s t i t u t Laue-Langevin, 38042 Grenoble Cedex, France

* * ~ n s t i t u t des Sciences Nucléaires, 38026 Grenoble Cedex, France

Résumé

-

Un schéma général e s t d é r i v é pour c a l c u l e r des d e n s i t é s de niveaux à

m p a r t i c u l e s e t n trous des fermions pour t o u t Hamiltonien à p a r t i c u l e s indé- pendantes en t e n a n t compte du p r i n c i p e de P a u l i . Cette technique e s t appliquée pour o b t e n i r l e s d e n s i t é s de niveaux de l ' o s c i l l a t e u r harmonique i s o t r o p i q u e

à t r o i s dimensions semiclassiquement dans l'approximation de Thomas-Fermi. Abstract

-

A general scheme i s derived t o c a l c u l a t e m-particle n-hole fermion l e v e l densi t i e s f o r any s i n g l e p a r t i c l e Hamil tonian taking i n t o account Pauli exclusion. This technique i s applied t o o b t a i n l e v e l d e n s i t i e s of t h e t h r e e dimensional i s o t r o p i c Harmonic Oscil l a t o r semicl a s s i c a l l y i n the

Thomas- Fermi approach .

1

-

INTRODUCTION

-

I t has been shown r e c e n t l y 111 t h a t t h e usual Thomas-Fermi (TF) approach C21,

which i s a s e m i c l a s s i c a l treatment, y i e l d s average 1 - p a r t i c l e 1-hole and 2 - p a r t i c l e 2-hole level d e n s i t i e s , o f an i s o t r o p i c Harmonic O s c i l l a t o r , which a r e i n a very good agreement t o t h e e x a c t quantum mechanical l e v e l d e n s i t i e s . We develop a gene- r a l scheme which permits t o c a l c u l a t e . e x a c t l y a r b i t r a r y m-particle n-hole e x c i t a - t i o n s f o r any type of s i n g l e p a r t i c l e Hamiltonians. We e x p l i c i t l y take i n t o account t h e Pauli exclusion p r i n c i p l e f o r fermions. Encouraged by t h e above mentioned TF r e s u l t s , we use our scheme t o c a l c u l a t e a l 1 m-particle n-hole l e v e l d e n s i t i e s u p t o m,n = 3 .

Level d e n s i t i e s with equal number o f p a r t i c l e s and holes a r e o f i n t e r e s t f o r instan- ce i n the study o f precompound r e a c t i o n s and of t h e s p r e a d i n g w i d t b o f g i a n t resonan- ces [3,41. O n t h e o t h e r hand, t h e l e v e l d e n s i t i e s a s s o c i a t e d w i t h unequal number of p a r t i c l e s and holes f i n d t h e i r a p p l i c a t i o n in t h e c a l c u l a t i o n o f s h e l l mode1 o p t i c a l p o t e n t i a l s [21.

In t h e next s e c t i o n we d e r i v e an i t e r a t i o n formula t o c a l c u l a t e t h e m-particle n-hole level d e n s i t i e s . In s e c t i o n 3 we apply t h i s scheme t o t h e case o f an i s o t r o - pic t h r e e dimensional Harmonic o s c i l l a t o r . We o b t a i n a n a l y t i c a l r e s u l t s i n the T F approach.

2

-

DERIVATION OF AN ITERATION FORMULA FOR MANY-PARTICLE MANY-HOLE LEVEL DENSITIES

-

The d e f i n i t i o n of the e x a c t m-particle n-hole l e v e l d e n s i t y f o r fermions as a func- t i o n o f t h e energy E i s :

Pm h n

where the min f o l d sum o u t s i d e of t h e Dirac d e l t a function 6 extends over al1 p a r t i - c l e s t a t e s ( l a b e l l e d by t h e indexes p l through pm) with t h e r e s t r i c t i o n p l < .

.

.<pm,

(3)

C6-232 JOURNAL DE PHYSIQUE

and s i m i l a r l y f o r t h e hole s t a t e s h . . The r e s t r i c t i o n s p l < .

.

.< p

,

and h l < . . . < h n

a r e t o avoid m u l t i p l e counting of t i e same terms and t o honor t h p Pauli exclusion p r i n c i p l e . The E~ a r e the eigenvalues of the s i n g l e p a r t i c l e Hamiltonian H .

Equation (2.1) can be r e w r i t t e n as :

pm 'n 1-im 'n

nh(E) = C

< u l

,...

pm,v

,,...

v n l IT B(H - E ~ ) T B ( E ~ - H ~ ) ~ ( E - c E f C E ~ )

p l < . ..<Pm

u=u

1 Fi v=v1 u=u1" v=vi

V I < .

.

.<vn

By introducing t h e proper s t e p functions 0 , t h e p a r t i c l e s t a t e s a r e guaranteed t o l i e above the fermi energy E F , and t h e hole s t a t e s below. We replaced t h e summation i n d i c e s pi and h . by pi and v . t o i n d i c a t e t h a t each of them runs now over a l 1 par- t i c l e and hole s t a t e s . We introduced a l s o t h e product e i g e n s t a t e s with t h e property

Hi 1 ~ 1 . . . u m 5 V I . . . V n > = E i ] p l . . .Pm, V I . .

.Cn>

where i i s of the s e t

{ u l , .

.

. p m , v ~ , . . . v n } .

A convenient r e p r e s e n t a t i o n o f t h e level d e n s i t y i s obtained by applying a Fourier transform ( E + t , with the d e f i n i t i o n : = ) t o e q . ( 2 . 2 ) :

00 h

i . e . t h e resul t f a c t o r i z e s i n t o a p a r t i c l e component

and a hole component

Note t h a t i f t h e sums i n e q s . ( 2 . 5 ) and ( 2 . 6 ) were u n r e s t r i c t e d , one could w r i t e

A",

and 8 simply a s t r a c e s . However, i t i s p o s s i b l e t o express ,,A, and R i n terms of t r a c e g , by observing the following. A r e s t r i c t e d sum over two indice? o f a function f can be w r i t t e n as an u n r e s t r i c t e d sum minus a sum over t h e diagonal terms and d i - vided by two t o take i n t o account double counting. To s i m p l i f y Our n o t a t i o n , we de- f i ne

f ( u ) < ~ I B ( H ~ - E ~ ) e-BH1i~u> ( 2 . 7 )

and note t h a t e q . ( 2 . 5 ) f o r two p a r t i c l e s can then be w r i t t e n as

S i m i l a r l y , i n t h e case o f t h r e e i n d i c e s , we have

(4)

p,>~i, e t c . , which occur 3 ! times f o r t h r e e i n d i c e s .

Note, t h a t i n e q s . ( 2 . 8 ) and ( 2 . 9 ) t h e sums on t h e r i g h t hand s i d e a r e now u n r e s t r i c - t e d and t h e r e f o r e can be w r i t t e n a s t r a c e s . For an a r b i t r a r y number of i n d i c e s we o b t a i n rom comb t o r i c s t h e following i t e r a t i o n formulae f o r a new s e t o f func- t i o n s A b ) and B!l7(defined as and s i m i l a r l y f o r BA')): Bh')(B) = B j e ) ( $ ) . ( B i o ) ( 8 ) ) n - 1

-

'

(n)

Bn-k+l ('+'-')(8) f o r n 2 k=2 with t h e i n i t i a l d e f i n i t i o n s A t r { B ( H - E ~ ) e

-

( ~ + l ) BH

j

The Fourier transformed level d e n s i t y i s then 1 ( 0 ) 1

Gmpnh(B) = Am(B) .Bn(B) = Am ( 8 ) .

5

BA0)(8)

The functions A(') and B(') a r e completely determined by t h e i t e r a t i o n procedure, e q s . ( 2 . 1 0 ) t h r o t g h (2.147, as i s t h e l e v e l . d e n s i t y , e q . ( 2 . 1 5 ) . Note t h a t l e v e l den- s i t i e s o f t h e form gopnh and gmpoh a r e obtained by s e t t i n g Ao(8) = 1 o r Bo(@) = 1 , r e s p e c t i v e l y , as fol lowç immediately frorn eq. ( 2 . 1 ) .

The above equations a r e v a l i d f o r l e v e l d e n s i t i e s of any ( s i n g l e p a r t i c l e ) Hamilto- nian. We emphasize t h a t i n t h e case L? = O , t h e sums which a r e s u b t r a c t e d i n

e q s . ( 2 . 1 1 ) and ( 2 . 1 2 ) a r e t h e c o r r e c t i o n terms due t o t h e Pauli exclusion p r i n c i p l e (because they s u b t r a c t terms with equal i n d i c e s , compare with eqs. ( 2 . 8 ) and (2.9)). We now proceed t o apply these equations t o a p a r t i c u l a r case.

3 - SEMICLASSICAL L E V E L DENSITIES OF THE HARMONIC OSCILLATOR

-

We consider t h e t h r e e dimensional i s o t r o p i c Harmonic Oscil 1 a t o r Hamil t o n i a n .

The semiclassical (Thomas-Fermi) approximation [21 i s obtained by replacing the o p e r a t o r H . by i t s c l a s s i c a l c o u n t e r p a r t and t h e t r a c e s i n e q s . ( 2 . 1 1 ) - (2.15) by

i n t e g r a t i o a s over phase space, i . e . .

(5)

C6-234 JOURNAL DE PHYSIQUE

I n t h e s e m i c l a s s i c a l a p p r o x i m a t i o n eqs. (2.13) and (2.14) become

Then t h e l e v e l d e n s i t i e s g (E) a r e o b t a i n e d w i t h t h e h e l p o f i t e r a t i o n formulae eqs.(2.11) and (2.12) and mpnh by an i n v e r s e F o u r i e r t r a n s f o r m o f eq.(2.15), which can be done a n a l y t i c a l l y , s i n c e i t i n v o l v e s o n l y terms o f t h e t y p e ,-uBcF B-V

transform t0 ~ ( E - V E ~ ) ( E - ~ E ~ ) " - ' / ( v - ~ ) ! ( v , ~ i n t e r g e r s , v>o, u=o, ti,.

.

.)

.

For t h e case o f o n e - p a r t i c l e one-hole and t w o - p a r t i c l e two-hole e x c i t a t i o n s t h e l e v e l d e n s i t i e s have been d e r i v e d i n r e f . [Il:: a l ready. F o r h i g h e r o r d e r l e v e l den- s i t i e s t h e a n a l y t i c a l e x p r e s s i o n s become p r o h i b i t i v e l y l e n g t h y t o be c a l c u l a t e d by hand. T h e r e f o r e we made use o f t h e computer code REDUCE [5], which a l l o w s f o r ana- l y t i c a l t r e a t m e n t o f l e n g t h y e x p r e s s i o n s .

We now d i s c u s s some o f t h e r e s u l t s . We a r e n o t g o i n g t o compare t h e s e m i c l a s s i c a l l e v e l d e n s i t i e s t o t h e e x a c t quantum mechanical ones, s i n c e i t has been shown i n r e f s . [ll and [ 6 ] t h a t a l r e a d y f o r glplh and gZPzh t h e o v e r a l l agreement o f t h e semi- c l a s s i c a l r e s u l t s w i t h t h e e x a c t ones i s e x c e l l e n t .

3.1. The Role o f t h e P a u l i E x c l u s i o n P r i n c i p l e -

F i r s t we show t h e r o l e o f t h e P a u l i e x c l u s i o n p r i n c i p l e . I n F i g . 1, t h e l o w e r c u r - ve shows t h e complete l e v e l d e n s i t y g, 3 h as a f u n c t i o n o f t h e energy, whereas t h e upper c u r v e r e p r e s e n t s t h e d i r e c t t e r g s

,

i . e . i s n o t c o r r e c t e d f o r t h e P a u l i p r i n c i p l e (see t h e remark a t t h e end o f S e c t i o n 2 ) . The d e v i a t i o n i s o f t h e o r d e r o f 35% a t E/tiw = 5, and o f 17% a t E/3w = 50 i n t h i s case. I t g e t s s m a l l e r f o r h i g h e r energieP. I t i s a l s o s m a l l e r f o r O l o w e r o r d e r e x c i t a t i o n s (e.g. f o r gZpzh i t

i s 7 % a t E/fiwo = 5 and 5% a t E/-Awo = 5 0 ) .

Fig.l-

The e f f e c t o f t h e P a u l i p r i n c i p l e on t h e s e m i c l a s s i c a l 3 - p a r t i c l e 3 - h o l e l e - v e l d e n s i t y g, as a f u n c t i o n o f energy E, i n u n i t s o f Ruo, which i s t h e Harmonic o s c i l l a t o r c o n g t a n t . The upper c u r v e i s c a l c u l a t e d w i t h o u t t a k i n g P a u l i e x c l u s i o n i n t o account, t h e l o w e r one i s t h e f u l l l e v e l d e n s i t y o b e y i n g t h e P a u l i p r i n c i p l e . The curves i n a l 1 f i g u r e s a r e f o r 40 fermions (no i s o s p i n c o n s i d e r e d ) .

(6)

F i g . 2. AS s h o u l d be expectei!lhthe l e v e l d e n s i t y eurves d i f f e r by o r d e r s o f magnitude, s i n c e t h e a v a i l a b l e phase space i n c r e a s e s d r a s t i c a l l y w i t h t h e o r d e r o f p a r t i c l e - h o l e e x c i t a t i o n s

.

$ipnhxhw.

and glxno.

F i .2

-

The e x c i t a t i o n l e v e l d e n s i t ~ e s glpIh ( c r o s s e s ) , gZpzh ( d o t s ) and g,p3h &rmost c u r v e ) . The l o w e s t c u r v e 1 n d i c a t e s t h e o n e - p a r t i c l e l e v e l densi t y gi

D e p o s i t i n g a g i v e n amount o f energy E i n a system o f many p a r t i c l e s i n a p o t e n t i a l e x c i t e s a l 1 n - p a r t i c l e n - h o l e s t a t e s w h i c h a r e above t h e i r r e s p e c t i v e t h r e s h o l d s . T h e r e f o r e we show t h e sum

i n Fig.3 and compare i t t o t h e w e l l - known s t a t i s t i c a l f o r m u l a [ 7 1

where we c a l c u l a t e t h e Fermi energy E~ ~ e m i c l a ~ ~ i c a l l y f r o m t h e p a r t i c l e number N i n t h e Harmonic O s c i l l a t o r

113

E~ = (3N) Tuo (3.7)

The s t a t i s t i c a l p r e d i c t i o n l i e s above t h e s e m i c l a s s i c a l sum f o r h i g h e r e x c i t a t i o n s , supposedly because we d i d n o t t a k e i n t o account e x c i t a t i o n s h i g h e r t h a n 3 - p a r t i c l e 3 - h o l e . Al though t h e diagram shows o n l y e x c i t a t i o n s below 4 tlw,, where t h e r e a r e no 4 - p a r t i c l e 4 - h o l e s t a t e s a l l o w e d by quantum mechanics, we shouTd n o t e t h a t t h e semi- c l a s s i c a l r e s u l t s e x h i b i t an average b e h a v i o r . T h e r e f o r e t h e gqpqh l e v e l d e n s i t y does have a t a i l below i t s e x a c t t h r e s h o l d and s h o u l d be i n c l uded i n t h e sum (3.5), which we d i d n o t .

The number o f s t a t e s f o r an n - p a r t i c l e n-hole e x c i t a t i o n i s g i v e n by :

E

Nnpnh(E) =

j

dE1gnpnh(El)

(7)

JOURNAL DE PHYSIQUE

Fig.3

-

The s t a t i s t i c a l e x c i t a t i o n level d e n s i t y ( s e e e q . ( 3 . 6 ) ) , d o t t e d l i n e , and the g i p l h + g ~ p , h + g3P3h) f u l l curve.

Since N l p i h and N~~~~ a r e already shown

N 3 P 3 h f o r reference ( F i g . 4 ) . i n Ref. [ 1 ' 3 ~ 3 ~ - 1 we i n c l ude t h e graph f o r Fi .4 The number o f . s t a t e s f o r 3+httlcle 3-hole e x c ~ t a t l o n s , obtained by i n t e g r a t i n g s , , , , ~ ( E ) , e q . ( 3 . 8 ) . 3.3. P a r t i c l e Level Densities

-

We proceed t o consider t h e s i n g l e p a r t i c l e l e v e l d e n s i t y , defined i n anology t o e q . ( 2 . 1 ) as

gi(E) = C 6 ( E - c i )

(8)

t h e minus s i g n being necessary s i n c e hole e n e r g i e s a r e negative. The term g o p l h ( - E ) c o n t r i b u t e s i n t h e energy range o . . . E

,

whereas g l o h ( E ) c o n t r i b u t e s from c F t o i n f i n i t y . They match of course exac!ly a t t h e fepm~ energy E The curve o f gl i s included i n Fig.2 ( i t i s t h e lowest one). In anology t o eq. Fi3.10) we can d e f i - ne g2 and 93 which a r e shown i n Fig.5. They decrease s h a r p l y a t 2cF and 3 c F , r e s - p e c t i v e l y , t h e matching point of t h e two components of g2 and o f g 3 . Although t h e l e v e l d e n s i t y g l f o r s i n g l e p a r t i c l e s i s considerable a t z F ( s e e f i g . 2 ) , t h e phase space f o r two p a r t i c l e s o r two h o l e s , and t h r e e p a r t i c l e s o r t h r e e holes a t c F per p a r t i c l e o r hole i s d e p l e t e d , due t o momentum conservation. The energy of g2 and g3 extends from O t o i n f i n i t y .

g2%no.

and g3x7=o,

2250

Fi . 5

-

The 2 - p a r t i c l e and 3 - p a r t i c l e . l e v e 1 d e n s i t i e s g2 (dashed l i n e ) and g 3 ( f u l l

3%.

The points on t h e energy a x i i w i t h two times and t h r e e times t h e Fermi ener-

gy c F a r e i n d i c a t e d ( s e e t e x t f o r d i s c u s s i o n ) . Level d e n s i t y gl i s shown i n Fig.2.

3 . 4 . Level Densities with Unequal Number o f P a r t i c l e s and Holes

-

F i n a l l y , i n Fig.6, we show m-particle n-hole l e v e l d e n s i t i e s ( f o r m f n and m , nfO), which a r e o f i n t e r e s t i n - o ~ t i c a l mode1 c a l c u l a t i o n s [ 2 1 . Again, we include gmpnh(E) and g (-E) i n one curve. The r e s u l t s a r e defined i n the range

-

c E < +m, -ana t h e 1$6@ d e n s i t i e s have again t h e i r minimum a t t h e i r r e s p e c t i v e matching p o i n t , which l i e s a t ( m - n ) . ~ F'

4

-

CONCLUSION -

We have derived a general i t e r a t i o n procedure t o c a l c u l a t e m-particle n-hole level densi t i e s of any s i n g l e p a r t i c l e Hamil t o n i a n , i n c l uding the Pauli p r i n c i p l e . We have used t h i s approach t o derive a n a l y t i c a l expressions f o r t h e semiclassi cal level den- s i t i e s u p t o 3 - p a r t i c l e s 3-holes o f t h e i s o t r o p i c Harmonic O s c i l l a t o r , i n t h e Thomas -Fermi approximation.

(9)

JOURNAL DE PHYSIQUE

Fig.6

- Level d e n s i t y gmpnh f o r m # n and m, n # o. a ) gZplh(E)

+

glpzh(-E) w i t h minimum a t E = E

F b, ~ , p i h ( ~ ) + g l p 3 h (-E) w i t h minimum a t E = 2~ F

(10)

below an e x c i t a t i o n energy o f 4 Ruo, i n a s e m i c l a s s i c a l c a l c u l a t i o n .

F i n a l l y we have seen t h a t t h e a v a i l a b l e phase space a t t h e Fermi s u r f a c e i s d e p l e t e d f o r p a r t i c l e - h o l e e x c i t a t i o n s w i t h m # n ( e x c e p t f o r t h e s i n g l e p a r t i c l e ) .

We thank Mme C. P e t i t v e r y much f o r t y p i n g t h e m a n u s c r i p t .

1- G. Ghosh, R.W. Hasse, P. Schuck, and J. W i n t e r , Phys. Rev. L e t t . 58 (1983) 1250.

2- P. R i n g and P. Schuck, The Nudearc. Many Body PxobLem ( S p r i n g e r , B e r l i n , 1980).

3- G. Rohr, i n Neuakon-Cap*wre Gamma-Ray Spe&oncopy - 1 9 8 1 , e d i t e d by T. von Egidy and F. Gonnenwein, IOP Conference Proceeding No.62 ( I n s t i t u t e o f Phy- sycs, London, 1982), p.322.

4- J. W i n t e r and P. Schuck, i n T h e Dependerd ffanttree-Foch and Beyond, e d i t e d by K. Goeke and J. Reinhard, L e c t u r e Notes i n Physics Vol .171 ( S p r i n g e r - v e r l a g , New York, 1982), p.190.

5- A.C. Hearn, ed., Reduce U s e r ' s Manual (The Rand C o r p o r a t i o n , Santa Monica, C a l i f o r n i a , 1 9 8 3 ) .

6- P. Schuck, G . Ghosh, and R.W. Hasse, Phys. L e t t . 118B (1982) 237.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to