• Aucun résultat trouvé

TWO DIMENSIONAL PHASE EQUILIBRIA AT SURFACES

N/A
N/A
Protected

Academic year: 2021

Partager "TWO DIMENSIONAL PHASE EQUILIBRIA AT SURFACES"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: jpa-00228038

https://hal.archives-ouvertes.fr/jpa-00228038

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TWO DIMENSIONAL PHASE EQUILIBRIA AT SURFACES

J. Blakely

To cite this version:

J. Blakely. TWO DIMENSIONAL PHASE EQUILIBRIA AT SURFACES. Journal de Physique Col-

loques, 1988, 49 (C5), pp.C5-351-C5-366. �10.1051/jphyscol:1988541�. �jpa-00228038�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplbment au n010, Tome 4 9 , o c t o b r e 1988

TWO DIMENSIONAL PHASE EQUILIBRIA AT SURFACES

J.M. BLAKELY

M a t e r i a l s Science and Engineering, Cornell U n i v e r s i t y , I t h a c a , NY 14853-1501, U.S.A.

A b s t r a c t

This paper provides a b r i e f d i s c u s s i o n o f some c u r r e n t experimental work on phase t r a n s i t i o n s a t f r e e surfaces. Examples a r e used t o i l l u s t r a t e work i n t h e areas o f surface r e c o n s t r u c t i o n , roughening, atomic step coalescence, and t r a n s f o r m a t i o n s o f adsorbed and segregated l a y e r s . A l l o f these surface phenomena a r e l i k e l y t o have counterparts a t i n t e r n a l boundaries.

I. I n t r o d u c t i o n :

The i n t e r f a c e s discussed i n t h i s paper are those between a c r y s t a l and vacuum o r a l o w pressure vapor. These ' e x t e r n a l ' surfaces have been s t u d i e d much more e x t e n s i v e l y than those between condensed phases. From the e x p e r i m e n t a l i s t ' s viewpoint they a r e more accessible and t h e wealth o f data now a v a i l a b l e has encouraged t h e o r i s t s t o make major e f f o r t s i n computation ( 1 y 2 ) o f surface p r o p e r t i e s . A wide v a r i e t y o f s u r f a c e phase t r a n s i t i o n s have been documented and some r a t h e r s o p h i s t i c a t e d models o f these phenomena e x i s t i n the l i t e r a t u r e . I n many respects t h e modelling o f surface phase t r a n s i t i o n s i s more advanced than t h a t f o r 3-dimensional systems mainly due t o t h e mathematical

s i m p l i f i c a t i o n s introduced by the reduced dimensionality.

I n t h i s paper a few examples o f surface phase t r a n s i t i o n s are described.

I n most cases i t i s easy t o imagine s i m i l a r o r r e l a t e d phenomena o c c u r r i n g a t i n t e r n a l boundaries. The phase t r a n s i t i o n s discussed i n v o l v e ( i ) surface r e c o n s t r u c t i o n s , ( i i ) atomic roughening, ( i i i ) atomic step c l u s t e r i n g and f a c e t t i n g , ( i v ) adsorbed o v e r l a y e r s u p e r l a t t i c e s , ( v ) segregated l a y e r s on a1 l o y c r y s t a l s and ( v i ) 2-dintensional adsorbed a1 loys.

11. S t a b i l i t y and Coexistence o f Surface Phases

The s t a b l e s t r u c t u r e s t h a t e x i s t a t a surface a r e those which are i n e q u i l i b r i u m w i t h t h e b u l k and vapor phases as w e l l as w i t h each other. I t i s indeed r a r e t h a t t h i s s t a t e o f thermodynamic e q u i l i b r i u m i s achieved so t h a t t h e m a j o r i t y o f surface phases observed a r e i n some respect metastable. This i s o f course a l s o t r u e o f b u l k phases. T r a n s i t i o n s among surface phases may be l i m i t e d

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988541

(3)

C5-352 JOURNAL

DE

PHYSIQUE

by n u c l e a t i o n o r atom t r a n s p o r t processes w h i l e volume d i f f u s i o n , a d s o r p t i o n and d e s o r p t i o n r a t e s may l i m i t communication between t h e s u r f a c e and t h e n e i g h b o r i n g b u l k phases. The s u r f a c e r e g i o n may t h e r e f o r e behave i n extreme cases e i t h e r as an open o r a c l o s e d system i n t h e thermodynamic sense. I n t h e f i r s t case chemical p o t e n t i a l s can be c o n t r o l l e d t h r o u g h vapor p r e s s u r e s o r a l l o y c o m p o s i t i o n w h i l e i n t h e second case t h e s u r f a c e chemical p o t e n t i a l s w i l l g e n e r a l l y d i f f e r f r o m t h o s e i n t h e b u l k phases and w i l l be determined by t h e ( f i x e d ) average d e n s i t y and c o m p o s i t i o n o f t h e s u r f a c e r e g i o n . Examples o f b o t h extreme s i t u a t i o n s w i l l be mentioned l a t e r i n t h e paper. W h i l e b o t h open and c l o s e d s u r f a c e systems may be d e s c r i b e d thermodynamically, i n t e r m e d i a t e c o n d i t i o n s a r e n o t so r e a d i l y analysed.

F o r s u r f a c e (and i n t e r f a c i a l ) phases, p r e s s u r e and volume a r e n o t u s e f u l v a r i a b l e s . D i f f e r e n t c o n v e n t i o n s f o r d e f i n i n g s u r f a c e thermodynamic

i n v o l v e somewhat a r b i t r a r y assignments t o t h e s u r f a c e volume, a problem t h a t c l e a r l y a r i s e s f r o m t h e f a c t t h a t t h e p h y s i c a l e x t e n t o f t h e s u r f a c e phase may be comparable t o t h a t o f t h e t r a n s i t i o n r e g i o n t h a t s e p a r a t e s i t f r o m t h e b u l k . The s u r f a c e t e n s i o n , y, and area, A, a r e , however, w e l l d e f i n e d q u a n t i t i e s and e s s e n t i a l l y r e p l a c e p r e s s u r e and volume f o r s u r f a c e phases. The c o n d i t i o n s f o r e q u i l i b r i u m c o e x i s t e n c e o f s u r f a c e and b u l k phases i n v o l v e u n i f o r m i t y of temperature, chemical p o t e n t i a l s , p r e s s u r e f o r b u l k phases and surface t e n s i o n f o r s u r f a c e phases, i . e . f o r a s e t o f s u r f a c e phases I, 11, 111,

...

we must have ( 4 s ) I II 111 = Y =

....

The ranges o f s t a b i l i t y f o r s u r f a c e phases m i g h t t h e n be r e p r e s e n t e d on y T - c o m p o s i t i o n phase diagrams w i t h a phase r u l e s i m i l a r t o t h a t f o r b u l k phases, i.e.,

where W i s t h e number o f parameters t h a t can be v a r i e d i n d e p e n d e n t l y ( i . e . , t h e v a r i a n c e ) and s t i l l m a i n t a i n

x

phases i n an n component system. Phase diagrams o f t h i s t y p e have i n d e e d been o b t a i n e d f o r L a n g m u i r - B l o d g e t t monolayer f i l m s on l i q u i d s b u t f o r s o l i d systems, s u r f a c e t e n s i o n i s g e n e r a l l y a q u a n t i t y t h a t i s b o t h d i f f i c u l t t o c o n t r o l and t o measure. The s t a b i l i t y o f s u r f a c e phases may be r e p r e s e n t e d on a v a r i e t y o f a l t e r n a t i v e diagrams. F o r example, f o r t h e phases of a one-component l a y e r adsorbed on an ' i n e r t ' s u b s t r a t e and i n e q u i l i b r i u m w i t h a vapor, vapor p r e s s u r e P and T would be c o n v e n i e n t v a r i a b l e s ; f i g u r e ( 1 1 )

('I

shows an example o f such a diagram. The s u r f a c e phases o f an a l l o y c r y s t a l i n which s u r f a c e t o b u l k e q u i l i b r i u m i s a c h i e v e d t h r o u g h d i f f u s i o n c o u l d s i m i l a r l y be r e p r e s e n t e d on a diagram o f b u l k c o m p o s i t i o n v e r s u s T;

f i g u r e (10) ( 8 ) shows such an example. The 2-phase c o e x i s t e n c e c u r v e s f o r these open system phase diagrams can i n f a c t b e d e s c r i b e d i n a f o r m a l way b y Clapeyron t y p e e q u a t i o n s ( 4 3 9 ) ; f o r example f o r a one component l a y e r i n e q u i l i b r i u m w i t h a

(4)

vapor, the equation

describes t h e coexistence o f two surface phases I and I 1 as a f u n c t i o n o f gas pressure and temperature.

eI

and eII a r e t h e f r a c t i o n a l occupancies ( o r

coverages) o f p o s s i b l e a d s o r p t i o n s i t e s i n the two phases, q I ads i s t h e i s o s t e r i c heat o f a d s o r p t i o n f o r phase I and qtr t h e heat o f t r a n s f o r m a t i o n from I t o 11;

b o t h o f these heats w i l l be coverage dependent. (For t h e a l l o y segregation case P would be replaced by atomic f r a c t i o n

x).

For closed adsorbed l a y e r s , t h e chemical p o t e n t i a l s are n o t f i x e d by some b u l k r e s e r v o i r b u t the average coverages can be a d j u s t e d experimentally; i t i s then more convenient t o represent t h e ranges o f s t a b i l i t y o f d i f f e r e n t phases on temperature-composition-coverage diagrams ( l o ) , ( F i g u r e (1)). F i g u r e (12) i s an example o f a T-8 diagram f o r a one component adsorbed l a y e r i.e. f i x e d

composition w h i l e f i g u r e (13) ( I 2 ) g i v e s a T-composition diagram f o r a b i n a r y adsorbed l a y e r a t f i x e d coverage. F u r t h e r comments on these diagrams w i l l be made l a t e r .

F i g u r e 1. Axes f o r phase diagram d e s c r i b i n g a b i n a r y 2-dimensional adsorbed l a y e r . The conventional diagram f o r a s i n g l e component l a y e r

corresponds t o t h e plane x=O o r 1. The dashed plane corresponds t o a s e c t i o n a t constant t o t a l coverage; t h i s s e c t i o n should have f e a t u r e s s i m i l a r t o those o f

conventional diagrams o f 3-dimensional b i n a r y a l l o y s .

111. S t r u c t u r a l T r a n s i t i o n s o f Clean Surfaces

The atomic s t r u c t u r e o f crystal-vacuum i n t e r f a c e s has been s t u d i e d by a f a i r l y impressive a r r a y o f experimental methods i n c l u d i n g s c a t t e r i n g o f e l e c t r o n s (13), x-rays ( I 4 ) , atoms o r molecules ( I 5 ) and ions (I6) as w e l l as h i g h r e s o l u t i o n techniques o f f i e l d i o n ( I 7 ) and scanning t u n n e l i n g microscopies.

A t c l e a n surfaces the atomic s t r u c t u r e o f t e n d i f f e r s from t h a t expected f o r an i d e a l l y terminated c r y s t a l . Examples o f these d e v i a t i o n s are b r i e f l y discussed.

(5)

C5 -35 4 JOURNAL

DE

PHYSIQUE

( i ) Surface Reconstruction

Several types of atomic rearrangements i n t h e topmost l a y e r ( s ) o f a c r y s t a l from those i n corresponding b u l k planes have been i d e n t i f i e d . I n many cases t h e r e i s an o v e r a l l expansion o r c o n t r a c t i o n o f t h e i n t e r p l a n a r spacings i n t h e surface 'layers normal t o t h e surface; t h e measurements o f such c o n t r a c t i o n s r e q u i r e s very c a r e f u l s c a t t e r i n g measurements and analyses ( I 3 ) . . The f o r m a t i o n o f s u r f a c e s u p e r l a t t i c e s i s g e n e r a l l y e a s i e r t o e s t a b l i s h through t h e appearance o f e x t r a r e f l e c t i o n s i n surface d i f f r a c t i o n p a t t e r n s ( I 9 ) and i t i s these surfaces w i t h longer p e r i o d s t r u c t u r e s which a r e r e f e r r e d t o as reconstructed.

Among t h e most s t u d i e d surfaces showing r e c o n s t r u c t i o n a r e t h e (100) and (111) surfaces of S i (20'21). Models o f t h e i d e a l and (2x1) reconstructed (100) surface of S i a r e d e p i c t e d i n F i g u r e ( 2 ) ( 2 2 y 2 3 ) . The formation o f t h e (2x1) i s

,FJ---,

(2 x 1)

w '[ ,;

2 x 1 Surface R,; 2 x 1 Surface (Top view) (Side view) F i g u r e 2b. Asymmetric ( o r i o n i c ) dimer geometry. Side view i s schematic and i s n o t drawn t o scale.

[From Chadi : J. Vac. Sci

.

Technol

. ,

16, 1291 ( 1 9 7 9 ) l -

1.1

Figure 2a. Several models f o r 2x1 reconstructed Si(100) surface. Surface atoms are shown as open c i r c l e s and second l a y e r atoms as dark c i r c l e s . The models shown are: ( a ) i d e a l , unrelaxed surface; (b) symmetric ( o r c o v a l e n t ) dimer;

( c ) and ( d ) vacancy models; ( e ) conjugated-chain model; ( f ) "double"

conjugated-chain model i n which every atom i s f o u r f o l d coordinated. [ A f t e r Chadi, J. Vac. Sci. Technol.

16,

1291 (1979)l

(6)

a t t r i b u t e d t o t h e formation o f s u r f a c e dimers w i t h an accompanying decrease i n s u r f a c e dangling bond d e n s i t y from 2 t o 1 p e r surface atom. The lowest energy c o n f i g u r a t i o n o f t h e dimers i s assymetrical (24) ( F i g u r e ( 3 ) ) and h i g h e r o r d e r r e c o n s t r u c t i o n s observed i n LEED have been a t t r i b u t e d t o t h e sense of t h i s a s ~ ~ m e t r ~ ( ~ ~ ) . Very c l e a r evidence e x i s t s i n scanning t u n n e l i n g microscope images(23) f o r t h e occurrence o f dimers on t h i s (100) surface. I n a d d i t i o n t o these and o t h e r experimental observations very extensive t i g h t b i n d i n g

c a l c u l a t i o n s have been made on the energies associated w i t h these s t r u c t u r e s . Some o f these r e s u l t s a r e summarized i n F i g u r e ( 3 ) ( 2 5 y 2 6 ) . The energy o f t h e (2x1) phase i s reduced r e l a t i v e t o t h e unreconstructed (1x1) by Q.85 eV p e r s u r f a c e atom w h i l e t h e h i g h e r order (4x2) phase i n v o l v e s a f u r t h e r r e d u c t i o n o f

A z-**V IERL (JOO) F i g u r e 3.

Calculated (25,261

o.ssev energies f o r the

r e c o n s t r u c t i o n s o f

Or0

1.7" ~ C ~ ~ ~ DI-R S C R L S i (100).

H a

v

"lilsV R s s ~ m 1 . 1 0 m c n ~ 3tr1SR

o n l y 20.03 e ~ ( ~ ~ ) . These energies a r e q u a l i t a t i v e l y c o n s i s t e n t w i t h the experimental observations t h a t t h e (2x1) r e c o n s t r u c t i o n p e r s i s t s t o h i g h temperatures w h i l e the (4x2) phase d i s o r d e r s t o (2x1) near room temperature.

The S i ( l l 1 ) surface a l s o e x h i b i t s r e c o n s t r u c t e d phases. The (2x1) observed on cleaved surfaces i s metastable and transforms t o t h e s l i g h t l y lower energy

(7x7) surface on annealing; t h e t r a n s i t i o n between (7x7) and (1x1) i s i n t h e r e g i o n o f 850°C. The s t r u c t u r e s o f these phases have been t h e s u b j e c t o f a very l a r g e experimental (") and t h e o r e t i c a l e f f o r t and w e l l supported models o f t h e reconstructed phases now e x i s t .

( i i ) The Roughening T r a n s i t i o n

On an i d e a l ( o r r e c o n s t r u c t e d ) s u r f a c e a t low temperatures t h e coordinates o f a l l surface atoms can be p r e d i c t e d from those o f one u n i t c e l l . However, as temperature i s increased and p o i n t and o t h e r d e f e c t s a r e spontaneously c r e a t e d due t o the accompanying increase i n entropy t h e s u r f a c e may become d i f f u s e o r rough so t h a t c o r r e l a t i o n i n t h e normal coordinates o f p a i r s o f outermost atoms diminishes. For a surface o f i n f i n i t e l a t e r a l e x t e n t t h e w i d t h o f the c r y s t a l vacuum i n t e r f a c e would d i v e r g e as t h e c r i t i c a l roughening temperature i s

approached. Burton, Cabrera, and ~ r a n k ( ~ O ) developed a theory f o r t h i s roughenin, t r a n s i t i o n based on an a d a p t a t i o n o f t h e I s i n g model and more r e c e n t a n a l y t i c a l d e s c r i p t i o n s (31y32) are extensions o f t h i s work. F i g u r e ( 4 ) (31) i s a view o f t h e e q u i l i b r i u m s t r u c t u r e o f a (100) s u r f a c e obtained u s i n g Monte Carlo methods, based on a nearest neighbour bonding model, a t v a r i o u s reduced temperatures. So

(7)

JOURNAL DE PHYSIQUE

F i g u r e 4. Monte Carlo

s i m u l a t i o n s ( 3 2 ) o f t h e surface o f a cubic s o l i d a t various reduced temperatures, kT/ E,

where E i s the nearest neighbor bond energy.

f a r t h e r e have been few d i r e c t measurements o f spontaneous surface roughening.

I t i s g e n e r a l l y agreed t h a t t h e c l o s e packed surfaces o f most ' s i m p l e ' c r y s t a l s do n o t show appreciable roughening below t h e m e l t i n g p o i n t . However t h e theory (31) s t r o n g l y suggests t h a t v i c i n a l and h i g h index planes w i t h lower average surface c o o r d i n a t i o n may e x h i b i t s i g n i f i c a n t roughening. Recent measurements o f t h e i n t e n s i t y p r o f i l e s o f He d i f f r a c t i o n beams (33'34) over a range o f temperatures have been used t o e x t r a c t parameters c h a r a c t e r i z i n g surface roughness. I f t h e f u n c t i o n expressing t h e c o r r e l a t i o n i n h e i g h t between any two p o i n t s on t h e surface i s expressed as a power law i n t h e i n v e r s e o f t h e d i s t a n c e between t h e two p o i n t s t h e exponent i s found ( 3 4 ) t o vary w i t h temperature f o r

F i g u r e 5. Roughness

parameter,

%,

as a f u n c t i o n o f temperature. Roughening i s taken t o correspond t o $=0.5.

the Ni(115) surface as i n d i c a t e d i n F i g u r e (5); t h e abrupt increase i n t h e roughness exponent,

x,,

a t s 4 5 0 K i s i n t e r p r e t e d as i n d i c a t i n g t h e onset o f roughness. I t i s n o t ' e n t i r e l y c l e a r , however, t h a t t h e observed s c a t t e r i n g e f f e c t s a r e i n f a c t due t o spontaneous k i n k formation. An experiment combining the d i f f r a c t i o n method w i t h STM observations o f t h e c o n f i g u r a t i o n o f s t e p edges would be extremely i n t e r e s t i n g .

(8)

( i i i ) Atomic Step C l u s t e r i n g and F a c e t t i n g

Surfaces v i c i n a l t o l o w i n d e x p l a n e s o f close-packed c r y s t a l s a r e made up o f a r r a y s o f a t o m i c s t e p s and t e r r a c e s . Such s u r f a c e s g i v e r i s e t o

c h a r a c t e r i s t i c s p l i t t i n g o f LEED beams (35336y37), (as i l l u s t r a t e d i n f i g u r e ( 6 ) ( 3 8 ) ) , w i t h t h e magnitude o f t h e d i f f e r e n c e i n s c a t t e r i n g v e c t o r between t h e

F i g u r e 6. LEED p a t t e r n s f r o m a v i c i n a l s u r f a c e o f N i . The beam s p l i t t i n g

corresponds t o t h e average t e r r a c e dimension.

( a ) corresponds t o room temperature, ( b ) t o 500°C. The s u r f a c e i s

~i ( l l l ) l O O [ l ~ O ] .

beams r e f l e c t i n g t h e peak i n t h e d i s t r i b u t i o n o f t e r r a c e dimensions. I n d i v i d u a l s t e p s on such a s u r f a c e w i l l meander i n two dimensions so t h a t n e i g h b o r i n g s t e p s w i l l have p o i n t s o f c l o s e approach. I f t h e mean i n t e r a c t i o n between s t e p s i s a t t r a c t i v e t h e r e w i l l be a tendency t o w a r d low t e m p e r a t u r e c l u s t e r i n g whereas a t s u f f i c i e n t l y h i g h t e m p e r a t u r e a s i n g l e s t e p a r r a y ( o f h i g h e r c o n f i g u r a t i o n a l e n t r o p y ) w i l l be favored. F i g u r e ( 7 ) ( 3 9 ) shows t h e average t e r r a c e w i d t h as a f u n c t i o n o f t e m p e r a t u r e deduced f r o m d i f f r a c t i o n p a t t e r n s o f t h e t y p e shown i n ( 6 a ) and (6b). The observed h y s t e r e s i s a s s o c i a t e d w i t h t e m p e r a t u r e c y c l i n g c o u l d

Temperature ( K )

6o 4 8 0 5 0 0 5 2 0 5 4 0 5 6 0 5 6 0 600 6 2 0 5 0

F i g u r e 7. Average s t e p dimensions o f a c l e a n and s u l phur-covered N i ( 1 1 1 ) 5 ° [ 1 i 0 ] s u r f a c e ( h e a t i n g and c o o l i n g r a t e s a r e 20°C/h).

1 0 -

0

be i n d i c a t i v e o f a f i r s t o r d e r t r a n s i t i o n i n v o l v i n g 2-phase c o e x i s t e n c e o r may r e f l e c t k i n e t i c l i m i t a t i o n s . C a r e f u l measurements o f t h e p r o f i l e s o f t h e s c a t t e r e d beams a r e c u r r e n t l y b e i f i g made t o d e c i d e between t h e s e two p o s s i b i l i t i e s .

2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 0 0 Temperature ('C)

A clean NI (cool~nql 4 clean NI lhaotbnql 8 0 12 monolayers 01 S lcml8nql O 0 12 monoloyers of S (twot~ngl

- 1 0

(9)

C5 -35 8 JOURNAL

DE

PHYSIQUE

F a c e t t i n g may be viewed as an extreme case o f s t e p rearrangement i n which an i n i t i a l l y f l a t s u r f a c e undergoes a m o r p h o l o g i c a l t r a n s i t i o n t o one composed o f e x t e n s i v e r e g i o n s o f two o r more s u r f a c e o r i e n t a t i o n s . Most t r a n s i t i o n s o f t h i s t y p e f o r metal surfaces,seem t o be a s s o c i a t e d w i t h t h e presence o f an adsorbed l a y e r b u t t h e s u r f a c e t e n s i o n o f some i o n i c and c o v a l e n t c r y s t a l s i s s u f f i c i e n t l y a n i s o t r o p i c t h a t f a c e t t i n g occurs on c l e a n s u r f a c e s o f these m a t e r i a l s . An i n t e r e s t i n g example i s t h e f a c e t t i n g o f S i s u r f a c e s n e a r (210) t o {2111 s u r f a c e s i n o t h e r zones ( 4 1

I V . Phase T r a n s i t i o n s i n v o l v i n g Adsorbed Layers

( i ) Open Adsorbed Systems

Adsorbed l a y e r s i n e q u i l i b r i u m w i t h a vapor phase, where coverage i s determined by temperature and gas pressure, have been s t u d i e d most e x t e n s i v e l y f o r gas molecules which bond weakly t h r o u g h van d e r Waals p o t e n t i a l s t o t h e s u b s t r a t e . Rare gases on t h e g r a p h i t e b a s a l p l a n e have been w i d e l y s t u d i e d b y s t r u c t u r a l and thermal techniques. F o r t h e s e systems t h e h e a t o f a d s o r p t i o n i s s u f f i c i e n t l y s m a l l t h a t low coverages can be o b t a i n e d i n t h e e a s i l y a c c e s s i b l e gas p r e s s u r e range; w i t h s t r o n g l y chemisorbed molecules ( h e a t s o f a d s o r p t i o n

;

2eV) e x t r e m e l y small e f f e c t i v e gas pressures a r e r e q u i r e d f o r e q u i l i b r i u m coverages s i g n i f i c a n t l y below a monolayer.

F i g u r e ( 8 ) ( 4 3 ) shows a s e t o f a d s o r p t i o n isotherms f o r Xe on g r a p h i t e ; t h e a b r u p t i n c r e a s e i n coverage f r o m a low v a l u e t o t h a t o f a dense o r d e r e d o v e r l a y e r

, A - M - b 0 0 6 Q - O O - Q F i g u r e 8. A d s o r p t i o n

isotherms f o r Xe on G r a p h i t e (0001). Note t h e a b r u p t coverage i n c r e a s e s

8 2 " ~ 86'K corresponding t o f o r m a t i o n o f

an o r d e r e d dense s u r f a c e phase.

0

, -0-od9

lo-= I O - ~

Xe Pressure (Torr)

i s c h a r a c t e r i s t i c o f t h e f o r m a t i o n o f a dense phase o f a t t r a c t i n g molecules t h r o u g h a f i r s t o r d e r t r a n s i t i o n . Measurements on t h e s e g r e g a t i o n o f carbon t o N i ( l l 1 ) s u r f a c e s f r o m a d i l u t e s o l i d s o l u t i o n show qua1 i t a t i v e l y s i m i l a r

b e h a v i o r ( 4 8 y 8 ) ( F i g u r e ( 9 ) ) . The a b r u p t i n c r e a s e s i n carbon coverage t o f o r m a

(10)

F i g u r e 9. V a r i a t i o n i n s u r f a c e C c o n c e n t r a t i o n w i t h temperature f o r Ni (111) c r y s t a l s doped w i t h C t o v a r i o u s l e v e l s . The abrupt increases i n C c o n c e n t r a t i o n w i t h decreasing temperature correspond t o t h e formation of a g r a p h i t i c monolayer. The curves have been s h i f t e d v e r t i c a l l y f o r c l a r i t y .

Temperature (Kl

monolayer g r a p h i t e phase can be measured as a f u n c t i o n o f b u l k carbon c o n c e n t r a t i o n and used t o e s t a b l i s h t h e diagram o f f i g u r e (10) (8)

.

Figure (11) shows a pressure vs. 1/T phase diagram f o r CO adsorbed on

~ d ( 1 0 0 ) ( ' ) . For t h i s system t h e heat o f a d s o r p t i o n i s s u f f i c i e n t l y low ( h . 5 e ~ )

F i g u r e 11. Phase diagram f o r

co

on P ~ ( ~ o o ) ( ~ ) . F i g u r e 10. Phase diagram f o r C on Ni (111). The r e r t i c a l a x i s i s t h e b u l k C

concentration.

I

C

g

Z

.e

U

-

4

lo-'

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

IO'/T (KI

-

- -

I \ ' \ s

(11)

C5-360 JOURNAL DE PHYSIQUE

t h a t e q u i l i b r i u m coverages w e l l below one monolayer can be achieved. The slope o f t h e 2-phase coexistence l i n e s should be described by equation ( 2 ) .

( i i ) Closed One-component Adsorbed Systems

The vast m a j o r i t y o f t h e work on surface phases on c r y s t a l surfaces has i n v o l v e d adsorbed l a y e r s which a r e n o t i n e q u i l i b r i u m e i t h e r w i t h t h e vapor o r s o l i d s o l u t i o n . The average coverage remains f i x e d as temperature i s v a r i e d up t o some value where d i f f u s i o n o r d e s o r p t i o n r a t e s become appreciable.

S i g n i f i c a n t p o r t i o n s o f e vs T phase diagrams have been mapped o u t f o r several chemisorption systems. The case o f 0 on N i ( l l 1 ) i s among t h e most s t u d i e d and b e s t understood systems a t present. The phase diagram 111,45) o f t h i s system i s shown i n F i g u r e (12). One o f t h e most i n t e r e s t i n g f e a t u r e s o f t h e diagram i s t h e

400

-

-

Ga

Y 300-

w

,

/ / / I /

1 0 0 - /' / I /

/ 1 1 1

O60 I

01 0 2 0.3 04

Coverope. 8

F i g u r e 12. Phase diagram f o r 0 on ~ i ( 1 1 1 ) ' ~ ~ ) .

----

= first-order transitions;

- -

continuous order.

disorder transition.

existence o f a w e l l ordered ~ ( 2 x 2 ) phase which disorders, a t constant 8 ( d . 2 5 ) t o a (1x1) phase a t a temperature o f 450°C. This phase and i t s d i s o r d e r i n g were i n f a c t noted by Davisson and Germer ( 4 6 ) i n t h e i r h i s t o r i c study o f e l e c t r o n d i f f r a c t i o n from a (111) Ni surface. A s i m i l a r t r a n s i t i o n seems t o occur

(47

f o r S on N i ( l l . 1 ) . Park and coworkers ( 4 5 ) have made a c a r e f u l study o f t h e p r o f i l e s o f i n d i v i d u a l s u p e r l a t t i c e d i f f r a c t i o n beams from 0 on N i ( l l 1 ) as a f u n c t i o n o f temperature i n o r d e r t o e x t r a c t c r i t i c a l exponents f o r t h i s continuous o r d e r - d i s o r d e r t r a n s i t i o n .

( i i i ) Closed Two-Component Adsorbed Systems

The study o f b i n a r y adsorbed l a y e r s i s s t i l l a t an e a r l y stage and o n l y a very few r e s u l t s have been reported. Such quasi 2-dimensional a l l o y systems are l i k e l y t o prove extremely i n t e r e s t i n g and would be expected t o e x h i b i t a l l o f the f e a t u r e s ( - m i s c i b i l i t y gaps, e u t e c t i c s , e u t e c t o i d s , compound formation, etc.) found f o r 3-dimensional a l l o y s . I t i s a l s o l i k e l y t h a t t h e phase diagrams f o r b i n a r y adsorbed l a y e r s w i l l be o f g r e a t value i n understanding surface

(12)

r e a c t i o n s . F i g u r e (13) ( I 2 ) i s a phase diagram f o r t h e CO-Ar model system

F i g u r e 13. Phase diagram (12

r neutron d ~ f f r a c t ~ o n measurements f o r t h e b i n a r y adsorbed l a y e r ,

L E E D CO + Ar, on g r a p h i t e . CD i s a

commensurate d i s o r d e r e d ph.ase, C O - A r mlxtures I C an incommensurate phase,

HB

an o r i e n t a t i o n a l o r d e r e d phase and PW a c o m p o s i t i o n a l l y o r d e r e d phase.

-

Y

\

\

\

I I I I

0 J v

I

L

co 0 5 Ar

p h y s i s o r b e d on g r a p h i t e . The phase b o u n d a r i e s were e s t a b l i s h e d f r o m measurements o f t h e t e m p e r a t u r e v a r i a t i o n o f t h e i n t e n s i t i e s o f e l e c t r o n and n e u t r o n

d i f f r a c t i o n beams. The v a r i o u s phases i n v o l v e o r i e n t a t i o n a l o r d e r i n g o f t h e CO m o l e c u l a r a x i s as w e l l as i t s l o c a t i o n r e l a t i v e t o t h e u n d e r l y i n g s u b s t r a t e atoms. As can be seen t h e r e a r e i n d i c a t i o n s o f s e v e r a l c r i t i c a l p o i n t s a t which 3 phases c o e x i s t i n e q u i l i b r i u m .

F i g u r e (14) (48a49) shows some p r e l i m i n a r y o b s e r v a t i o n s on t h e s t r o n g l y

F i g u r e 14. Schematic phase diagram(49) f o r 0 and S adsorbed on a Ni-Fe(100) s u r f a c e .

Temperature T (OC)

h I

I

I I

lattice ,7$ 1

I gas

I ,

,

,

c(2xZ)O

(13)

C5-362 JOURNAL DE PHYSIQUE

chemisorbed S+O o v e r l a y e r on an a l l o y s u b s t r a t e . The LEE0 s t u d i e s i n t h i s case i n d i c a t e a m i s c i b i l i t y gap i n which a S r i c h C(2x2) phase c o e x i s t s w i t h an 0 r i c h C(2x2). Whether t h e gap t e r m i n a t e s w i t h a c r i t i c a l p o i n t o r a e u t e c t o i d i s n o t w e l l e s t a b l i s h e d a t t h i s time. T h i s i s a p a r t i c u l a r l y i n t e r e s t i n g t y p e o f diagram i n c o n n e c t i o n w i t h t h e e f f e c t o f S on t h e r e a c t i o n o f t r a n s i t i o n m e t a l s w i t h oxygen.

References

( 1 ) S.K. Sinha, ed., O r d e r i n g i n Two Dimensions, E l s e v i e r , N.Y., (1980).

( 2 ) J.G. Dash and J. Ruvalds, Ed., Phase T r a n s i t i o n s i n S u r f a c e F i l m s , Plenum, N.Y., (1980).

(3) E.A. Guggenheim, Thermodynamics, N o r t h H o l l a n d , Amsterdam, (1967).

( 4 ) J.M. B l a k e l y and J.C. S h e l t o n , i n S u r f a c e P h y s i c s o f M a t e r i a l s , Vol I, Academic, N.Y., (1975).

( 5 ) R. Defay, I. P r i g o g i n e , A. Bellemaus, and D.H. E v e r e t t , S u r f a c e Tension and A b s o r p t i o n , Wiley, N.Y., (1951).

( 6 ) Proceedings o f 1 s t I n t e r n a t i o n a l Conference on L a n g m u i r - B l o d g e t t F i l m s , T h i n F i l m S o l i d s ,

99,

(1983).

( 7 ) J.C. Tracy and P.W. Palmberg, J. Chem. Phys.,

51,

4852, (1969); S u r f . Sci., 14, 274, (1969).

-

( 8 ) M. E i s e n b e r g and J.M. B l a k e l y , Surf. Sci.,

82,

220, (1979).

( 9 ) J.M. B l a k e l y and M. Eisenberg, i n Chemical P h y s i c s o f S o l i d Surfdces and H e t e r o eneous C a t a l s i s , ed D.A. K i n g and D.P. Woodruff, E l s e v i e r ,

Ams t e r % a r n e

( 1 0 ) J.M. B l a k e l y , R.J. Lad and A.G. S c h r o t t , B u l l . A l l o y Phase Diag.,

5 ,

117,

(1984).

( 1 1 ) A.R. K o r t a n and R.L. Park, Phys. Rev. B,

23,

6340, (1981).

(12) Hoydoo You and S.C. Fain, Phys. Rev. B,

34,

2840, (1986).

(13) see e.g. D.P. Woodruff i n Chemical P h y s i c s o f S o l i d Surfaces and

H e t e r o eneous C a t a l y s i s , ed D.A. K i n g and O.P. Woodruff, Elsener, Amsterdam,

m3i-f-

( 1 4 ) D.E. Moncton and R. Pindak, Phys. Rev. L e t t . ,

s,

701, (1979). D.E. Moncton, P.W. Stephens, R.J. Birgeneau, P.M. Horn and G.S. Brown, Phys. Rev. L e t t . , 46, 1533, (1981).

-

(15) M.W. C o l e and D.R. F r a n k l , S u r f . Sci.,

70,

585, (1978).

(16) L.C. Feldn~an, J.W. Mayer and S.T. P i c r a u x , M a t e r i a l s A n a l y s i s by I o n Channelinc-, Academic Press, N.Y., (1982). ( 1 7 ) E.W. M u l l e r and T.T. Tsong, Progress i n S u r f . Sci.,

4,

1, (1973).

(14)

(17) E.W. M u l l e r and T.T. Tsong, Progress i n S u r f . Sci.,

4,

1, (1973).

(18) G. B i n n i g and H. Rohrer, Physica,

m,

37, (1984).

(19) M.A. van Hove, W.H. Weinberg and C.M. Chan, Low Energy E l e c t r o n D i f f r a c t i o n : Experiment, Theory, and Surface S t r u c t u r e D e t e r m i n a t i o n , S p r i n g e r - V e r l ag

,

N.Y., (1986).

( 2 0 ) D.J. Chadi, J. Vac. Sci. Tech.,

16,

1290, (1979).

(21) J.E. N o r t h r u p and M.L. Cohen, J. Vac. S c i . Tech.,

21,

333, (1982).

K.C. Pandy, Phys. Rev. L e t t . ,

49,

223, (1982).

(22) R.E. S c h l i e r and H.E. Farnsworth, J. Chem. Phys.,

30,

917, (1959).

( 2 3 ) R.M. Tromp, R.J. Hamers and J.E. Demuth, Phys. Rev. L e t t . ,

55,

1303, (1985).

(24) M.T. Y i n and M.L. Cohen, Phys. Rev. 6,

2,

2303, (1981).

( 2 5 ) J. Ihm, J. Vac. S c i . Tech.,

B,

705, (1983).

(26) J. Ihm, D.H. Lee, J.D. Joannopoulos and J.J. Xiong, Phys. Rev. L e t t . ,

55,

1872, (1973).

( 2 7 ) J.J. Lander and J. Morrison, J. Appl. Phys.,

34,

1403, (1963).

(28) Guo-Xin Q i a n and D.J. Chadi, Phys. Rev. B,

35,

1288, (1987).

(29) E.G. McRae and C.W. C a l d w e l l , Phys. Rev. L e t t . ,

46,

1632, (1981) Phys. Rev.,

828,

2305, (1983).

( 3 0 ) W.K. Burton, N. Cabrera and F.C. Frank,

, B,

299, (1951).

(31) J.D. Weeks i n O r d e r i n g i n S t r o n g l y F l u c t u a t i n g Condensed M a t t e r Systems, ed.

T. R i s t e , Plenum, N.Y., (1980).

(32) H.J. Leamy, G.H. G i l m e r and K.A. Jackson, i n S u r f a c e Physics o f M a t e r i a l s , ed. J.M. B l a k e l y , Academic, N.Y., (1975)

(33) J. V i l l a i n , D.R. Grempel and J. Lapujoulade, J. Phys. F; Met. Phys.,

E ,

809, (1985).

( 3 4 ) E.H. Conrad, R.M. Aten, D.S. Kaufman, L.R. A l l e n , T. Engel, M. den N i j s and E.K. R i e d e l , J. Chem. Phys.,

84,

1015, (1986): J. Chem. Phys.,

85,

4756, (1986).

(35) W.P. E l l i s and R.L. Schwoebel

,

S u r f . Sci.,

11,

82, (1968).

(36) G.E. Rhead and J. Perdereau i n C o l l o q u e I n t e r n a t i o n a l s u r l a S t r u c t u r e e t P r o p r i e t 6 s des S u r f a c e des S o l i d e s , CNRS, Pans, (1969).

(37) T.M. Lu and M.G. L a g a l l y , Surf. Sci.,

120,

47, (1982).

(38) H.V. T h a p l i y a l and J.M. B l a k e l y ,

15,

600, (1978).

(39) F.A. L i s t , P.S. Frankwicz and J.M. B l a k e l y , Appl. S u r f . Sci.,

19,

161, (1984).

(40) J.P. Chang, ( t o be p u b l i s h e d )

(41) A.G. S c h r o t t and J.M. B l a k e l y , S u r f . Sci.,

150,

L77, (1985).

(15)

C5-364 JOURNAL

DE

PHYSIQUE

(42) J.G. Dash, F i l m s on S o l i d Surfaces, Academic, N.Y., (1975).

(43) J. Suzanne, P. Coulomb and M. B i e n f a i t , S u r f . Sci.,

40,

414, (1973).

(44) J.C. Shelton, H.R. P a t i l and J.M. B l a k e l y , S u r f . Sci.,

43,

25, (1974).

(45) R.L. Park, T.L. E i n s t e i n , A.R. K o r t a n and L.D. R o e l o f s i n O r d e r i n g i n Two D i m e n s i o ~ , ed. S.K. Sinha, E l s e v i e r , N.Y., (1980).

(46) C. Davisson and L.H. Germer, Phys. Rev.,

30,

705, (1927).

(47) R. Ramanathan and J.M. B l a k e l y , M a t e r i a l s L e t t . ,

2,

12, (1983).

( 4 8 ) R.J. Lad, A.G. S c h r o t t and J.M. B l a k e l y , J. Vac. S c i . Technol.,

g ,

856,

(1984).

(49) R.J. Lad, Ph.D. Thesis, C o r n e l l U n i v e r s i t y , I t h a c a , N.Y., (1986).

C. Briimt: What are the sizes of the oxygen C(2x2) and sulfur C(2x2) region; in the two phase regions?

J.M. ELLakely: We have no direct evidence yet on this question.

H m e v e r they seem to be a t least ccanparable t o the coherence of the LEED beam,i.e. 150g.

J. Naravan: Could you ccamnent on relative abundance of simple and double steps on Si(100) surfaces. Is there any work on

dependem? -ally, it would seem double steps should be favoml aver single steps.

J.M. Ellakely: The occurrence of single or double steps seems to depend on the axis about w h i c h the Surface is tilted. !There is aridem= t h a t &aces l i f t e d taward (111) have biatomic steps.

V. mritikis: The results obtained by helium beam diffraction on Cu(115) (Lapujoulade e t dl) have shown that interaction energies, Wu, between steps are quite s m a l l : W, z120K. Dislocations i n grain bmdaries interact usually elastically and the interaction energies per a t m can be much higher than those between steps. Haw is it possib:Le to expect a rcqhening of grain boundaries by analogy with what h ; ~ p p m t o free surfaces?

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to