• Aucun résultat trouvé

Case-based Reasoning for Forecasting the Allocation of Perennial Biomass Crops

N/A
N/A
Protected

Academic year: 2021

Partager "Case-based Reasoning for Forecasting the Allocation of Perennial Biomass Crops"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-01773571

https://hal.inrae.fr/hal-01773571v2

Submitted on 25 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Case-based Reasoning for Forecasting the Allocation of

Perennial Biomass Crops

Florence Le Ber, Jean Lieber, Marc Benoit

To cite this version:

Florence Le Ber, Jean Lieber, Marc Benoit. Case-based Reasoning for Forecasting the Allocation of

Perennial Biomass Crops. ERCIM News, ERCIM, 2018, Smart Farming, pp.34-35. �hal-01773571v2�

(2)

of GPS points and polygon data togetherwithfieldphotographs.Beside thelocationandextent,localwater regime,habitatquality(biodiversity) andobservationoffloraandfaunais alsoincludedinthedataset.Thedata-baseincludesthesurroundsofthethree largestHungarianlakes:LakeBalaton, Lake Tisza and Lake Neusiedl (Hungarianside).Thedatabasecontains 150testpatches,outofwhich113are wetlands,providingagoodrepresenta- tionofthevarietyofHungarianwet-lands.Besideswetlands,thereare23 grasslands(alsoanimportanthabitat type)and14croplands. Themainfocusoftheprojectistouse thisdatabasetoinvestigatetemporal, spectralandspatialcharacteristicsof wetlandsusingSentinelmultispectral satelliteimagery,andfromthisto developanautomaticdetectionprocess, whichcanprovidefurtherinformation aboutnaturalhabitats.Thedetection processappliesafusionbasedMarkov RandomField(MRF)technique[1]on multitemporalandmultispectralimage series.InourfusionMRFmodelan unsupervisedmethodtrackstemporal changesofwetlandareasbycomparing theclasslabellingofdifferenttime layers[2].Aclassificationmapbasedon existingairbornelaserscanningdata[3] hasbeenusedforwetlandclassification improvingthediscriminationofland- coverclasseswithsimilarspectralchar-acteristics.Theproposedmethodcanbe extendedbymachinelearningandfea- turebasedclassificationformoreaccu-ratemonitoringofwetlands. Links: [L1]http://mplab.sztaki.hu [L2]https://kwz.me/hbv [L3]https://kwz.me/hbw References: [1] T.SzirányiandM.Shadaydeh: “SegmentationOfRemoteSensing ImagesUsingSimilarityMeasure BasedFusion-MRFModel”,IEEE Geosci.RemoteSens.Lett.,vol. 11,no.9,pp.1544-1548,2014 [2] M.Shadaydeh,etal.:“Wetland MappingbyFusionofAirborne LaserScanningandMultitemporal MultispectralSatelliteImagery”, Int.J.RemoteSens.,vol.38,no. 23,pp.7422-7440,2017 [3] A.Zlinszky,etal.:“Categorizing wetlandvegetationbyairbornelaser scanningonLakeBalatonandKis-Balaton,Hungary”,RemoteSens., vol.4,no.6,pp.1617-1650,2012 Please contact: AndreaManno-Kovacs MTASZTAKI,MPLab andrea.manno-kovacs@sztaki.mta.hu

ERCIM NEWS 113 April 2018

34

Special theme: Smart Farming

Figure2:WetlandmappingonLakeBalaton-Thetestpatchesofthewetlanddatabaseareshowninyellow,followedbytheMRF-based multitemporalsegmentation[2]andthetestsiteinGoogleMaps. Perennialbiomasscropsarenewrenew-ableenergyresourcesthatcouldplayan importantroleinreplacingfossilfuels. Theexpansionofthesecropsseems unavoidable,andwillraiseglobalissues suchascompetitionforspacebetween foodandnon-foodcrops.Toforecasttheir introductioninfarmingsystemsandtheir spatialallocationisthusamainchallenge. Whilstseveralland-usechangemodels dealwithbiomasscropallocation,most ofthemsimulatelarge-scaleallocation processes,takingintoaccountnumerous biophysicalvariablesbutonlyafewtrue-to-lifehumanvariables.Incontrast,we aimedtomodelfarmers’allocationdeci-sionsregardingnewperennialbiomass cropsasacomplexagriculturalmanage-mentsystem,couplingsocial,technical andenvironmentalvariables. Asthisobjectiveraisesknowledge acquisitionandknowledgeintegration methodologicalissues,weproposedto modelbiomasscropallocationrelying oncase-basedreasoning(CBR),a problem-solvingparadigm.CBRcon-sists of solving new problems by reusingthesolutionofsimilarproblems thathavealreadybeensolved[1].A casecorrespondstoaproblem-solving

Case-based Reasoning for Forecasting

the Allocation of Perennial biomass Crops

by Florence Le Ber (Université de Strasbourg, ENGEES), Jean Lieber (Université de Lorraine, Inria) and Marc Benoît (INRA)

A farmer’s decision to plant new perennial biomass crops is a complex process that involves numerous parameters and can change the food / non-food balance. The paradigm of case-based reasoning is able to deal with the kind of complex and sparse information that is available in this situation, to model and forecast the allocation of these crops.

(3)

ERCIM NEWS 113 April 2018 35

episode usually represented by a problem-solution pair. Cases are recordedinacasebase.Asourcecaseis anelementofthecasebase.TheCBR process consists of solving a new problem,thetargetproblem,usingthe casebase.Acommonwayofdoingthis istoselectasourcecasesimilartothe targetproblem(caseretrieval)andto modifytheretrievedcasesothatitpro-videsasolutionthathypothetically solvesthetargetproblem(caseadapta-tion).Aftertheseinferencesteps,some learningstepsaresometimesimple-mented. Thisapproachwastestedonacase studylocatedinBurgundy(Eastof France),whereanewperennialbiomass cropMiscanthus sp.hasbeenestab-lishedsince2010. Inourmodel[2],acaseisdefinedasa specificexperienceofMiscanthus allo-cation(ornon-allocation)inafarm field.Thecasebaseincludes82farm fieldsthathavebeendescribedby farmersinpastinterviews(2011-2012) ashavingMiscanthus allocationpoten-tial.Theproblem-solutionpairisafarm fieldanditsallocationpotentialfor Miscanthus.Eachcaseisrepresented withavectorofqualitativevalues, dividedintotwoparts:theproblempart isasetofattributes,givingthefarm fieldcharacteristics,asdescribedbythe farmer;thesolutionpartdescribesthe Miscanthus allocationpotentialofthe farmfield(0-noallocation,1-alloca-tion,or2-possibleallocation).The modelalsoreliesonasetofrulesthat formalisetheelementsgivenbyfarmers whenexplainingtheirdecisiontoplant (ornotplant)Miscanthus inafield. Todefineasimilaritymeasurebetween cases,weassumedthatsimilarfarm managementandbiophysicalcon-straintsoffarmlandenableanalogue farmers’decisionsaboutcropalloca-tion.Thecomparisonofthesource casesandthetargetproblemisthus basedonacomparisonoftheirattribute valuesintermsofcroppingplan,farm biophysicalfeaturesandspatialfarm-landfeatures. Intheadaptationstep,weusetherules ofthefarmerassociatedtothesource casetobuildthesolution.Adaptation knowledgeallowstheappropriaterule tobechosenandapplied,accordingtoa givenadaptationcontext:thesystem promotestheruleswithconclusion0 (whenthecontextisnotfavourablefor Miscanthus,e.g.,becauseitspriceis lowcomparedwithtraditionalcrops)or thosewithconclusion1or2,iftheeco-nomic context is favourable for

Miscanthus. Experimentsshowedthecentralroleof theuser,whohastochooseparameters andadaptationcontexts,andtoexamine resultsstepbystep:retrievedcases, availablerules,proposedsolutions. Rulesinparticularcanbeanalysedto highlightthefieldcharacteristicsthat are important with respect to the farmer’sdecision.Futureworkwill deepentheuseofrulesforadaptation andexplanation.Thismodelcouldalso betestedonotherinnovativecrops. Finally,aformalmodelfortheadapta- tionofcropallocationhasbeendevel-opedthatisbasedontheapplicationof beliefrevisioninthequalitativealgebra RCC8setting(Dufouretal.,2012): thismodelstillneedstobeappliedand validatedonrealfarmdata. Farmsurveysandknowledgemodelling werefundedbyFUTUROLproject[L1] andtheFrenchgovernment. Link: [L1]https://www.projetfuturol.com References: [1]C.K.Riesbeck,R.C.Schank: 3InsideCase-Basedreasoning”, LawrenceErlbaumAssociates Publishers,1989. [2]F.LeBer,etal.:“AReasoning ModelBasedonPerennialCrop AllocationCasesandRules”, ICCBR.Springer,LNAI10339, 61-75,2017. [3] V.Dufour-Lussier,etal.: “AdaptingSpatialandTemporal Cases”,ICCBR.Springer,LNAI 7466,77-91,2012. Please contact: FlorenceLeBer,ICube,Universitéde Strasbourg,CNRS,ENGEES,France +33388248230 florence.leber@icube.unistra.fr MarcBenoît,ASTER,INRA,France +33329385501 marc.benoit@inra.fr Figure1:AMiscanthusfieldinBurgundy.

Références

Documents relatifs

These Dayak farmers still rely on jungle rubber and ladang and have not replanted with clonal rubber. They are the most “conservative” with respect to food security. They did

It is expected that the shift from annual cropping sys- tems to perennial grasses such as Miscanthus or switch- grass will increase SOC stocks for three reasons: (i) these

The high contrast between crops as regard to soil structure and root distribution is likely to affect both the long term production and environmental impacts of

Twelve combinations have been defined (4 retrieval.. Target Field Target Field + solution Validated Case Case Base Distance Matrice Rules Retrieval 4 procedures Target

7 A histogram of reasons why farmers choose to ratoon or not ratoon perennial staple crops in the Malawian Districts of (a) Mzimba (green), (b) Kasungu (orange), and (c)

The rubber tree collection with 780 accessions of Hevea brasiliensis and relative wild species, collected in its Amazonian original forest, represents a large

While a number of models exist to estimate nitrogen (N) losses from agricultural fields, they mostly pertain to temperate climate conditions and annual crops.. The lack of

This may be misleading since performances and impacts of the system may greatly vary year by year and the evolution of the stand over the cycle induces specific mechanisms