• Aucun résultat trouvé

CLASSICAL AND NONCLASSICAL MECHANISMS OF MARTENSITIC TRANSFORMATIONS

N/A
N/A
Protected

Academic year: 2021

Partager "CLASSICAL AND NONCLASSICAL MECHANISMS OF MARTENSITIC TRANSFORMATIONS"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: jpa-00221949

https://hal.archives-ouvertes.fr/jpa-00221949

Submitted on 1 Jan 1982

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CLASSICAL AND NONCLASSICAL MECHANISMS OF MARTENSITIC TRANSFORMATIONS

G. Olson, M. Cohen

To cite this version:

G. Olson, M. Cohen. CLASSICAL AND NONCLASSICAL MECHANISMS OF MARTEN- SITIC TRANSFORMATIONS. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-75-C4-88.

�10.1051/jphyscol:1982405�. �jpa-00221949�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, suppl6ment au n o 12, Tome 4 3 , d6cembre 1982 page C4-75

C L A S S I C A L A N D NONCLASSICAL M E C H A N I S M S O F M A R T E N S I T I C T R A N S F O R M A T I O N S

G.B. O l s o n a n d M. Cohen MIT, Cambridge, MA, U.S. A.

( A c c e p t e d 9 A u g u s t 1982)

Abstract.

-

Theoretical approaches t o the nucleation of martensi t i c transformations have considered two types of nucleation paths: ( a ) t h e c l a s s i c a l path, involving a nucleus of fixed s t r u c t u r e and increasing s i z e , and (b) nonclassical paths, involving a nucleus of varying s t r u c t u r e . A unified approach i s out1 ined which allows f o r the t h e o r e t i c a l treatment of homogeneous and heterogeneous nucleation of coherent and semicoherent martensitic transformations by both types of nucleation paths, and ident-

i f i e s t h e circumstances favoring each. Nonclassical paths would be favored i n the special case of homogeneous coherent nucleation near a mechanical i nstabi 1 i t y ; however, q u a n t i t a t i v e treatment requires f u r t h e r know1 edge of the energetics of homogeneous l a t t i c e deformations and the s t r a i n - gradient energies which control d i f f u s e i n t e r f a c e s . Heterogeneous nucleation, which governs martensitic transformations i n bulk materials, favors t h e c l a s s i c a l path and involves r e l a t i v e l y sharp i n t e r f a c e s .

Classical heterogeneous nucleation i s adequate1 y t r e a t e d by 1 i near-el a s t i c continuum and dislocation descriptions. Defect-nucleus i n t e r a c t i o n leads t o " b a r r i e r l e s s " nucleation with k i n e t i c s controlled by i n t e r f a c i a l motion.

Details requiring f u r t h e r a t t e n t i o n a r e the microscopic mechanisms of martensitic i n t e r f a c i a l motion i n d i s c r e t e c r y s t a l s , and the precise nature of the nucleating defects, both those i n i t i a l l y present and autocatalytic- a1 l y generated.

Introduction.- Martensitic transformations have been defined a s a subset of d i f f u s i o n l e s s displacive phase transformations, with s u f f i c i e n t l y large l a t t i c e - d i s t o r t i v e shear displacements such t h a t t h e transformation kinetics and morpho- logy a r e dominated by s t r a i n energy ( 1 ) . I t then follows t h a t martensitic trans- formations a r e f i r s t - o r d e r s o l i d - s t a t e reactions occurring by nucleation and growth.

While t h e growth stage of f i r s t - o r d e r transformations generally takes place by the motion of i n t e r f a c e s which convert the parent phase t o t h e fully-formed transformation product, two types of paths have been considered f o r the case of nucleation. The "classical " nucleation path, analogous t o t h e growth stage, involves a nucleus of the same s t r u c t u r e and/or composition a s the f u l l y - f o y e d product, increasing in s i z e by the motion of i t s interface. A "nonclassical path involves a continuous change in structure/and/or composition in a f i n i t e region. The two types of paths are i l l u s t r a t e d in Figure 1 where composition, s t r u c t u r e , and s i z e a r e denoted by C , rl, and n. Path "a" depicts the c l a s s i c a l path, while paths "b" and "c" represent nonclassical paths. For t h e simple case of purely compositional transformations, nucleation via nonclassical paths has been t r e a t e d q u a n t i t a t i v e l y by Cahn and Hill i a r d ( 2 ) .

The current s t a t u s of the theory of martensitic nucleation by both c l a s s i c a l and nonclassical paths has been recently reviewed ( 3 ) . While the theory of nucleation via c l a s s i c a l paths i s now well -developed f o r both homogeneous and heterogeneous martensitic nucleation, speculation regarding t h e possible re1 evance

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982405

(3)

JOURNAL DE PHYSIQUE

S ~ z e

Composition,

--_____

structure

-.

: b

'\ I

IIL)

Figure 1 Classical and nonclassical Figure 2 Free energy per u n i t volume, nucleation paths f o r f i r s t - o r d e r sol id- Ag, associated with homogeneous d i s t o r - s t a t e phase transformations. Diffusion- t i o n of the metastable parent l a t t i c e l e s s martensitic transformation involves (n=0) t o produce the martensitic product variables 0 ( s t r u c t u r e ) and n ( s i z e ) . (n=1) under thermodynamic conditions

corresponding t o To, Ms, and the

" i n s t a b i l i t y temperature" Ti.

of nonclassical nucleation paths has not y e t evolved a q u a n t i t a t i v e theory. We here o u t l i n e a unified approach t o the q u a n t i t a t i v e treatment of martensitic nucleation, which a1 lows f o r both c l a s s i c a l and nonclassical paths, and i d e n t i - f i e s t h e circumstances under which each mode of behavior will prevail.

Lattice-Deformation Energetics.- O f importance t o both the energy of a nonclassical nucleus and the i n t e r f a c i a l energy of a classical nucleus are the energetics of intermediate configurations i n t h e l a t t i c e deformation of the martensitic trans- formation. The f ree-energy change per u n i t volume, Ag

,

accompanying homogeneous d i s t o r t i o n of t h e parent phase t o t h e product s t r u c t u r e along a deformation path (defined by the s t r u c t u r a l parameter n ) i s depicted i n Figure 2, with n=0 and rl=l representing t h e parent and product s t r u c t u r e s . The value of Ag a t n=1 corresponds t o the chemical free-energy change of the transformation, dgch, and the maximum i n the curve represents a "homogeneous l a t t i c e deformation b a r r i e r " of height 4.

When

ngch=O

( a s indicated f o r the temperatu e T-TO), the b a r r i e r i s designated

@,.

When ngch<O, i s l e s s than 4,; and f o r Agc6 su;flciently negative, the condition

@=0, can ( i n p r i n c i p l e ) be reached whereby t h e parent l a t t i c e becomes mechanically unstable as i l l u s t r a t e d f o r an " i n s t a b i l i t y temperature", T=Tj, i n Figure 2. While some transforming materials show an anornolous temperature dependence of e l a s t i c constants such t h a t a shear constant extrapolates t o zero a t a f i n i t e T i tempera- t u r e ( 4 ) , many systems do not e x h i b i t such anomolies and then a T - temperature does not e x i s t . As discussed in ref. 3, however, any metastable l a t t i c e can be- come unstable i f t h e thermodynamic driving force i s made s u f f i c i e n t l y large, as f o r example by the application of s t r e s s . As indicated by the curve f o r T=Ms i n Figure 2, martensitic transformations i n bulk materials typical1 y nucleate under thermodynamic driving forces which a r e f a r removed from the conditions f o r general mechanical i n s t a b i l i t y of t h e parent l a t t i c e .

Recent progress has been made i n t h e quantitative estimation of the energy curves represented by Figure 2, based on higher-order e l a s t i c constants (5,6), interatomic p o t e n t i a l s ( 7 ) , and e l e c t r o n i c calculations (8-11 ) . The b a r r i e r height 4 i s s e n s i t i v e t o the nature of t h e l a t t i c e deformation path. Paths examined so f a r include "proportional s t r a i n " paths along intermediate configur- a t i o n s defined by the deformation $3, where B i s the t o t a l deformation r e l a t i n g parent and product l a t t i c e s , and "sequential shear" paths involving close-packed shear systems as proposed by Bogers and Burgers (12). Calculations to-date suggest

(4)

lower b a r r i e r s f o r proportional s t r a i n paths, with (Ivalues as low as , 10 t o lo3 2 J/mole f o r FCCraCC transformations. The lower b a r r i e r f o r t h e proportional s t r a i n path compared t o t h e sequential shear paths complicates t h e i n t e r r e l a t i o n of thermodynamic s t a b i l i t y (Agch) and t h e behavior of second-order e l a s t i c shear constants, such as C'=1/2 (Cll-C12) i n BCC a l l o y s . Analysis of load-path bi- furcations during homogeneous l a t t i c e deformation, as s t u d i e d by Milstein and Farber ( 7 ) , may c l a r i f y t h i s matter.

The energetic c a l c u l a t i o n s suggest t h a t ~ g ( q ) can be reasonably approximated by a fourth-order Landau expansion:

2 3 4

Ag = Aq -Bo +Crl , (1

1

where the c o e f f i c i e n t s A , B , and C are related t o t h e second, t h i r d , and fourth order e l a s t i c constants of the parent phase. The dependence of Ag on thermodynamic conditions can be approximated by expressing these c o e f f i c i e n t s as functions of Agch constrained t o give local minima a t r1=0 and q=1. The simplest approxima- t i o n , which i s most appropriate near a mechanical i n s t a b i l i t y , i s t o take t h e coef- f i c i e n t A ( c o n t r o l l i n g mechanical s t a b i l i t y of the parent l a t t i c e ) as a l i n e a r function of ~ g c h . This gives expressions of the form:

where ACJ?~ i s t h e c r i t i c a l Agch f o r i n s t a b i l i t y . The l a t t e r can be estimated from t h e c r i t i c a l driving force f o r i n s t a b i l i t y under s t r e s s a t T , giving B=

-3.08 ( 3 ) . Energies normalized t o bo can then be simply expresse8 as functions of t h e dimensionless parameter a , where a=O corresponds t o equal f r e e energies of t h e parent and product phases ( A ~ c ~ = o ) and %=I represents mechanical i n s t a b i l i t y of t h e parent phase.

Coherent Interfacial/Gradient Energy.- As discussed i n r e f . 3, and a l s o developed by Roitburd (1 3,14), the lower energy of intermediate configurations accompanying

t h e reduction of $ near a mechanical i n s t a b i l i t y w i l l promote diffuseness of a coherent m a r t e n s i t i c i n t e r f a c e . The behavior of t h e i n t e r f a c e i s then best described by adopting a gradient-energy formulation s i m i l a r t o t h a t o r i g i n a l l y applied t o d i f f u s e i n t e r f a c e s in diffusional (compositional ) transformations by Cahn and H i l l i a r d (15). The volume and surface energy terms of a c l a s s i c a l description a r e then replaced by a functional of t h e form:

where K. i s a gradient-energy c o e f f i c i e n t and Ag i s the local free-energy density:

When t h e i n t e r f a c e i s t h e i n v a r i a n t plane of an invariant-plane s t r a i n ( I P S ) l a t t i c e deformation, Ag corresponds t o t h e function of Figure 2 and equation 1 . For a non-IPS coherent i n t e r f a c e additional s t r a i n energy a r i s e s from d i s t o r t i o n s i n the i n t e r f a c i a l plane a s required by compatabil i t y of t h e deformation across t h e i n t e r f a c e . The gradient energy < ( 0 ~ ) 2 ' i s a t t r i b u t a b l e t o an harmonic many- body i n t e r a c t i o n ( 1 6 ) .

*The simple form adopted f o r equation 3 i s based on the assumption t h a t a l l defor- mation s t a t e s l i e along t h e path corresponding t o the v a r i a b l e q. This w i l l be

v a l i d f o r the simple cases considered here. More general cases a r e describable via the gradients of the complete s t r a i n tensor (1 3,14).

(5)

C 4 - 7 8 JOUKNAI. I)E PHYSIQUE

Adopting t h e approximation t h a t K i s independent o f n (and n e g l e c t i n g gradient-energy t e n s o f h i g h e r power than ( v Q ) ~ ) , we can e s t i m a t e a v a l u e f o r r from knowlege of t h e coherent s u r f a c e energy a t T0(3). For a f l a t coherent I P S i n t e r f a c e i n the z=O plane, t h e s u r f a c e energy i s :

m

uo = f [ n g i

x

(J-I-)~] dz ,

-03

( 4 )

S o l v i n g t h e E u l e r equation f o r t h e v a r i a t i o n n ( x ) which minimizes a,, and assuming Ag i s o f t h e form o f e q u a t i o n 1, a s o l u t i o n f o r a. i s o b t a i n e d ( 3 ) which i d e n t i f i e s

K as:

and g i v e s an i n t e r f a c i a l w i d t h o f :

For values o f a few mJ/m 2 ( t y p i c a l f o r coherent i n t e r f a c e s ) , t h estimated 9, values discussed e a r l i e r g i v e d = 10-12 - l ~ J l ~ / m w i t h a

hoof

a few

1.

By f i t t i n g : r t o t h e i n t e r f a c i a l behavior a t T , t h e gradient-energy f o r m u l a t i o n w i l l account f o r b o t h t h e c l a s s i c a l i n t e r f a c e a? a=o and t h e d i f f u s e - i n t e r f a c e behavior a t a = l .

A problem o f r e l e v a n c e t o m a r t e n s i t i c n u c l e a t i o n i s t h a t o f a t h i n s l a b f m a r t e n s i t e centered on t h e z=0 plane where ~ = n

.

T h i s geometry i s i l l u s t r a t e d n F i g u r e 3. For a coherent I P S p a r t i c l e , t h e t o f a 1 free-energy f u n c t i o n a l o f

i n t e r e s t i s now: ea

Boundary c o n d i t i o n s f o r t h e v a r i a t i o n n ( z ) a r e q(o) = no. q(m) = 0, and nl(m) = 0 w i t h

rl'<D

f o r z>O. A f i x e d t o t a l displacement across t h e p a r t i c l e corresponds

t o t h e c o n d i t i o n :

9

ndz = IJ ( 8 )

0

where u i s t h e displacement parameter i d e n t i f i e d i n F i g u r e 3. The l a t t e r c o n d i t i o n d e f i n e s a f i x e d e f f e c t i v e semithickness o f t h e s l a b expressed as:

c = u/nO ( 9 )

The form o f t h e E u l e r e q u a t i o n f o r d e t e r m i n i n g t h e v a r i a t i o n n ( z ) which minimizes t h e f u n c t i o n a l F A , e q u a t i o n 7, s u b j e c t t o t h e c o n s t r a i n t o f equation 8 i s :

where A i s a m u l t i p l i e r i n t r o d u c e d by t h e f i x e d displacement c o n s t r a i n t . T h i s y i e l d s a d i f f e r e n t i a l e q u a t i o n f o r 0 ( z ) o f t h e f o n :

(11)

(6)

Clossicol Nonclossicol

I

heterogeneous homogeneous

F i g u r e 3 Slab o f m a r t e n s i t e centered on z=O plane. C l a s s i c a l p a r t i c l e of semi thickness 2c w i t h sharp i n t e r f a c e produces displacement u . y ~ , where yT i s t h e t r a n s f o r n a t i o n s t r a i n . Dotted l i n e i l l u s t r a t e s - displacement f i e l d o f d i f f u s e i n t e r f a c e producing same t o t a l displacement.

F i g u r e 4 N u c l e a t i o n b a r r i e r AG* vs a f o r coherent m a r t e n s i t i c t r a n s f o r m a t i o n . S o l i d l i n e s d e p i c t behavior f o r c l a s s i c a l heterogeneous n u c l e a t i o n f o r v a r i o u s values o f c/6 corresponding approximately t o number o f 8 i s l o c a t i o n s i n n u c l e a t i n g defect. Dashed 1 i ne represents b a r r i e r f o r n o n c l a s s i c a l homogeneous n u c l e a t i o n . For a given nQ, t h e minimum energy v a r i a t i o n f o r n(z) corresponds t o t h e a d d i t i o n a l boundary c o n d r t i o n q (0)=0, whereby A=-Ago/nO.

S o l u t i o n o f e q u a t i o n 11 f o r n ( z ) as a f u n c t i o n o f q, and h i s g i v e n by the i n t e g r a t i o n :

S u b s t i t u t i o n o f v a r i a b l e s according t o e q u a t i o n 11 determines FA and u as:

The e f f e c t i v e semithickness c=u/n, can be used t o d e f i n e an i n t e r f a c i a l energy:

These r e l a t i o n s p r o v i d e t h e b a s i s f o r a t r e a t m e n t o f t h e energy o f a m a r t e n s i t i c nucleus, which a l l o w s f o r b o t h c l a s s i c a l and n o n c l a s s i c a l n u c l e a t i o n paths.

Coherent Nucleation.- The m a j o r c o n t r i b u t i o n t o t h e i n t e r f a c i a l energy o f a t h i n - p l a t e I P S p a r t i c l e a r i s e s from i t s broad i n t e r f a c e s as opposed t o t h e p l a t e p e r i p h e r y , w h i l e t h e e l a s t i c energy accommodating t h e t r a n s f o r m a t i o n s t r a i n r e s i d e s p r i m a r i l y i n t h e r e g i o n of t h e m a t r i x beyond t h e p e r i p h e r y . A c c o r d i n g l y

(7)

C4-80 JOURXAT, DE PHYSIQUE

t h e t o t a l energy o f a t h i n - p l a t e nucleus o f r a d i u s r, l y i n g i n t h e z=O plane, can be reasonably approximated by t h e energy o f a one-dimensional v a r i a t i o n n ( z ) w i t h i n a c y l i n d e r o f r a d i u s r combined w i t h t h e e l a s t i c energy associated w i t h t h e long-range s t r a i n f i e l d o f a p a r t i c l e o f semi t h i c k n e s s c producing t h e n e t d i s p l a c e - ment d e f i n e d by u. T h i s approximation w i l l f i t b e s t when t h e i n t e r f a c i a l w i d t h 6 i s much l e s s than r. R e l a t i n g t h e m a t r i x e l a s t i c constants t o t h e c o e f f i c i e n t A i n e q u a t i o n 1, t h e nucleus energy can then be expressed by:

where 5 i s an accomnodation f a c t o r equal t o w(2-v)/4(1-v) f o r t h e case o f a simple shear. The f u n c t i o n s FA and u can be evaluated from e q u a t i o m 13 and 14 u s i n g

equations 1 a ~ d 2 t o express Ag. The a c t i v a t i o n energy f o r homogeneous coherfnt,

,

n u c l e a t i o n AG can t h a n be e v a l u a t e d from a saddle p o i n t o f AG ( r , n , A ) a t ( r ,n,,X ) corresponding t o a maximum of AC w i t h r e s p e c t t o r and a minimum w i t h r e s p e c t t o

Q and A. The c o e f f i c i e n t s of equations 2 and 7 a r e most c o n v e n i e n t l y f i t t e d t o tRe c l a s s i c a l i n t e r f a c i a l parameters a t a=O by n o r m a l i z i n g energies ( p e r volume) w i t h r e s p e c t t o @, and distances w i t h r e s p e c t t o 6, (equation 6 ) .

I n s p e c t i o n o f these equations r e v e a l s c e r t a i n f e a t u r e s o f a coherent nucleus which p a r a l l e l t h e C a h n - H i l l i a r d d i f f u s i o n a l n u c l e a t i o n b e h a v i o r as discussed i n r e f . 3. Since FA must be n e g a t i v e f o r a c r i t i c a l nucleus, no* must be s u f f i c i e n t l y l a r g e t h a t Ago<O. As i n d i c a t e d by F i g u r e 2, t h i s c o n d i t i o n i s met by p r o g r e s s i v e l y s m a l l e r n as w 1 . While a c r i t i c a l nucleus a t low a w i l l r e q u i r e n o = l and t h e h i g h energies o f i n t e r m e d i a t e c o n f i g u r a t i o n s w i l l cause t h e i n t e r f a c e t o remain f a i r l y sharp, t h e l o w e r a l l o w a b l e values o f no and lower i n t e r m e d i a t e energies w i l l promote d i f f u s e i n t e r f a c e s o f lower energy w i t h F A 2 as a = l i s approached.

Since b o t h t e n s o f e q u a t i o n 16 vanish as A 4 a t a = l , AG f o r a n o n c l a s s i c a l nucleus (n,<l) vanishes a t a = l as d e p i c t e d by t h e dashed l i n e i n F i g u r e 4 t Thus, w h i l e c l a s s i c a l n u c l e a t i o n t h e o r y g e n e r a l l y p r e d i c t s a AG which i s t o o h i g h f o r thermal a c t i v a t i o n o f homogeneous n u c l e a t i o n i n most c i r c ~ m s t a n c e s , d e v i a t i o n s from c l a s s i c a l b e h a v i o r near i n i n s t a b i l i t y can reduce AG enough so t h a t t h e r m a l l y - a c t i v a t e d homogeneous coherent n u c l e a t i o n w i l l precede t h e a c t u a l i n s t a b i l i t y . T h i s r e s u l t o b t a i n s f o r t h e simple case o f an IPS l a t t i c e deformation. I t i s n o t

c l e a r t h a t t h e a d d i t i o n a l s t r a i n energy a s s o c i a t e d w i t h i n t e r f a c i a l d i s t o r t i o n s i n a non-IPS coherent t r a n s f o r m a t i o n w i l l vanish a t a=], b u t i t can be expected t h a t n o n c l a s s i c a l behavior w i l l g e n e r a l l y a l l o w a s u b s t a n t i a l r e d u c t i o n i n AG* f o r homogeneous coherent n u c l e a t i o n near a mechanical i n s t a b i l i t y .

I t i s o f course w e l l e s t a b l i s h e d t h a t m a r t e n s i t i c t r a n s f o r m a t i o n s t y p i c a l l y n u c l e a t e heterogeneously. The h i g h a l e v e l s necessary f o r homogeneous n u c l e a t i o n can o n l y be

F7sCt87

i f n u c l e a t i o n a t i m p e r f e c t i o n s i s e l i m i n a t e d . T h e o r e t i c a l p r e d i c t i o n s and experimental observations (1 9-23) i n d i c a t e t h a t t h e most comon n u c l e a t i o n s i t e s a r e l i n e a r d e f e c t s which can be modelled as groups o f d i s l o c a t i o n s . Heterogeneous n u c l e a t i o n o f t h e coherent nucleus considered here can be modelled by t r e a t i n g i t s i n t e r a c t i o n w i t h t h e s t r e s s f i e l d od o f t h e d e f e c t i n t h e z=O plane. The i n t e r a c t i o n energy f o r a ribbon-shaped nucleus- o f l e n g t h L, w i d t h a, and semi t h i c k n e s s c l y i n g along a d e f e c t p a r a l l e l t o t h e y a x i s i s then :

i n t - 2 ~ t - r ~

J

od-qcdx (17)

r0

* w i t h i n t h e approximation o f e q u a t i o n 16, AG* o f a c l a s s i c a l nucleus (n,=l) a l s o vanishes as A-O. This a r i s e s from n e g l e c t o f t h e s u r f a c e energy contribution o f t h e p l a t e p e r i p h e r y . A mqre r e a l i s t i c (nonvanishing) b e h a v i o r o f t h e c l a s s i c a l GG* near a = l i s o b t a i n e d by adding a 4.i;rco term t o e q u a t i o n 16, w i t h a d e f i n e d by e q u a t i o n 17. The n o n c l a s s i c a l AG* s t i l l vanishes a t 3=1.

(8)

where y~ i s the transformation s t r a i n and r o i s the defect core radius. The t o t a l nucleation energy change AG can be expressed by combining E i with the two terms of equation 16 modified f o r the ribbon shape. For a disyocation defect with a

-

x-1 s t r a i n f i e l d , equation 17 introduces a negative energy contribution proportional t o In a which substantial 1 y reduces AG*, promoting nucleation a t lower a values.

As equation 17 i n d i c a t e s , the nucleus-defect i n t e r a c t i o n energy i s propor- tional t o qo and heterogeneous nucleation thus favors c l a s s i c a l nucleation, The range of a required f o r c l a s s i c a l heterogeneous nucleation can be estimated from a dislocation-dissociation model of heterogeneous nucleation (17) in which nuclei form a t a constant thickness determined by the number of d i s l o c a t i o m i n the nucleating defect. The c l a s s i c a l b a r r i e r AG* goes abruptly t o zero when the f a u l t energy associated with the d i s s o c i a t i o n becomes negative. For the simple coherent transformation considered here, t h i s occurs a t a c r i t i c a l driving force of

agch = -o,/c. Taking o,=4$66,/3 from equations 5 and 6 , the c r i t i c a l a f o r nucteation i s then:

The behavior predicted f o r various values of c/6

,

corresponding approximately t o t h e number of dislocations in the nucleating dgfect, i s shown by the s o l i d l i n e s in Figure 3. For defects of the s i z e which accounts f o r bulk nucleation in s t e e l s , % i s of the order of 0.1. In addition t o the strong i n t e r a c t i o n energy favoring a c l a s s i c a l qO=l nucleus, the occurrence of nucleation a t such low a values will favor sharp i n t e r f a c e behavior such t h a t no s i g n i f i c a n t deviation from a c l a s s i c a l nucleation path i s expected f o r heterogeneous coherent nucleation.

To summarize the r e s u l t s depicted i n Figure 4, heterogeneous coherent nuclea- tion a t low a will favor nucleation via t h e c l a s s i c a l path. I f heterogeneous nucleationcan be suppressed, homogeneous coherent nucleation a t high a will then

favor a nonclassical path and the associated nucleation b a r r i e r i s expected t o reach a thermally-surmountable level before general l a t t i c e i n s t a b i l i t y can be reached.

Semicoherent Nucleation.- W i t h the exception of F C C d C P and some BCC+9R

transformations, the 1 a t t i c e deformation accompanying most martensi t i c transforma- t i o n s i s not s u f f i c i e n t l y c l o s e t o on IPS t o allow f u l l y coherent transformation.

Under the thermodynamic conditions where these transformations a r e known t o occur, the volume s t r a i n energy associated w i t h d i s t o r t i o n s in a f u l l y coherent i n t e r f a c e would exceed the chemical driving force, and so a martensi t i c p a r t i c l e can only be s t a b l e i n a semicoherent form with s u f f i c i e n t 1 y reduced s t r a i n energy.

Semicoherence i s achieved through a l a t t i c e - i n v a r i a n t deformation by s l i p o r twinning which a l t e r s the net transformation shape s t r a i n , generally toward an IPS. A necessary consequence of the l a t t i c e - i n v a r i a n t deformation i s a modification of the i n t e r f a c i a l s t r u c t u r e , introducing a short-range i n t e r f a c i a l e l a s t i c s t r a i n f i e l d (with range comparable t o the spacing of the twins o r s l i p dislocations i n the i n t e r f a c e ) which contributes a substantial increment t o the i n t e r f a c i a l energy. In c o n t r a s t t o the behavior of f u l l y coherent i n t e r f a c e s just discussed, the i n t e r f a c i a l energy of a semicoherent p a r t i c l e i n an anisotropic crystal will generally have contributions from e l a s t i c constants which do not vanish a t an i n s t a b i l i t y . Similarly, nonvanishing e l a s t i c constants will a l s o l i k e l y contribute t o the accommodation s t r a i n energy associated with the net transformation s t r a i n (shape change). Thus the i n t g r f a c i a l energy and s t r a i n energy will remain f i n i t e , and the nucleation b a r r i e r AG f o r homogeneous nucleation of a semlcoherent martensitic p a r t i c l e will not vanish a t a = l

.

Nonclassical d i f f u s e - i n t e r f a c e behavior should play only a secondary r o l e in semicoherent martensi t i c nucleation, as r e f l e c t e d by j u s t a moderate reduction in i n t e r f a c i a l energy accompanying a widening of the cores of i n t e r f a c i a l dislocations. Classical calculations indicate

(9)

JOURNAI. DE I'IIYSIQUE

I i i z

Figure 5 Schematic i n t e r f a c i a l dislocation s t r u c t u r e f o r semicoherent F C C 4 C C transformation nucleus lying i n close-packed (1 11) plane.

t h a t homogeneous nucleation of semicoherent martensitic transformations i s highly improbable under the thermodynamic conditions where these transformations typic- a l l y occur ( 2 4 ) .

For the case of heterogeneous nucleation, the considerations previously discussed f o r coherent nucleation combined with the properties of semicoherent i n t e r f a c e s j u s t described make i t highly unlikely t h a t semicoherent nucleation will deviate s i g n i f i c a n t l y from the c l a s s i c a l nucleation path. The e s s e n t i a l features of heterogeneous c l a s s i c a l nucleation of semicoherent transformations a t d i s l o c a t i o n - l i k e l i n e a r defects a r e now well established, based on both specific dislocation-dissociation models (17,25,26) and general continuum-elastic calcula- tions (18,27,28). A general r e s u l t i s t h a t ( a ) AG* f o r heterogeneous nucleation will vanish a t a r e l a t i v e l y modest (compared t o t h a t f o r a = l ) c r i t i c a l driving force which depends on t h e defect s i z e , and (b) the c r i t i c a l condition wi 11 be preceded by the formation of s t a b l e s u b c r i t i c a l classical embryos a t very low driving forces.

The short-rangeinteraction with d i s l o c a t i o n s i s so strong t h a t t h e l a t t e r embryos may e x i s t above To (Agch>O). The prediction of pre-existing c l a s s i c a l embryos and t h e g r e a t e r i n t e r a c t i o n energy f o r c l a s s i c a l vs. nonclassical embryos discussed e a r l i e r reinforce the conclusion t h a t heterogeneous semicoherent martensitic nuclea- tion will follow a c l a s s i c a l r a t h e r than non-classical nucleation oath.

The d e t a i l e d behavior of AG* f o r heterogeneous nucleation i s s e n s i t i v e t o the c o n s t r a i n t s applied t o t h e nucleus. Dislocation-dissociation models f o r heterogeneous nucleation a r e based upon a d i s c r e t e - d i s l o c a t i o n description of nucleus i n t e r f a c i a l s t r u c t u r e , intended t o r e f l e c t discrete-crystal c o n s t r a i n t s on the i n t e r f a c i a l mobility and morphology of a microscopic p a r t i c l e . A s p e c i f i c nucleus model ( 2 5 )

f o r semicoherent FCC+BCC trans formation i s depicted in Figure 5. The transformation l a t t i c e deformation i s accomplished bya a homogeneols a r r a y of coherency dislocations (29) with approximate Burgers vectors 11211 and [121], each a r r a y producing an IPS on crystal planes of c l o s e s t (30). A6semicoherent i n t e r f a c e i s obtained by the superpositign of a perigdic array of (anticoherency) s l i p disloca- tions with Burgers vectors - [TIO] and - [Oll], accomplishing a l a t t i c e - i n v a r i a n t deformatign. The major comaonent of t h i transformation net shape s t r a i n a r i s e s from t h e - [I211 coherency dislocations. I f the nucleation of individual loops of these A f s ~ o c a t i o n s i s d i f f i c u l t a t small s i z e s , the habit of a microscopic p a r t i c l e will be confined t o the close-packed (111) plane. A fixed number of the l a t t e r dislocations can be derived from the dissociation of a group of e x i s t i n g dislocatiorr, as represented i n Figure 6a, allowing formation of a ribbon-shaped nucleus of width a and thickness 2c. I f t h e d i f f i c u l t y of forming additional a [I211 coherency dislocations i s removed a t l a r g e r p a r t i c l e s i z e s by an athermal Xgchanism ( t o be discussed), t h e kinetics of nucleation will be controlled by the

(10)

F i g u r e 6 Geometry o f nucleus and d e f e c t f o r heterogeneous n u c l e a t i o n , d e s c r i b i n g nacleus as ( a ) d i s c r e t e d i s l o c a t i o n a r r a y , and ( b ) continuum p a r t i c l e . widening o f t h e nucleus a t c o n s t a n t thickness. As described e a r l i e r f o r t h e case o f heterogeneous coherent n u c l e a t i o n by d i s s o c i a t i o n t h i s geometric n u c l e a t i o n p a t h has t h e c h a r a c t e r i s t i c t h a t t h e free-energy b a r r i e r AG* drops a b r u p t l y t o zero when t h e e f f e c t i v e f a u l t energy accompanying d i s s o c i a t i o n becomes negative.

Widening o f t h e nucleus i s then c o n t r o l l e d by t h e d i s c r e t e - c r y s t a l k i n e t i c processes governing t h e motion o f t h e a [ I 2 1 1 coherency d i s l o c a t i o n s and t h e

concomitent f o r m a t i o n o f t h e i n t e r f a c l g l d i s l o c a t i o n s o f F i g u r e 5. The thermodynam- i c c o n d i t i o n s f o r t h e f a u l t energy t o become n e g a t i v e can be expressed as a f u n c t i o n o f d e f e c t s i z e (as f o r t h e coherent case i n e q u a t i o n 18) v i a c l a s s i c a l n u c l e a t i o n t h e o r y (1 7,25). By t h i s d i s s o c i a t i o n mechanism, t h e n u c l e a t i o n k i n e t i c s a r e governed n o t by heterophase f l u c t u a t i o n s surmounting t h e b a r r i e r AG*, b u t r a t h e r by t h e microscopic processes o f i n t e r f a c i a l motion a t a pre-formed c l a s s i c a l embryo where AG*=O.

Numerical continuum e l a s t i c c a l c u l a t i o n s by Suezawa and Cook (18) a l s o p r e d i c t t h a t AG* can vanish f o r heterogeneous c l a s s i c a l n u c l e a t i o n a t a l i n e a r defect, b u t t h e behavior o f AG* d i f f e r s i n d e t a i l f r o m the above d i s l o c a t i o n - d i s s o c i a t i o n model due t o d i f f e r e n t c o n s t r a i n t s a p p l i e d t o t h e nucleus; nucleus t h i c k n e s s i s unconstrained i n t h e Suezawa-Cook treatment, b u t an o b l a t e - s p h e r o i d a l nucleus shape i s imposed. L i n g and Olson (27) have demonstrated w i t h s i m i l a r c a l c u l a t i o n s t h a t a ribbon-shaped nucleus has a l o w e r energy than an o b l a t e - spheriodal nucleus when forming i n t h e s t r a i n f i e l d o f a l i n e a r defect. B a r r i e r - l e s s n u c l e a t i o n o f a ribbon-shaped p a r t i c l e w i l l o c c u r even when AG* f o r t h e o b l a t e s p h e r o i d i s s t i l l f i n i t e . These r e s u l t s a r e supported by a simple a n a l y t i c a l t r e a t m e n t o f t h e problem by R o i t b u r d ( 2 8 ) .

The c a l c u l a t i o n s o f L i n g and Olson (27) demonstrate t h a t t h e d i s c r e t e -

d i s l o c a t i o n and c o n t i n u u m - e l a s t i c nucleus d e s c r i p t i o n s a r e e n e r g e t i c a l l y e q u i v a l e n t when i d e n t i c a l c o n s t r a i n t s a r e employed. T h i s was shown b computing t h e energy o f a continuum p a r t i c l e w i t h a n e t t r a n s f o m a t i o n s t r a i n

~ 7 .

e q u i v a l e n t t o t h a t o f t h e nucleus o f F i g u r e 5 i n t e r a c t i n g w i t h t h e same d e f e c t a s J i n F i g u r e 6. Using parameters a p p r o p r i a t e t o s t e e l s , the c a l c u l a t e d t o t a l free-energy change p e r l e n g t h , Ge, vs. nucleus width, a, a r e p l o t t e d i n F i g u r e 7 f o r t h r e e l e v e l s o f chemical d r i v i n g f o r c e . The curves a r e f o r v a r i o u s f i x e d nucleus thicknesses, w i t h t h e numbers i n d i c a t i n g the t h i c k n e s s i n number o f c r y s t a l planes. The

d o t t e d curves denoting a t h i c k n e s s o f 15 planes correspond t o a nucleus t h i c k n e s s equal t o t h e h e i g h t h o f t h e d e f e c t ( F i g u r e 6 ) as adopted i n t h e d i s l o c a t i o n - d i s s o c i a t i o n d e s c r i p t i o n (25). The computed energies i n c l u d e a s t r a i n - e n e r g y c o n t r i b u t i o n a r i s i n g from e l a s t i c d i s t o r t i o n s i n the i n t e r f a c e ( h a b i t ) plane

(11)

JOUllNAL DE PHYSIQUE

Figure 7 Total free-energy change per unit nucleus length for heterogeneous FCC-tBCC nucleation in s t e e l s a t three levels of driving force.

Numbers i d e n t i f y nucleus thickness in terms of crystal close-packed planes. Shear modulus, u ; FCC l a t t i c e parameter, ao. Dislocation defect i n mixed o r i e n t a t i o n .

(12)

imposed by the c o n s t r a i n t s of a rational (111) crystal-plane habit. The behavior of t h e dotted curves i s identical t o thatderived from the dislocation-dissociation model (15,25).

Comparison of the curves f o r d i f f e r e n t thicknesses v e r i f i e s t h a t the short- range i n t e r a c t i o n s favor the formation of a s u b c r i t i c a l embryo with a thickness equal t o the defect height a t low driving force, a s indicated by the arrow (a/h=lO) i n Figure 7a. Once an embryo of t h i s thickness i s e s t a b l i s h ~ d . th e d i f f i c u l t y of nucleating additional coherency dislocations will constrain t h e thickness so t h a t the embryo i s s t i l l s u b c r i t i c a l (with a/h=30) under the driving- force conditions of Figure 7b even though a t h i c k e r embryo would be s u p e r c r i t i c a l . For the conditions of Figure 7c, the embryo i n question becomes supercri t i c a l , with a negative f a u l t energy then driving the process of i n t e r f a c i a l motion.

A plausible dislocation pole mechanism f o r embryo thickening has been proposed based on the i n t e r s e c t i o n with f o r e s t dislocations when t h e conditions f o r u n r e s t r i c t - ed nucleus widening a r e met (26). Once thickening can readily occur, the p a r t i c l e can adopt a minimum-energy habit and morphology, thereby allowing the attendant reduction in s t r a i n energy t o a c c e l e r a t e the growth process. In s i t u electron microscopy observations of heterogeneous nucleation in thennoelastic Au-Cd (1 9) i n d i c a t e a change from the close-packed habit t o t h e macroscopic habit without evidence of a pole mechanism. Nucleation of additional coherency dislocations may i n t h i s case be stimulated by the f r e e surfaces of the thin-foil specimen.

The increasing separation of the curves of Figure 7c a t large a s i g n i f i e s an increasing thickening force which might ultimately drive coherency-dislocation generation under bulk conditions. However, c l a s s i c a l (1 i n e a r - e l a s t i c )

dislocation-nucleation calculations have not y e t accounted f o r such a process ( 2 6 ) . Defining the end product of nucleation a s an "operational nucleus", t h e nucleation k i n e t i c behavior discussed here can bedescribedwithin the framework of general nucleation theory, adopting a nucleation-rate equation of the form ( 3 ) :

A

where Ni i s the number of nucleation s i t e s of t h e i t h type, xi i s the f r a c t i o n of these s i t e s occupied ( a t a given i n s t a n t ) by operational nuclei, and Bi i s a frequency f a c t o r controlling the r a t e a t whish nuclei become operational. In c l a s s j c a l nucleation, the f r a c t i o n of s i t e s

x

occupied by nuclei of operational s i z e n i s expressed by:

= Z exp ( - & G * / ~ T ) (20)

where Z i s a nonequilibrium f a c t o r (expressing the f r a c t i o n of c r i t i c a l nuclei which reach ;) and AG* i s a s previously defined. The frequency factor

8

i s the r a t e a t which these nuclei a r r i v e a t n , and i s expressed as:

where Qm i s the activation energy control ling motion of the nucleus/matrix

i n t e r f a c e and v i s an associated attempt frequency. Tn diffusional transformations, Qm i s the a c t i v a t i o n energy f o r atomic diffusion, while f o r martensitic transforma- tions i t i s the a c t i v a t i o n energy f o r motion of a g l i s s i l e i n t e r f a c e .

The operational nucleus i n martensitic transformations has come to be defined by the point a t which rapid growth begins, i . e . the condition t h a t leads t o a macroscopically detectable event (31 )

.

The strong defect/nucleus i n t e r a c t i o n i n heterogeneous martens i t i c nucleation indicates t h a t operational nucleation wi 11 occur under t h e condition AG*=O whereby the nucleation k i n e t i c s (equation 19)

(13)

C4-86 J O U R N A L U E PHYSIQUE

a r e controlled e n t i r e l y by i n t e r f a c i a l motion. Further progress i n our understand- ing of the k i n e t i c s of martensitic nucleation requires b e t t e r knowledge of the microscopic processes of i n t e r f a c i a l motion subject t o the constraints of the d i s c r e t e c r y s t a l .

The k i n e t i c s of nucleus-interfacial motion have been modelled i n terms of t h e generation of dislocations producing the l a t t i c e - i n v a r i a n t deformation (24,32) and t h e motion of coherency d i s l o c a t i o n s producing the l a t t i c e deformation (26).

Either mechanism can account f o r the experimental nucleation kinetics which show a l i n e a r dependance of a c t i v a t i o n energy on driving force. As discussed in

reference 3, no attempt t o account f o r t h i s behavior i n terms of a smoothly changing AG ( a s opposed t o Q,) has succeeded so f a r .

Nucleation k i n e t i c experiments on the coherent F C C 4 C P transformation i n Fe-Ni-Mn a1 loys (33), where t h e l a t t i c e - i n v a r i a n t deformation i s absent, indicate the same behavior a s does the semicoherent FCC+BCC transformation in the same a l l o y system. This finding suggests t h a t r a t e control i s by the l a t t i c e deformation i n both cases, and favors t h e coherency dislocation motion model. Recent experiments on the mobility of macroscopic martensi t i c i n t e r f a c e s in thermoelastic 0 CuAl N i a l l o y s reveal the same k i n e t i c behavior as thermally-activated dislocation motion (34).

Analogous t o the c l a s s i c a l and nonclassical paths which describe the history of a nucleus as an e n t i t y , the microscopic fluctuations governing i n t e r f a c i a l motion of a c l a s s i c a l nucleus may be of e i t h e r "heterophase" o r "homophase"

c h a r a c t e r ( 3 ) . Hence, a1 though the overall nucleus follows a classical path, nonclassical d i f f u s e - i n t e r f a c e concepts may have some relevance t o t h e i n t e r f a c i a l mobil i t y , p a r t i c u l a r l y i f widening of the i n t e r f a c i a l core s t r u c t u r e increases mobility as suggested by estimates of the coherent i n t e r f a c e P e i r l s b a r r i e r (14).

The macroscopic i n t e r f a c i a l mobi 1 i t y experiments (34) suggest an anomol ous

mobility increase a t low temperatures where e l a s t i c softening e f f e c t s a r e encounter- ed.

While observed heterogeneous nucleation s i t e s of low potency possess many c h a r a c t e r i s t i c s of the nucleation-site models (19,23), the most potent s i t e s which i n i t i a t e transformation a t the Ms temperature i n s e e l s a r e known t o

be sparsely d i s t r i b u t e d with a number density of -106 c ! f S (one per lOOw grain) and a r e therefore v i r t u a l l y unobservable. Efforts t o a r t i f i c i a l l y produce crystallographically well-defined potent s i t e s i n pre-strained synthetic Fe30Ni b i c r y s t a l s have been hampered by interference from an unusual isothermal a u t o c a t a l y t i c mode of transformation (formation of paired martensitic units o r " b u t t e r f l i e s " ) which obscures the i n i t i a l events (35). Earlier detection of i n i t i a l events by acoustic emission measurements might circumvent t h i s d i f f i c u l t y .

Although a u t o c a t a l y t i c nucleation often i n t e r f e r e s with investiyations directed a t the i n i t i a l nucleation events, the f a c t t h a t the majority of martensitic units a r e a u t o c a t a l y t i c a l l y generated makes t h i s an important phenomenon worthy of study in i t s own r i g h t . I t i s c l e a r t h a t the s t r e s s - a s s i s t e d and strain-induced modes of nucleation which normally account f o r transformation during deformation wi 11 make an important contribution t o

a u t o c a t a l y s i s , b u t the a u t o c a t a l y t i c nucleation accompanying rapid growth events i n "bursting" alloys i s suggestive of an overdriven process f o r which c l a s s i c a l nucleation k i n e t i c concepts may be inadequate. Autocatalytic nucleation may represent a f e r t i l e ground f o r exploration of possible nonclassical phenomena.

As a f i n a l remark, we have here focussed on nucleation mechanisms f o r transformations in bulk m ~ t e r i a l s . I t i s well established t h a t f r e e surfaces can provide a strong stimulating e f f e c t on martensitic nucleation. While i t i s evident t h a t surface image forces will reduce t h e s t r a i n energy of a c l a s s i c a l nucleus, a q u a n t i t a t i v e theory of surface nucleation has not y e t been developed.

This i s another area which i s r i p e f o r f u r t h e r investigation.

(14)

Closure.- T h i s survey o f t h e t h e o r e t i c a l p o s s i b i l i t i e s f o r martensi t i c n u c l e a t i o n s e t s some d e f i n i t e g u i d e l i n e s f o r t h e circumstances f a v o r i n g c l a s s i c a l and n o n c l a s s i c a l n u c l e a t i o n paths. Nonclassical paths w i l l be favored i n t h e case o f homogeneous coherent n u c l e a t i o n near a mechanical i n s t a b i 1 i t y , b u t t h i s wi 11 r e q u i r e t h e suppression of heterogeneous n u c l e a t i o n . This s p e c i a l c o n d i t i o n m i g h t be achieved e x p e r i m e n t a l l y i n t h e case o f small d e f e c t - f r e e metastable p a r t i c l e s p r e c i p i t a t e d i n a s o l i d m a t r i x , (as i n t h e case o f FCC i r o n i n copper, o r o f p a r t i a l l y s t a b i l i z e d z i r c o n i a ) which a r e known t o t r a n s f o r m a t q u i t e h i g h d r i v i n g f o r c e s . A more q u a n t i t a t i v e t r e a t m e n t o f n o n c l a s s i c a l n u c l e a t i o n would b e n e f i t from f u r t h e r c a l c u l a t i o n s o f t h e e n e r g e t i c s o f homogeneous l a t t i c e deformations and measurements o f h i g h e r - o r d e r e l a s t i c constants i n metastable a1 l o y s , as w e l l as t h e development o f s t r a i n - g r a d i e n t energies.

The heterogeneous n u c l e a t i o n which c o n t r o l s m a r t e n s i t i c t r a n s f o r m a t i o n s i n b u l k m a t e r i a l s w i l l f a v o r n u c l e a t i o n by t h e c l a s s i c a l path, p a r t i c u l a r l y i n semicoherent t r a n s f o r m a t i o n s . I n view o f t h e f a c t t h a t c l a s s i c a l behavior, i n v o l v i n g r e l a t i v e l y sharp i n t e r f a c e s , i s adequately d e s c r i b e d by l i n e a r - e l a s t i c continuum and d i s l o c a t i o n t h e o r i e s , t h e e s s e n t i a l f e a t u r e s o f heterogeneous m a r t e n s i t i c n u c l e a t i o n a r e considered t o be w e l l understood. Although t h e d e t a i l e d d i s c r e t e c r y s t a l c o n s t r a i n t s which a p p l y t o a m i c r o s c o p i c p a r t i c l e m e r i t f u r t h e r a t t e n t i o n , t h e o r e t i c a l and experimental evidence p o i n t t o n u c l e a t i o n - r a t e c o n t r o l by i n t e r f a c i a l motion. Consequently, a b e t t e r understanding o f t h e mechanism and k i n e t i c s o f heterogeneous m a r t e n s i t i c n u c l e a t i o n r e q u i r e s f u r t h e r i n v e s t i g a t i o n o f t h e complete process o f m a r t e n s i t i c i n t e r f a c i a l motion i n a d i s c r e t e c r y s t a l ; t h i s i n t e r f a c i a l m o t i o n may i n w l ve n o n c l a s s i c a l phenomena i n some circumstances

.

I s o l a t i o n o f t h e s p a r s e l y d i s t r i b u t e d h i g h l y p o t e n t n u c l e a t i o n s i t e s which i n i t i a t e t r a n s f o r m a t i o n i n t h e b u l k w i l l r e q u i r e t h e f a b r i c a t i o n o f s y n t h e t i c n u c l e a t i o n s i t e s i n c a r e f u l l y designed experiments guided by s p e c i f i c s i t e models. While e x i s t i n g models appear t o reasonably account f o r n u c l e a t i o n i n deformation-induced t r a n s f o r m a t i o n s , f u r t h e r work i s needed on t h e mechanisms and k i n e t i c s of a u t o c a t a l y t i c n u c l e a t i o n ( e s p e c i a l l y i n m a t e r i a l s exhi b i t i n g b u r s t i n g behavior) as w e l l as t h e s p e c i a l case o f m a r t e n s i t i c n u c l e a t i o n a t f r e e surfaces.

Acknowledgements

.-

T h i s research i s sponsored by t h e N a t i o n a l Science Foundation under Grant #DMR79-15196. The authors a r e a l s o indebted t o Dr. H.C. L i n g o f Western E l e c t r i c Engineering Research Labs f o r t h e e l a s t i c c a 7 c u l a t i o n s quoted i n F i g u r e 6, and t o Dr. J.W. Cahn o f t h e N a t i o n a l Bureau o f Standards f o r h e l p f u l discussions concerning r n n c l a s s i c a l n u c l e a t i o n behavior.

i o n c l u s i o n s r e g a r d i n g n o n c l a s s i c a l behavior near a mechanical i n s t a b i l i t y a r e based on p r e l i m i n a r y numerical c a l c u l a t i o n s performed by M r . K. B a l l o u as an undergraduate research p r o j e c t .

References.

-

1. COHEN, M . , OLSON, G.B., and CLAPP, P.C., Proc. ICOMAT-79, MIT, Cambridge, MA (1979) 1.

2. CAHN, J.W., and HILLIARD, J.E., J. Chem. Phys.

2

(1959) 688.

3. OLSON, G.B., and COHEN, M., Proc. I n t l . Conf. S o l i d - S o l i d Phase Transf., Carnegie-Mellon Univ, P i t t s b u r g , PA (1981) i n press.

4. NAKANISHI, N., Prog. Mater. S c i .

24

(1980) 143.

5. CLAPP, P.C., Phys. S t a t u s S o l i d i B

57

(1973) 561.

(15)

C4-88 JOURNAL DE PHYSIQUE

GUENIN, G., and GOBIN, P. F., M e t a l l . Trans. J3J (1982) 1127.

MILSTEIN, F., and FARBER, B., Phys Rev. L e t t .

44

(1980) 277.

MACDONALD, O.E., Proc. ICOMAT-79, Cambridge, MA (1979) 325.

SUZUKI, T., and LEDBETTER, H.M., unpublished research.

KELLY, M. J., J. Phys. F? (1979) 1921.

ESPOSITO, E., CARLSSON, A.E., LING, D.D., EHRENREICH, H., and GELATT, C.D. Jr., P h i l o s . Mag. A

41

(1980) 251.

BOGERS, A.J., and BURGERS, W.G., Acta M e t a l l .

12

(1964) 255.

ROITBURD, A.L., K r i s t a l l o g r a f i y a

7

(1962) 291.

ROITBURD, A.L., S o l i d S t a t e Phys.

33

(1978) 317.

CAHN, J.W., and HILLIARD, J.E., J. Chem. Phys.

3

(1958) 258.

CAHN, J.W., quoted by SUZUKI, T., M e t a l l . Trans.

12A

(1981) 709.

OLSON, G.B., and COHEN M., Metal 1. Trans.

a

(1976) 1897.

SUEZAWA, M., and COOK, H.E., Acta Metal 1. 28 (1980) 423.

FERRAGLIO, P.L., and MUKHERJEE, K., Acta M e t a l l .

22

(1974) 835.

KAJIWARA, S., Proc. ICOMAT-79, MIT, Cambridge, MA (1979) 362.

ARAKI, T., SHIBATA, K., ASAKURA, K., and WADA, H., Trans. 1515

15

(1975) 175.

VENABLES, J.A., P h i l o s . Mag. 1 (1962) 35.

BROOKS, J.W., LORETTO, M.H., and SMALLMAN, R.E., Acta M e t a l l .

27

(1979) 1829.

KAUFMAN, L., and COHEN, M., Prog. Metal Physics

1

(1958) 165.

OLSON, G.B., and COHEN, M., M e t a l l . Trans. (1976) 1905.

OLSON, G.B., and COHEN, M., M e t a l l . Trans. (1 976) 191 5.

LING, H.C., and OLSON, G.B., Proc. I n t l

.

Con?. S o l i d - S o l i d Phase Transf., Carnegie-Me1 l o n Univ., Pi t t s b u r g , PA (1 981 ) i n press.

ROITBURD, A.L., Dok. Akad. Nauk SSSR

256

(1981) 80.

OLSON, G.B., and COHEN, M., Acta M e t a l l .

2

(1979) 1907.

OLSON, G.B., Acta M e t a l l .

29

(1981) 1475.

COHEN, M., M e t a l l . Trans.

3

(1972) 1095.

RAGHAVAN, V., and COHEN, M., Acta M e t a l l . (1972) 333.

OLSON, G.B., and COHEN, M., Proc. ICOMAT-79, MIT, Cambridge, MA (1979) 310.

GRUJICIC, M., OLSON, G.B., and OWEN, W.S., t h i s conference.

35. CLARK, H.R., t h i s conference.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to