• Aucun résultat trouvé

Coboundaries in <span class="mathjax-formula">${L}_{0}^{\infty }$</span>

N/A
N/A
Protected

Academic year: 2022

Partager "Coboundaries in <span class="mathjax-formula">${L}_{0}^{\infty }$</span>"

Copied!
8
0
0

Texte intégral

(1)

www.elsevier.com/locate/anihpb

Coboundaries in L 0

Dalibor Volný

a,

, Benjamin Weiss

b

aLaboratoire de mathématiques Raphaël Salem, UMR CNRS 6085, université de Rouen, 76821 Mont-Saint-Aignan Cedex, France bDepartment of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

Received 6 February 2003; received in revised form 18 February 2004; accepted 24 March 2004 Available online 25 September 2004

Abstract

LetT be an ergodic automorphism of a probability space,f a bounded measurable function,Sn(f )=n1

k=0fTk. It is shown that the property that the probabilitiesµ(|Sn(f )|> n)are of ordernproughly corresponds to the existence of an approximation inLoff by functions (coboundaries) ggT,gLp. Similarly, the probabilities µ(|Sn(f )|> n)are exponentially small ifff can be approximated by coboundariesggT whereghave finite exponential moments.

2004 Elsevier SAS. All rights reserved.

Résumé

SoitT un automorphisme ergodique d’un espace probabilisé,f une fonction bornée mesurable etSn(f )=n1 k=0fTk. Une correspondance est établie entre l’existence de l’estimation des probabilitésµ(|Sn(f )|> n)d’ordrenpet l’existence de l’approximation dansLde la fonctionf par des cobordsggTgest “presque” dansLp. De manière similaire, les probabilitésµ(|Sn(f )|> n)sont d’ordre ecn, pour un certainc >0,n=1,2. . ., si et seulement sifadmet une approximation dansLpar des cobordsggT avecgayant des moments exponentiels.

2004 Elsevier SAS. All rights reserved.

MSC: 28D05; 60F10

Keywords: Coboundary; Probabilities of large deviations

* Corresponding author.

E-mail address: dalibor.volny@univ-rouen.fr (D. Volný).

0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.

doi:10.1016/j.anihpb.2004.01.004

(2)

1. Introduction and results

Let(Ω,A, µ)be a probability space andT:a bijective, bimeasurable and measure preserving mapping.

Throughout the paper we shall suppose thatT is ergodic and aperiodic. For a measurable functionf on we denote

Sn(f )=

n1

i=0

fTi.

Lp0 denotes the space of allfLpwith zero mean, 1p∞. Iff =ggT withga measurable function, then we say thatf is a coboundary. The functiongis then called the cobounding function. We shall study the approximation of functions fromL0 by coboundaries. The main results are presented in Theorems 1, 2, and 3;

they show a relationship between the moments of the cobounding functiongof the approximating coboundary and probabilities of large deviations of the stochastic process(fTi).

It is well known that for 1p <∞, the coboundaries with a cobounding function inLp are a dense subset of Lp0 (becauseLis a dense subset ofLp, the coboundariesggT withgbounded thus form a dense subset of allLp0, 1p <∞). As an immediate consequence of the density of the sets of coboundaries inLpspaces we get the von Neumann’s ergodic theorem in these spaces:

1

nSn(f )Ef p

→0

for anyfLp, 1p <∞(cf. e.g. [10, p. 21]).

Forp= ∞the things are more complicated:

Theorem A. LetfL10andε >0. Then there exists a measurable functiongsuch that f−(ggT )

< ε.

The theorem follows from [7, Corollary 3] ([8] in English). For completeness, we shall show a proof the idea of which is due to Michael Keane.

There exist, however, bounded functions which cannot be (inL) approximated by any coboundary with an integrable cobounding functiong:

Theorem B. Letϕ be a positive real function, limt→−∞ϕ(t)=limt→∞ϕ(t)= ∞. Then there exists a function fL0 withf=1 such that for each measurable functiongwith

ϕg dµ <, f(ggT )

1/2.

In particular, for anyp >0 there existsf withf=1 s.t.f(ggT )1/2 for eachgLp. This result is not completely new either; a version of it can be found in the work of A. Katok [6].

The main aim of this paper is to show that the set offL0 which can be approximated by coboundaries whose cobounding functions have finite moments can be characterized by the probabilities of large deviations. The first two theorems show that the integrability of|f|p is “almost equivalent” to the property that the probabilities µ(|Sk(f )|> xk)are of order 1/kp. The third proposition extends the result to functions with exponential moments.

Theorem 1. LetfL0 ,p1. If for everyδ >0 there exists agLpwithf(ggT )< δthen

(3)

(i) for eachε >0 k=1

kp1µSk(f )> εk

<, (ii) for eachε >0 there exists acε>0 such that

µSk(f )> εk

< cε· 1

kp for allk=1,2, . . . .

Theorem 2. LetfL0 ,p1. If for everyx >0 there exists a 0< cx<such that for allk, µSk(f )> xk

< cxkp

then for allε >0 and every measurable functionv:R+→R+such that

j=1

1

j v(aj )<for alla >0 and v(x), xp

v(x) are increasing there exists a measurable functiongsuch that

E |g|p

v(|g|) <and f(ggT )

< ε.

In particular, for anyδ >0 we can findgLpδ. Theorem 3. LetfL0 . It is equivalent

(i) For everyε >0 there exists acε>0 andnε∈Nsuch thatµ(|Sn(f )|> εn) <ecεnfor allnnε. (ii) For everyε >0 there exists a measurable functiongandc >0 such thatEec|g|<and

f −(ggT )

< ε.

For sequences of independent and weakly dependent random variablesXi, the probabilities of{n

i=1Xi> xn} have been analyzed in detail before. For example, by Azuma’s inequality [4] an exponential bound like in (i) of Theorem 3 exists whenever(Xi)is a uniformly bounded sequence of martingale differences. Therefore, iffL0 and(fTi)is a martingale difference sequence (or even a sequence of mutually independent random variables) thenf can be approximated by coboundaries whose transfer functions have finite exponential moments.

Generic properties of sets of functionsf for which the probabilitiesµ(Sn(f ) > xn)have a particular asymptotic behaviour are studied in the paper [9].

2. Proofs

Proof of Theorem A. By the Birkhoff (almost sure) Ergodic Theorem for anyη >0 there exists AA with µ(A) >0 andn0∈Nsuch that for eachωAwe have

(1/n)Sn(f )(ω)< η for allnn0.

Let Ak be the set of points whose return time to A is k: Ak = {ωA: TkωA, Tiω /Afor 0< i < k}, k=1,2, . . ., letA=

k=1Ak. Because T is ergodic, the set

k=1

k1

i=0TiAk has measure 1; without loss of generality we can suppose that it equals.

(4)

It is known that we can also suppose thatAk= ∅for 1kn0−1. This is the case ifA, T A, . . . , Tn01Ais a Rokhlin tower. If not, we can recursively find an adequate subset ofAof strictly positive measure because for anyAof positive measure andk0,BA, 0< µ(B) < µ(A), we by ergodicity haveµ(B\Tk+1B) >0, hence B, . . . , Tk+1Bare disjoint.

For eachωthere thus exist uniquekn0and 0ik−1 such thatωTiAk. Define

ξ(ω)=Tiω, g(ω)=f (ω)−1

k

k−1

j=0

f

Tjξ(ω) ,

h(ω)= i j=0

g(Tjiω)= i j=0

g

Tjξ(ω) .

ForωTk1Ak,h(ω)=0. We thus have g=hhT1.

From the definition of the setAit follows that fg< η. 2

In the proof of Theorem B we shall use the result by A. Alpern (cf. [1–3,5]).

Theorem C (A. Alpern). Let 1nk,k=1,2, . . ., be positive integers whose least common divisor is 1, pk positive reals,

k=1pknk=1. Then there exist measurable setsFk, such thatµ(Fk)=pk,TiFk, 0ink1, k=1,2, . . ., are pairwise disjoint andµ(

k=1

nk1

i=0 TiFk)=1.

Proof of Theorem B. Without loss of generality we can suppose thatϕis an even function. Fork=1,2, . . .letrk

be a positive integer such that

[(k1)/2] j=1

ϕ(j/2)krk;

by the assumptions,rk→ ∞. There thus exist (strictly) positive numberspksuch that

k=1

kpk=1,

k=1

krkpk= ∞.

By Theorem C there exist measurable setsAk,k=1,2, . . ., such thatµ(Ak)=pkand{Ak, T1Ak, . . . , Tk+1Ak}, k=1,2, . . .are mutually disjoint Rokhlin towers. LetAk=BkCkwhereBkCk= ∅andµ(Bk)=µ(Ak)/2= µ(Ck),k=1,2, . . .. We define

f (ω)=





1 forω

k=1

k1

i=0TiBk

−1 forω

k=1

k1

i=0TiCk 0 forω /

k=1

k1

i=0TiAk.

(5)

Suppose thatg, hare measurable functions,h<1/2 and f=gTgh.

Then

gT =f +g+h,

gT2=fT +gT +hT =f +fT +h+hT+g, . . .

gTn=

n1

i=0

fTi+

n1

i=0

hTi+g.

We have g

k=1

Ak

k1

i=0

ϕ(gTi) dµ.

Let us denoteψj=j1

i=0(fTi+hTi),j=1,2, . . .. ForωAkwe getk1

j=0ϕ(g(Tjω))=k1

j=0ϕ(ψj+g).

We distinguish two possibilities:

1. The numbersψj(ω)+g(ω),j=0, . . . , k−1, are all of the same sign. Thenk1

j=1ϕ(ψj+g)k1

j=1ϕ(j/2).

2. The numbersψj(ω)+g(ω),j =1, . . . , k−1, are not all of the same sign. Becausef (Tjω)are all 1 or all−1 while|h|1/2, the sequenceψ1(ω), . . . , ψk1(ω)is monotone. Hence, there exists 1nk−1 such thatk1

j=1ϕ(ψj+g)=n

j=1ϕ(ψj+g)+k1

j=n+1ϕ(ψj+g)[(k1)/2]

j=1 ϕ(j/2)where[x]denotes the integer value ofx.

We thus getEϕ(g)

k=1pk[(k1)/2]

j=1 ϕ(j/2)

k=1krkpk= ∞. This finishes the proof. 2

Proof of Theorem 1. Letε >0 be fixed. We put 0< δ < ε/2,gis a function fromLpwithf(ggT )< δ.

ThenSn

f(ggT )< δn < nε/2 hence

µSk(f )> εk

µSk(ggT )> kε/2

|g|> kε/4 . BecausegLp,

l=1

(l+1)p1 j=lp

µ

|g|> l+1

l=1

(l+1)p1 j=lp

µ

|g|> j

<∞ hence

l=1

lp1µ

|g|> l

<. The statement (ii) follows from µSn(ggT )> εn

|g| 2n 2

|g|p

(ε2n)p= cε np wherecε=2p+1

|g/ε|pdµ. 2

For the proof of Theorem 2 we shall need the following statement:

(6)

Proposition. LetfL0 ,ε >0. Then under the assumptions of Theorem 2 there exists an integern01 and a setF of positive measure with

Fk= {ωF|TkωF,∀1ik−1, Tiω /F}, k=1,2, . . . , F= {ωF| ∀1i, Tiω /F},

such that

(a) forωFk, 1k <,

Sk(f )(ω)kε and Sj(f )(ω)> j ε for all 1jkn0

and

(b) there exists a 0< c <such that for alln,

k=n

µ(Fk) < cnp1.

Proof. As in the proof of Theorem A we can show that there exists an integer n01 and a setA of positive measure such that for allωA

(i) ifnn0then|n1

i=0f (Tiω)|εn, (ii) if 1kn0−1 thenTkω /A.

Forωwe define

ψ(ω)=min{n2| |Sn(f )(ω)|εn} if∃n2,|Sn(f )(ω)|εn,

∞ otherwise.

ForωAwe recursively defineτk(ω),k=0,1, . . .by τ0(ω)=0, τk+1(ω)=τk(ω)+ψ(Tτk(ω)ω) and put

ϕ(ω)=

min{k1|TkωA} if∃n1, TnωA,

∞ otherwise,

t (ω)=

sup{0k|τk(ω)ϕ(ω)} ifϕ(ω) <,

∞ otherwise,

Observation. LetωA. Ifϕ(ω), t (ω) <then τt (ω)(ω)ϕ(ω),

ϕ(ω)τt (ω)(ω)n0−1, t (ω)1.

The first inequality follows immediately from the definition oft, the second follows from (i), the third from the preceding ones and (ii).

LetωA. Define

F=

ωA t (ω)1

k=0

Tτk(ω)ω.

By the construction, the setF is measurable and satisfies (a).

(7)

Let us prove (b). Letδ >0. If 0iδn,kn0+n(1+δ),ωFk, then by (a)

n+i1 j=0

f (Tjω)

> (n+i)εnε and

i1

j=0

f (Tjω)

δnf. Therefore,

n1

j=0

f (TjTiω)

n+i1 j=0

f (Tjω)

i1

j=0

f (Tjω)

nδf=n

εδf . Forn0defined at the beginning of the proof, for eachδ >0,ω

kn0+n(1+δ)Fk and 0iδn, we then have

|Sn(f )(Tiω)|n(εδf). There thus exists a constantcdepending only onεδf, [δn]

kn0+n(1+δ)

µ(Fk) < cnp

and the inequality (b) follows. 2

Proof of Theorem 2. Let 1k <∞,ωFk, 0ik−1. We define h(Tiω)=f (Tiω)−1

k

k1

j=0

f (Tjω),

g(Tiω)=

i1

j=0

h(Tjω).

On the rest of we defineg=0. We then have h=gTg

and f(gTg)

ε.

Let us denotea= h. Using (b) we calculate E

|g|p v(|g|)

k=1

k

j=1

(aj )p v(aj )

µ(Fk) j=1

(aj )p v(aj )

k=j

µ(Fk)

c

j=1

(aj )p v(aj )jp1

=cap j=1

1

j v(aj )<. 2

The proof of Theorem 3 is left as an exercise for the reader. For (i)⇒(ii) we can use the same construction as in the proof of Theorem 2, (ii)⇒(i) follows fromµ(|Sn(f )|> ε)µ(|Sn(f(ggT ))|> ε/2)+µ(|Sn(ggT )|> ε/2).

References

[1] A. Alpern, Generic properties of measure preserving homeomorphisms, in: Ergodic Theory, in: Lecture Notes in Mathematics, vol. 729, 1979, pp. 16–27.

(8)

[2] A. Alpern, Return times and conjugates of an antiperiodic transformation, Ergodic Theory Dynam. Syst. 1 (1981) 135–143.

[3] A. Alpern, V.S. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms, Cambridge Univ. Press, Cambridge, 2000.

[4] K. Azuma, Weighted sums of certain dependent random variables, Tôhoku Math. J. 19 (1967) 357–367.

[5] S.J. Eigen, V.S. Prasad, Multiple Rokhlin Tower Theorem: A simple proof, New York J. Math. 3A (1997) 11–14.

[6] A. Katok, Constructions in ergodic theory, in preparation.

[7] A.V. Koˇcergin, On the homology of functions over dynamical systems, Soviet Math. Dokl. 17 (1976) 1637–1641 (in Russian).

[8] A.V. Koˇcergin, On the homology of functions over dynamical systems, Dokl. Akad. Nauk SSSR 231 (1976) (in English).

[9] E. Lesigne, D. Volný, Large deviations for generic stationary processes, Coll. Math. 84/85 (2000) 75–82.

[10] W. Parry, Topics in Ergodic Theory, Cambridge Tracts in Mathematics, vol. 75, Cambridge Univ. Press, Cambridge, 1981.

Further reading

I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, in: Ergodic Theory, in: Die Grundlehren der mathematischen Wissenschaften, vol. 245, Springer, Berlin, 1982.

Références

Documents relatifs

Menons dans le plan xy la bissectrice y=x-, par cette bis- sectrice et Taxe des z concevons un plan qui coupe la sur- face suivant une ligne dont l'équation prise dans ce plan est z =

The conjectures of Birch and Swinnerton-Dyer have stimulated recent interest in the arithmetic properties of special values of L-functions.. This goal has not been

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

This is going to imply that every quasiconvex function can be approximated locally uniformly by quasiconvex functions of polynomial growth.. The paper is organized

In view of the above remarks it seems that if one would like to produce examples of elliptic curves with large p-Selmer groups, and an irreducible.. representation