• Aucun résultat trouvé

GROWTH SEQUENCE OF Si-CLUSTERS : FROM A FEW ATOMS TO THE AMORPHOUS PHASE

N/A
N/A
Protected

Academic year: 2021

Partager "GROWTH SEQUENCE OF Si-CLUSTERS : FROM A FEW ATOMS TO THE AMORPHOUS PHASE"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220909

https://hal.archives-ouvertes.fr/jpa-00220909

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GROWTH SEQUENCE OF Si-CLUSTERS : FROM A FEW ATOMS TO THE AMORPHOUS PHASE

R. Mosseri, J. Gaspard

To cite this version:

R. Mosseri, J. Gaspard. GROWTH SEQUENCE OF Si-CLUSTERS : FROM A FEW ATOMS TO THE AMORPHOUS PHASE. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-245-C4-248.

�10.1051/jphyscol:1981452�. �jpa-00220909�

(2)

CoZZoque

C4,

suppl6ment au nO1O, Tome 42, octobre 1981 page

C4-245

GROWTH SEQUENCE OF S i - C L U S T E R S

:

FROM A FEW ATOMS TO THE AMORPHOUS PHASE

B. Mosseri and J . P . Gaspard X

Laboratoire de Physique des SoZides,

CNRS, 2,

place

A.

Briand, 92190 Meudon- Be ZZevue, France

t

I n s t i t u t de Physique, UniversitQ de Li2ge, B-4000 S a r t MZman, BeZgim

A b s t r a c t We s t u d y t h e growth sequence of c l u s t e r s of atoms bonded by s and p e l e c t r o n i c i n t e r a c t i o n s . I t i s demonstrated t h a t , l i k e i n t h e c a s e of c e n t r a l f o r c e s , t h e c l u s t e r s b e a r l i t t l e r e l a t i o n t o t h e s t r u c t u r e s formed a s s u b u n i t s of t r i o r t e t r a v a l e n t c r y s t a l l i n e l a t t i c e s . The s t a b i l i t y of t h e c l u s t e r i n c r e a s e s with t h e number of bonds even i f t h e bond formation i s accompanied by bond a n g l e s s u b s t a n t i a l l y d i f f e r e n t from 109 o r 1200. But,in c o n t r a s t with t h e c a s e of c e n t r a l f o r c e s , bond a n g l e s Si-Si-Si s m a l l e r t h a n about 90° produce an i n c r e a s e i n bond l e n g t h accompanied by a weakening of t h e c l u s t e r cohesion.

We f i n d t h a t i n some c a s e t h e system undergoes a Jahn-Teller d i s t o r t i o n when t h e HOMO (Highest Occupied Molecular O r b i t a l ) i s degenerate.

I. I n t r o d u c t i o n . - I t i s important t o s t u d y t h e growth sequence of small c l u s t e r s of c o v a l e n t atoms not only because i t s i m u l a t e s t h e d e p o s i t i o n of atoms when forming t h e amorphous phase, but because i t g i v e s i n f o r m a t i o n on t h e r e l a t i v e importance of t h e r a d i a l and a n g u l a r p a r t s of t h e i n t e r a t o m i c p o t e n t i a l s , i n d e - pendently of t h e e f f e c t of t h e neighbouring atoms occuring i n t h e bulk. I t i s shown i n t h i s paper t h a t t h e most s t a b l e c l u s t e r geometries correspond t o a maximization of t h e number of bonds, a t l e a s t f o r bond a n g l e s g r e a t e r t h a n 90°.

We f i n d t h a t , l i k e i n t h e c a s e of c e n t r a l forces[l] ( r a r e g a s e s . . . ) , t h e growth sequence of Si atoms b e a r l i t t l e r e l a t i o n t o t h e s t r u c t u r e s formed a s s u b u n i t s on any ( t e t r a v a l e n t ) c r y s t a l l i n e l a t t i c e . I n t h e c a s e of c e n t r a l f o r c e s , t h e r u l e i s j u s t t o maximize t h e number of bonds w h i l s t i n t h e c a s e of c o v a l e n t systems, a r e d u c t i o n of t h e bond a n g l e below 90° c o s t s energy and may p r e v e n t t h e formation of s h o r t r i n g s ( t r i a n g 1 e s ) . The f i v e - f o l d ( p 1 a n a r ) r i n g s with bond a n g l e s of 1 0 S O ( c l o s e t o 109°28')

,

a r e favoured and g i v e r i s e t o a l o c a l f i v e f o l d synnnetry.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981452

(3)

JOURNAL DE PHYSIQUE

I. Models and methods

I n o r d e r t o c a l c u l a t e t h e f o r m a t i o n e n e r m of t h e c l u s t e r s . we

- -

have t o assume a model o f t h e e l e c t r o n i c ( a t t r a c t i v e ) i n t e r a c t i o n and a p a i r w i s e c e n t r a l r e p u l s i v e p o t e n t i a l V(r) which p r e v e n t s t h e system from c o l l a p s e . We c o n s i d e r o n l y s and p v a l e n c e e l e c t r o n s i n t h e t i g h t b i n d i n g framework[2]

,

[3]

.

The energy l e v e l s Es and E a r e s e p a r a t e d by 7.3 eV. The o v e r l a p of atomic wavefunctions i s n e g l e c t e d 'and t h e t i g h t b i n d i n g i n t e r a c t i o n p a r a m e t e r s a r e , a s g i v e n by Lannoo e t a l . 141 a t a d i s t a n c e of 2.35 fl :

s s r = - 1 . 9 3 eV, s p a = 2.23 eV, p p a r 3.22 eV and p p n r-0.83 eV w i t h a uniform e x p o n e n t i a l b e h a v i o u r w i t h d i s t a n c e : exp(-qr) w i t h q s l . 106 A-

.

The r e p u l s i v e p a i r p o t e n t i a l i s g i v e n by:

V(r)= Vo exp(-pr) w i t h p = 2.094

A-' .

Vo i s determined i n o r d e r t o g e t a n i n t e r a t o m i c d i s t a n c e f o r t h e S i 2 m o l e c u l e e q u a l t o 2

.

Let u s s t r e s s t h a t we do n o t assume a p r i o r i a p a r t i c u l a r t y p e of s - p h y b r i d i n t h e m o l e c u l a r bond: t h e d i r e c t i o n n a l i t y o f t h e bond i s t h e con- sequence of t h e e l a c t r o n i c i n t e r a c t i o n . The t o t a l energy of t h e system i s g i v e n by

I ETe,

=

+;zE: + i; V,,l(rid)

- L

N

( E . c E p )

1

where E . a r e t h e energy l e v e l s of t h e h a m i l t o n i a n and N t h e number of atoms. The l a s t t e h n i s t h e s u b s t r a c t i o n of t h e atomic sZp2 energy.

I n t h e c a s e of small c l u s t e r s , one o r two g e o m e t r i c p a r a m e t e r s a r e v a r i e d c o n t i n u o u s l y i n o r d e r t o g e t t h e e q u i l i b r i u m geometry. No c h a r g e t r a n s f e r i s t a k e n i n t o account a t t h i s s t a g e of t h e c a l c u l a t i o n : i t c o u l d modify t h e c o n c l u s i o n s i n c e t h e atoms a r e no l o n g e r n e u t r a l .

111. R e s u l t s on small S i m o l e c u l e s 1)

g3

Let u s f i r s t o b s e r v e t h a t a

s i m p l e p a i r i n t e r a c t i o n approximation -12 would i n any c a s e s t a b i l i z e t h e e q u i -

l a t e r a l t r i a n g l e : t h e l a r g e r t h e num-

b e r of bonds, t h e more s t a b l e t h e -14 c o n f i g u r a t i o n . The c a l c u l a t i o n t h a t

we d i d u s i n g t h e method d e s c r i b e d i n I1 t a k e s i n t o account t h e quantum me-

c h a n i c a l c h a r a c t e r of t h e c o v a l e n t bond. -16 Fig 1. shows t h e v a r i a t i o n of

t h e t o t a l energy a s a f u n c t i o n of t h e

m:

Si3 The

bond a n g l e i n t h e r a n g e from 600(equi- shows t h e energy ver- l a t e r a l t r i a n g l e ) t o 180°( l i n e a r s u s bond a n g l e c l e f t s c a l e ) . The c h a i n ) . The most s t a b l e s i t u a t i o n lower c u r v e shows t h e e q u i l i b r i u m corresponds t o an angle of about 1000 distance f o r each a % l e ( r i g h t s c a l e ) . w i t h a- r a t h e r f l a t minimum( e s p e c i a l -

l y when l a r g e r v a l u e s of p p r a r e a s - sumed). This means t h a t a n g u l a r d i s - t o r t i o n i s n o t s o much e x p e n s i v e i n energy p r o v i d e d t h e a n g l e being n o t l e s s t h a n about 80°. I n c r e a s i n g t h e ppx v a l u e ( i . e i n c r e a s i n g t h e s t r e n g t h of the7'tbond) c o n t r i b u t e s t o t h e s t a -

b i l i z a t i o n o f t h e l i n e a r c h a i n . -16 2) S i ,

-q. The most s t a b l e s i t u a t i o n i s Fig.2: S i 4 molecule. T o t a l energy n o t t h e t e t r a h e d r o n a s i t would b e i n versus bond angle.

(4)

-

2 3 4 5 6

w :

M o l e c u l a r O r b i t a l Energy L e v e l s f o r t h e p l a n a r S i 5 c l u s t e r

Fig.3:

Comparison between i s o m e r s t a b i l i t y versus bond angles. ~ h ~ d o t t e d

f o r N = 3 t o 6. l i n e d e s c r i b e s t h e Lower Unoccu-

p i e d M o l e c u l a r Level.

t h e c a s e o f a c e n t r a l p a i r p o t e n t i a l ( c . f Hoare) b e c a u s e t h e a n g u l a r d e f o r m a t i o n i s p r o h i b i t i v e . Fig.2. shows t h e e n e r g y v a r i a t i o n f o r t h e p l a n a r a r r a y o f f o u r atoms. The ( p e r f e c t ) s q u a r e i s not t h e most s t a b l e c o n f i g u r a t i o n s i n c e t h e HOMO i s d e g e n e r a t e : t h e system u n d e r g o e s a J a h n - T e l l e r d i s t o r t i o n , t h r e e e d g e s a r e s h o r t e n e d d u e t o t h e i n c r e a s e of t h e bond a n g l e s whereas t h e f o u r t h edge i s s u b s t a n c i a l l y i n c r e a s e d . L e t u s remark t h a t t h e e n e r g y c u r v e d e c r e a s e s l i n e a r l y a t e = 900 a s i t i s e x p e c t e d i n t h e J a h n - T e l l e r i n s t a b i l i t y . S t a b i l i z i n g t h e l i n e a r S i 4 m o l e c u l e r e q u i r e s a more d r a m a t i c i n c r e a s e of p p n t h a n i n t h e c a s e o f S i 3

.

3 ) g 5

The c o h e s i v e e n e r g y o f a l a r g e r number o f p l a u s i b l e i s o m e r s have t o b e compared. Fig.3 shows t h e i s o m e r s c o n s i d e r e d i n t h i s c a l c u l a t i o n s e t a c c o r d i n g t o t h e i r c o h e s i v e energy. The most s t a b l e i s o m e r ( among t h o s e c o n s i d e r e d ) i s t h e p e n t a g o n ( s l i g h t l y ) d i s t o r t e d a g a i n by a Jahn-Tellei- e f f e c t . The a n g u l a r d i s t o r t i o n i s 4 O

(f)=

112O). The s q u a r e pyramid i s l e s s s t a b l e ; l e t u s n o t i c e

t h a t t h e i n t r o d u c t i o n of a n atom above t h e s q u a r e d i l a t e s t h e s q u a r e , j u s t t h e o p p o s i t e way a c e n t r a l p o t e n t i a l would do.

The m o l e c u l a r o r b i t a l energy l e v e l s a r e p l o t t e d a g a i n s t t h e bond a n g l e on Fig.4

.

4 ) S f 6

We h a v e compared t h e c o h e s i v e e n e r g y o f t h e l i n e a r c h a i n , t h e s q u a r e bipyramid and t h e s i x - f o l d r i n g ( F i g . 3 ) . The s i x - f o l d r i n g h a s been c o n t i n u o u s l y d i s t o r t e d o r " c o r r u g a t e d " s t a r t i n g from t h e p l a n a r c o n f i g u r a t i o n toward " c h a i r "

c o n f i g u r a t i o n s o f v a r i a b l e bond a n g l e . The minimum o c c u r s f o r a n a n g l e o f * O l e 5 ) s3t

C l u s t e r s of 8 S i atoms a r e i n s t r u c t i v e . We have compared h e r e f o u r c l u s t e r s o f d i f f e r e n t d i - m e n s i o n a l i t y : -ID, t h e l i n e a r c h a i n ( bond a n g l e

..

-

s t a b i l i t y

e q u a l s t o 180°) -2D, a p a i r of f i v e - f o l d r i n g s w i t h a common edge t a k e n from a dodecahedron(2D c u r v e d s u r f a c e ) w i t h a l l a n g l e s e q u a l t o 108O.

-3D, a c u b e and a s o - c a l l e d "small b a r r e l a n " . We o b s e r v e t h a t t h e most s t a b l e c l u s t e r s a r e n o t p r e -

s e n t i n t h e c r y s t a l l i n e diamond s t r u c t u r e . An e i g h t Fig.5: Comparison between atoms p i e c e o f diamond i s n o t e n e r g e t i c a l l y compe- isomers s t a b i l i t y f o r 8 t i t i v e , b e c a u s e o f t h e l o w e r a v e r a g e c o o r d i n a t i o n atoms cluster.

(5)

JOURNAL DE PHYSIQUE

number. However t h e small b a r r e l a n a p p e a r s i n t h e w u r t z i t e s t r u c t u r e . I n f a c t , t h e a v e r a g e c o o r d i n a t i o n number i s n o t t h e o n l y p a r a m e t e r governing t h e s t a b i - l i t y a s i t i s shown on Fig.5

.

The l i n e a r c h a i n ( 7 bonds) i s l e s s s t a b l e t h a n t h e c u b e ( l 2 bonds), b u t t h e most s t a b l e c l u s t e r s a r e t h e small b a r r e l a n ( 9 bonds) and t h e p a i r of 5-fold r i n g s w i t h a common edge( 9 bonds).

I V . L a r g e r S i c l u s t e r s

We c a l c u l a t e t h e c o h e s i v e energy of t h r e e l a r g e r c l u s t e r s u s i n g t h e same method t h a n f o r t h e s m a l l e r ones. We c o n s i d e r a 29 atoms s u b u n i t of t h e diamond l a t t i c e c o n t a i n i n g a l l t h e 6 - f o l d r i n g s p a s s i n g throw a c e n t r a l v e r - t e x , a dodecahedron and a 21 atoms c l u s t e r which c o n s i s t s i n t h e packing of 4 small b a r r e l a n s around a c e n t r a l v e r t e x , t h e l a t t e r two being drawn on Fig.6

.

The t o t a l energy of t h e c l u s t e r s h a s been c a l c u l a t e d a t each s t e p of t h e i r c o n s t r u c t i o n , s t a r t i n g from a few atoms t o t h e f u l l c l u s t e r . The r e s u l t s f o r t h e dodecahedron and t h e b a r r e l a n c l u s t e r s a r e shown on Fig.7 where t h e e l e c - t r o n i c ( a t t r a c t i v e ) p a r t of t h e energy h a s been p l o t t e d a g a i n s t t h e number of atoms. I t h a s t o b e n o t e d t h a t t h e energy c u r v e i s v e r y s i m i l a r t o t h e p l o t of a rough count of t h e a v e r a g e number of d a n g l i n g bonds p e r atom which shows t h e c r u - c i a l r o l e of bond f o r m a t i o n when b u i l d i n g t h e c l u s t e r . Moreover, t h i s i s suppor- t e d by t h e g a i n i n energy c l e a r l y v i s i b l e a t each r i n g c l o s u r e .

The 21 atoms b a r r e l a n c l u s t e r h a s i t s own i n t e r e s t i n t h e l i g h t of r e c e n t r e s u l t s on m i c r o c r y s t a l l i n e S i . Indeed i t can b e shown t h a t i t i s an i n - t e r m e d i a t e s t a g e of r e c o n s t r u c t i o n when g o i n g from a Connell-Ternkin l i k e model t o a w u r t z i t e l a t t i c e .

The dodecahedron i s t h e most s t a b l e c o n f i g u r a t i o n ( among t h e t h r e e c o n s i d e r e d h e r e ) . However s t r a i n i s supposed t o i n c r e a s e when adding new dodeca- d r a s h a r i n g f a c e s w i t h t h e f i r s t one. lw,, I b Q t .

l

Fig. 7 : Energy v e r s u s number of atoms. The lower c u r v e s show t h e a t t r a c t i v e p a r t of t h e t o t a l energy ( l e f t s c a l e ) . The upper c u r v e s show t h e number o f d a n g l i n g bonds p e r atom ( r i g h t s c a l e ) . a ) dodecahedron b ) b a r e l a n c f u s t e r . V. Conclusions.

-

The main c o n c l u s i o n s can be s m e r i z e d a s follow:

I n s and p bonded S i c l u s t e r s : i ) c r y s t a l l i n e arrangements a r e n o t favoured( l i k e i n r a r e g a s e s c l u s t e r s ) . i i ) a n approximate r u l e i s t o maximize t h e number of bonds p r o v i d e d t h a t t h e bond a n g l e s a r e g r e a t e r t h a n about 90°. i i i ) t h e r e i s an open c o m p e t i t i o n between isomers.

I t h a s t o be n o t e d t h a t h y d r o g e n a t i o n of t h e c l u s t e r s could change t h e c o n c l u s i o n s s i n c e Si-H bond i s s t r o n g e r t h a n S i - S i bond.

-

111 Hoare,M.R. and PAL,P., Adv. Phys.

20

(1971) 161

[2] Harrison,W.A. " E l e c t r o n i c s t r u c t u r e and t h e p r o p e r t i e s of S o l i d s "

( Freeman,San F r a n c i s c o , 1980).

[3] F r i e d e 1 , J . J. d e P h y s i q u e

2

(1978) 651 [4] Lannoo ,M.and Allan,G. p r i v a t e communication.

s e e a l s o Lannoo,M. J . d e Physique %(1979)461

a

Fig.6:

L a r g e r c l u s t e r s . a ) The dodecahedron(20 atoms) b ) The "4 small b a r r e l a n s "

c l u s t e r ( 2 1 atoms)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to