• Aucun résultat trouvé

Growth of hexagonal quantum dots under preferential evaporation

N/A
N/A
Protected

Academic year: 2021

Partager "Growth of hexagonal quantum dots under preferential evaporation"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02147131

https://hal.sorbonne-universite.fr/hal-02147131

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Growth of hexagonal quantum dots under preferential

evaporation

Guido Schifani, Thomas Frisch, Jean-Noël Aqua

To cite this version:

Guido Schifani, Thomas Frisch, Jean-Noël Aqua. Growth of hexagonal quantum dots under

pref-erential evaporation.

Comptes Rendus Mécanique, Elsevier Masson, 2019, 347 (4), pp.376-381.

(2)

Growth

of

hexagonal

quantum

dots

under

preferential

evaporation

Croissance

de

boîtes

quantiques

hexagonales

sous

évaporation

préférentielle

Guido

Schifani

a

,

Thomas

Frisch

a

,

Jean-Noël

Aqua

b

,

aUniversitéCôted’Azur,CNRS,InstitutdephysiquedeNice,ParcValrose,06108Nice,France

bSorbonneUniversité,CNRS,InstitutdesnanosciencesdeParis,INSP,UMR7588,4,placeJussieu,75005Paris,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received19November2018 Accepted26November2018 Availableonline12April2019

Keywords:

Hexagonalquantumdots Preferentialevaporation Heteroepotaxialgrowth

Mots-clés :

Boîtesquantiqueshexagonales Évaporationpréférentielle Croissancehétéroépotaxiale

WeperformnumericalsimulationsofhexagonalquantumdotsofAlGaNsemiconductors. Weshowthatthecompetitionbetweensurfacemassdiffusionandevaporationrulesthe morphologyofthequantumdots.Thesystemdisplaysthreedifferentbehaviors:presence ofseparatedislandswithoutawettinglayer,islandsdissolvingintothewettinglayer,or islandsthatdonotevolve.Thefirstbehaviorisofspecialinterestbecauseitsoptoelectrical propertiesare significantly improvedincomparison with quantum dots witha wetting layer.

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r

é

s

u

m

é

Nous effectuons une simulation numérique des boîtes quantiques hexagonales de semiconducteursAlGaN.Nous montrons quelacompétition entre ladiffusion demasse ensurfaceetl’évaporationdétermine lamorphologiedes boîtesquantiques. Lesystème montre trois comportements différents : des îlots séparés sans couche de mouillage, desîlotsse dissolvant dansla couchedemouillage oudesîlots nepouvantévoluer. Le premiercomportementprésenteunintérêtparticulier,car lespropriétésoptoélectriques sontconsidérablementamélioréesparrapportauxboîtesquantiquesavecunecouchede mouillage.

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*

Correspondingauthor.

E-mailaddresses:guido.schifani@inphyni.cnrs.fr(G. Schifani),thomas.frisch@inphyni.cnrs.fr(T. Frisch),aqua@insp.jussieu.fr(J.-N. Aqua).

https://doi.org/10.1016/j.crme.2019.03.012

1631-0721/©2019Académiedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Fig. 1. PreferentialevaporationfollowingEq. (2).Themodelinvolvessixpreferentialevaporations,correspondingtothefacetsoftheislands.Forsimplicity, wechoseFev

001=1,p=1/10 ande=4. 1. Introduction

Thegrowthofself-organizedquantumdots(QDs)hasbeenwidelystudiedduetotheir opto-electronicproperties,from screendisplaystosingle-photonemitters[1–3].Thedevelopment ofa modelthat canpredictthesize,theshape,andthe surface densityofstrainedQDsremains achallengingtask, sinceitinvolvesthedynamicinterplayofelasticity,capillarity, wetting,faceting,andalloyingeffects [4–14].

Therearetwoessentialphenomenaforthemorphologicaldevelopmentofself-organizedQDs.Thefirstoneisthe devel-opmentofthespatial instability,whichselectsasize.Thesecondone isa coarseningphenomenonthat broadensthesize distributionoftheislands.Coarseningisageneralphenomenoninwhichthesizeofapatternincreases,whosedescription dependsontransportmechanismsbetweenQDs.

Theformationofself-organized QDsresultsfromtheStranski–Krastanow growthmode[15].Athinsemiconductorfilm isdepositedandgrowsasaplanarlayer.Aboveacriticalthickness,QDsemergefromthislayer.Thisformationisexplained byapartialrelaxationoftheelasticstressofthestrainedfilm,whichisalsosubmittedtocapillarityandwettingeffects.For lowmisfit[16,17],theinstabilityisreminiscentoftheAsaro–Tiller–Grinfeld(ATG)instability[18,5].Afteritsinitialgrowth, theassemblyofQDsundergoescoarsening,drivenbytheefficientelasticrelaxationofthelargestislands.Theinitiallyrough isotropicQDs (prepyramids)henceripenand, asthey displaysteep enoughslopes,they transformintoanisotropic QDs of varioussizes,especiallypyramidsanddomes[19].

We are interested inGaN QDs. Itis observed experimentally that, afterdeposition ofthe semiconductor film,a pref-erential evaporationcomesinto play[20–22], whichdependson theslopeof thesystemandinwhich thewetting layer evaporatesfasterthattheQDs.ThiseffectdrivesthesystemtoobtainQDswithoutawettinglayer,bywhichthe optoelec-tricalpropertiesimprovesignificantly.

2. Continuumequation

Wemodelthegrowthandevaporationofasemiconductorfilmbyacontinuumframeworkthatdescribessurfacemass diffusion. The film, lying in between z

=

0 and the free surface z

=

h

(

x

,

y

,

t

)

, evolves following the mass conservation equation:

h

t

=

D



μ

+

F

dep

Fev



1

+ ∇

h2 (1)

where Fdep, Fev correspondtothedepositionandevaporationfluxes,while

μ

= ∂(

F

el

+

F

s

)/∂

h isthechemicalpotential of the inhomogeneous surface, givenby the functional derivative of the elastic and capillary free energies

F

el and

F

s. Wework withIII–Vsemi-conductors,where Fevisnot negligibleanddependsonthelocalorientationsn

0

= {

0

,

0

,

1

}

and ni

=

12

{

cos

(

iπ3

+

π4

),

sin

(

iπ3

+

π4

),

3

}

,i

=

1

,

. . .

6.Weconsiderthefollowingpreferentialevaporationfunction

Fev

(

m

)

=

F001ev

1

+

1

p

π

6



j=1 1



σ=0

(

1

)

σarctan



η



||

m

mj

|| −

(

1

)

σ



e

||

mj

||

(2)

where F001ev istheevaporationofthesubstrate(001), p

=

F113ev

/

F001ev theevaporationratioofthefacetsandofthewetting layer,

η

and



e parameterizethe dependence of evaporationon the localfilm orientation relatedto m

= {

hx

,

hy

}

,while

mi

=

2

/

3

{

ni,x

,

ni,y

}

.WeplotinFig.1thepreferentialevaporationforan hexagonalanisotropy.The surfaceenergy

F

s

=



γ

(

h

,

n

)

d2S dependsonthesurface energyas

γ

=

γ

f[1

+

γ

a

(

n

)

+

γ

w

(

h

)

]. Here

γ

f istheenergyofa thick-film,

γ

aisthe

anisotropy energy and

γ

w the wetting contribution.We consider again an hexagonal asymmetry for the surface energy anisotropy,describedgenericallyby

(4)

Fig. 2. Surface energyanisotropygiveninEq. (3).The preferentialorientations representthefacets ofthe islands.Theparametersfor thefacets are

=0.07,ηα=4,and=10−3andfortheflatorientationA0=0.2,η0=10,and0=0.1.

γ

a

= −

6



j=0 Ajexp



η

j



1

n

·

nj2

+



j

(3) withthe localnormaln

=

 1

1+∇h2

{−

hx

,

hy

,

1

}

.The functional(3) leads witha smallregularization



α ,evenwithsmall anisotropyamplitudesAα (Fig.2).Thewettingeffectappearsduetotheinteractionbetweenthefilm/substrateinterfaceand thefilmsurface.Insemiconductors,itgenerallyhassmallvariations,whichwegenericallymodelas

γ

w

(

h

)

=

cwexp

(

h

w

)

.

Finally,elasticstrainariseshereduetotheepitaxialmisfitm

= (

af

as

)/

asbetweenthelatticeparametersaf/softhefilm (f) andthe substrate(s). We will usethe elastic energyup to second order computedassuming the small-surface-slope approximationproposedin[19].Itsamplitudeisgivenbytheelasticenergydensity

E

0

=

Y m2

/(

1

ν

)

,whereY and

ν

are Young’smodulusandPoisson’sratio.

The characteristic length andtime scales associated withthe evolutionequation (1) arel0

=

γ

f

/

2

(

1

+

ν

)

E

0 andt0

=

l40

/

D

γ

f [19].Forexample,inaGaN system,

γ

f

=

1

.

89 J/m2,andwithits typicalelasticparameters,1 onefindsl0

=

5

.

4 nm foraGaN filmontopofan Al0.5Ga0.5N substrate.The determinationoft0 isdifficult,astheeffectivediffusioncoefficient

D isdelicatetomeasure.Wecomparetheexperimentalresultswithournumericalsimulationinordertosetatimescale t0



1 s.

3. Asaro–Tiller–Grinfeldinstability

The systemofathinfilmsemiconductordeposited onasemiconductor substratepresentsa surface morphological in-stability.ThisinstabilitywasfirststudiedwithintheframeworkofliquidepitaxybyAsaroandTiller[18] andre-derivedby Grinfeld[23].Thefilmdiffusesinordertoshapean undulatedsurface.Thismayonlyhappenforfilmthicknessesabovea characteristicvalue that wewill derivesubsequently.We emphasizethat thisinstability developsthanksto surface diffu-siondrivenbythestrainresultingfromthedifferenceofthelatticesizesbetweenthefilmandthesubstrate.Theinstability starts withanundulationthatdevelopswithtime.Thisundulationtakesplaceatthefilmfree surface.Ifthereisenough matter,theundulationtransformsinbell-shapedislands.

WecansolvetheevolutionEq. (1) byconsideringalinearanalysiswherethefilm-freesurfaceisdecomposedintoFourier modesalongx and y.Thesolutionisanexponentialgrowthh

(

x

,

y

,

t

)

=

h0

+

Aeσt+i kxx+i kyy.

σ

reads:

σ

= −

1

γ

f

2

γ

(

h

,

hx

,

hy

)

h2







h=hc k2

+ |

k

|

3

γ

˜

(

hc

,

hx

,

hy

)

γ

f k4 (4)

indimensionlessunits.Here,thesurfacestiffnessisdefinedas

γ

˜

=

γ

+

2γ ∂hi∂hi.

Forh0 largerthansome wetting criticalthicknesshc,the growthratepresentspositive valuesinafinite wavenumber intervalandtheinstabilitydevelopsasshowninFig.3.Thecriticalthicknesshc ischaracterizedby

σ

=

0 and

σ

/∂

k

=

0:

hc

= δ

wln

(

4 cw

w

)

(5)

4. Hexagonalquantumdots

We presentherenumerical simulationsof asystem withoutpreferential evaporation, inwhich theinitial condition is a constant height h0

>

hc plusa smallrandom perturbation.In orderto test ourmodelwithan hexagonal symmetry of thesurfaceenergyanisotropy,westudytheeffectofdifferentparametersinordertohavethebestones.Weconsidertwo initial heightsh0

=

0

.

1 andh0

=

0

.

35 and,foreach initialheight, wevarythestrength oftheflatorientation n0 givenin Eq. (3).

1 WeusedY=300 GPa,ν=0.20,a

(5)

Fig. 3. Growthrateσ asafunctionofthewavenumberk giveninEq. (4).Fromtoptobottom,thebluecurverepresentsthegrowthrateforh0>hc,the

orangecurvethatforh0=hc,andthegreencurvethatforh0<hc.

Fig. 4. Roughnessasafunctionoftime.Thebluecurve,theorangecurve,andthegreencurverepresentthenumericalresultsforA0=0.2,A0=0.35,and

A0=0.5,respectively.(a)Initialheighth0=0.1 and(b)initialheighth0=0.35.

Fig. 5. Islandprofilesfordifferentframetimes.Thecolorsrangefrombluetoreddependingonthevalueoftheheight,fromthewettinglayerheightto thetopoftheisland.(a)t=500 and(b)t=1200.Theinitialheightish0=0.1.

We plot in Fig.4 the roughness w

=

<

h2

>

− <

h

>

2 as a function of time. We notice that the instability with a biggerinitialheighth0developsfasterthantheonewithasmallinitialheight.Thisfeatureisexplainedbythedecreaseof wettinginteractionsforlargeheightsh.Thewettingeffectflattensthesystemandcompeteswiththeelasticitythatdrives thegrowthofislands. So,ifthewettinginteractions arestronger,theinstabilitywilltakemoretime todevelop.Asimilar behaviorhappenswiththestrengthoftheflatorientation (001)A0.Forsystemsinwhichtheflatorientationisfavorable, thedevelopmentoftheislandstakesmoretime.Astheflatorientationbecomesadeeperlocalminimum,thesystemtakes moretimetogofromsmallslopestothefacets’preferentialorientation.

WeplotinFig.5and6QDsprofilesfordifferenttimeswheretheanisotropystrength A0

=

0

.

1 andtheheightish0

=

0

.

1 andh0

=

0

.

35,respectively.We canseethatduring coarsening,differentshapesare encountered(truncated-elongated pyramids),butitdependsonthetotalmass.

5. Preferentialevaporation

Wenowstudytheevolutionofthesysteminthepresenceofevaporation.Indeed,onecharacteristicsoftheIII–Vsystems understudyisthelowerboundingonthesurface,whichleadstoasignificant evaporationduringannealing.Wetakethis extra-effectintoaccount and,in addition,weconsider anisotropicevaporation, asoneknowsthat thefacetsevaporateat differentspeeds.

(6)

Fig. 6. Islandprofilesfordifferentframetimes.Thecolorsrangefrombluetoreddependingonthevalueoftheheight,fromthewettinglayerheightto thetopoftheisland.(a)t=500 and(b)t=1200.Theinitialheightish0=0.35.

Fig. 7. Roughnessasafunctionofthetime,forthreedifferentvaluesoftheevaporationfluxFev001.Thegreenrhombusarefor F ev

001=0.04,theorange

squaresareforFev

001=0.022,andthebluedisksareforF ev

001=0.018.Theinitialheightish0=1.75.

Our investigationconcerns thenthe long-time dynamicsofthesystemduring long enoughannealing/evaporation.We performnumericalsimulationsofEq. (1) forthepreferentialevaporationgivenbyEq. (2):itwillcompetewiththesurface diffusioninthecoarseningdynamics.Whenevaporationishighenough,theislandsdonothavetime toappearbeforethe entiresystemisevaporated,becausesurfacediffusionisslowerthanevaporation.Whenevaporationismoderate/low,two behaviorscan bemet.The firstbehavior iswhenislands develop but,asthemass evaporates,theisland dissolvesin the wetting layeras,whentheinitialheightislowerthanhc,theislandscannotdevelop.Thesecondpossiblebehavioroccurs when evaporation ispreferential, in which casethe wetting layer vanishes, whileislands remain in the system, keeping theirshape.Asthemorphologyisaresultofthesystem’sdynamics,nopreferentialinsightcanbegivenapriori.

The initial condition forthe systemunder studyiscomposed ofa constant height h0 plus a randomperturbation. In comparison withthe simulations presented in the previous section, herewe choose an initial height h0 of theorder of magnitudeofthetypicalislandheights,sincetheevaporationwilldecreasethemassofthesystemuntilthemassvanishes, and in order to let the instability develop, the system will evaporate a considerable amount of mass before instability develops.Wealsochoseaweaksurfacestiffnessforthe(001)orientation,sincethenumericalsimulationsarefaster,aswe haveshownpreviously.

We expect that, for big evaporationfluxes, the instability cannot develop, because evaporationwill win against mass diffusion,andtheinstability wouldnot evolve.Onthecontrary,iftheevaporationfluxisslow,massdiffusionwouldwin againstevaporation,andthesystemwillvanish.

We plot in Fig. 7 the temporal evolution of the roughness w

=

<

h2

>

− <

h

>

2 as a function of the time, for a system with three values of preferential evaporation Fev001. We observe that roughnessfirst increases, before it starts to decreaseuntilbecomingnegative. Oncetheislandshavetheirpyramidalshape,thepreferentialevaporationeffectismore quantitativeandmakestheroughnessdecrease.

5.1. Vanishingofthewettinglayer

Wenowpresenttheresultsconcerningthevanishingofthewettinglayer.WeperformnumericalsimulationsofEq. (1) foraninitialheighth0

=

1

.

75,varyingtheevaporationfluxofthewettinglayer F001ev .Weletthesystemevolve,andwhen thewettinglayerpresentsnegativevalues,westopthesimulation.WeplotinFig.8thelayerprofileatthemomentwhen thewettinglayerisnegative.Wenoticethattheregionwherethewettinglayervanishesexhibitasmallperiodicbehavior, yetunsettled.

(7)

Fig. 8. ProfileobtainedbynumericalsimulationofEq. (1),forthetimewhenthewettinglayergoestonegativevalues.Thegray spotsrepresentthenegative valuesofthewettinglayer.TheevaporationfluxischosentobeFev

001=0.02 andtheinitialheightish0=1.75.Sincethesimulationisnotrealisticfor

negativevaluesoftheheight,westopthesimulationhere.

6. Conclusion

Westudynumericallyathree-dimensionalsystem,wherethesurfaceenergyanisotropypresentsahexagonalsymmetry, inordertofavorhexagonalislands.Weanalyzetheeffectsoftheflatorientationandtheeffectsoftheinitialheightonthe system.

– Wefindthatasystemwithmoremasspresentsfastercoarsening.Thisbehaviorisrationalizedbythewettingpotential effect,whichtriestoflattenthesystem, anddecaysexponentiallywiththe height,sothat, whentheinitial heightis bigger,theeffectisweaker,andtheislandsevolvefaster.

– Asimilarbehavior occurswithaflat orientationinthesurface energyanisotropy.Ifitisweak, awettinglayer isnot preferential,sothesystempresentsahighdensityofislands,andalso,asthisorientation isweak,coarseningwillbe faster.

We extendourmodelwithapreferential evaporation. Theexperiments show thatisland facetsevaporateslowerthan thewettinglayer.Duetothat,weaddtoourmodelapreferentialevaporation.Weshowthat,dependingontheevaporation fluxofthewettinglayer,islandshavetimetodevelopornot.Ifislandsdevelop,weshowthat,forcertaintimes,thewetting layervanishes.

References

[1]V.A.Shchukin,D.Bimberg,Spontaneousorderingofnanostructuresoncrystalsurfaces,Rev.Mod.Phys.71(1999)1125–1171.

[2]J.Stangl,V.Holý,G.Bauer,Structuralpropertiesofself-organizedsemiconductornanostructures,Rev.Mod.Phys.76(2004)725–783.

[3]J.Brault,S.Matta,T.-H.Ngo,D.Rosales,M.Leroux,B.Damilano,M.AlKhalfioui,F.Tendille,S.Chenot,P.DeMierry,J.Massies,B.Gil,Ultravioletlight emittingdiodesusingIII–Nquantumdots,Mater.Sci.Semicond.Process.55(2016)95–101.

[4]B.J.Spencer,P.W.Voorhees,S.H.Davis,Morphologicalinstabilityinepitaxiallystraineddislocation-freesolidfilms,Phys.Rev.Lett.67(1991)3696–3699.

[5]P.Müller,A.Saúl,Elasticeffectsonsurfacephysics,Surf.Sci.Rep.54 (5)(2004)157–258.

[6]C.-H.Chiu,Z.Huang,CommonfeaturesofnanostructureformationinducedbythesurfaceundulationontheStranski–Krastanowsystems,Appl.Phys. Lett.89 (17)(2006)171904.

[7]J.-N.Aqua,A.Gouyé,A.Ronda,T.Frisch,I.Berbezier,Interruptedself-organizationofsigepyramids,Phys.Rev.Lett.110(2013)096101.

[8]J.-N.Aqua,I.Berbezier,L.Favre,T.Frisch,A.Ronda,Growthandself-organizationofSiGenanostructures,Phys.Rep.522 (2)(2013)59–189.

[9]B.J.Spencer,J.Tersoff,Symmetrybreakinginshapetransitionsofepitaxialquantumdots,Phys.Rev.B87(2013)161301.

[10]C.Wei,B.J.Spencer,Asymmetricshapetransitionsofepitaxialquantumdots,Proc.R.Soc.A,Math.Phys.Eng.Sci.472 (2190)(2016).

[11]F.Rovaris,R.Bergamaschini,F.Montalenti,Modelingthecompetitionbetweenelasticand plasticrelaxationinsemiconductor heteroepitaxy:from cyclicgrowthtoflatfilms,Phys.Rev.B94(2016)205304.

[12]C.Wei,B.J.Spencer,AFokker–Planckreactionmodelfortheepitaxialgrowthandshapetransitionofquantumdots,Proc.R.Soc.A,Math.Phys.Eng. Sci.473 (2206)(2017).

[13]G.Schifani,T.Frisch,M.Argentina,J.-N.Aqua,Shapeandcoarseningdynamicsofstrainedislands,Phys.Rev.E94(2016)042808.

[14]G.Schifani,T.Frisch,M.Argentina,Equilibriumanddynamicsofstrainedislands,Phys.Rev.E97(2018)062805.

[15]I.N.Stranski,L.Krastanow,ZurTheoriederorientiertenAusscheidungvonionenkristallenAufeinander,Monatsh.Chem.Verw.Tl.And.Wiss.71 (1) (1937)351–364.

[16]P.Sutter,M.G.Lagally,Nucleationlessthree-dimensionalislandformationinlow-misfitheteroepitaxy,Phys.Rev.Lett.84(2000)4637–4640.

[17]R.M.Tromp,F.M.Ross,M.C.Reuter,Instability-drivenSi–Geislandgrowth,Phys.Rev.Lett.84(2000)4641–4644.

[18]R.J.Asaro,W.A.Tiller,Interfacemorphologydevelopmentduringstresscorrosioncracking:part I.Viasurfacediffusion,Metall.Trans.3 (7)(1972) 1789–1796.

[19]J.-N.Aqua,T.Frisch,Influenceofsurfaceenergyanisotropyonthedynamicsofquantumdotgrowth,Phys.Rev.B82(2010)085322.

[20]B.Damilano,J.Brault,J.Massies,FormationofganquantumdotsbymolecularbeamepitaxyusingNH3 asnitrogensource,J.Appl.Phys.118 (2)

(2015)024304.

[21]J.Brault,S.Matta,T.-H.Ngo,M.Korytov,D.Rosales,B.Damilano,M.Leroux,P.Vennéguès,M.AlKhalfioui,A.Courville,O.Tottereau,J.Massies,B.Gil, InvestigationofAlyGa1−yN/Al0.5Ga0.5N quantumdotpropertiesforthedesignofultravioletemitters,Jpn.J.Appl.Phys.55 (5S)(2016)05FG06. [22]B.Damilano,S.Vézian,J.Brault,B.Alloing,J.Massies,Selectiveareasublimation:a simpletop-downrouteforgan-basednanowirefabrication,Nano

Lett.16 (3)(2016)1863–1868,PMID:26885770.

Figure

Fig. 1. Preferential evaporation following Eq. (2). The model involves six preferential evaporations, corresponding to the facets of the islands
Fig. 2. Surface energy anisotropy given in Eq. (3). The preferential orientations represent the facets of the islands
Fig. 5. Island profiles for different frame times. The colors range from blue to red depending on the value of the height, from the wetting layer height to the top of the island
Fig. 6. Island profiles for different frame times. The colors range from blue to red depending on the value of the height, from the wetting layer height to the top of the island
+2

Références

Documents relatifs

abortus faces alkylation stress during infection, with functional DNA repair pathways for alkylation damage required in a mice model of infection, and that the control of the

Il faut souligner que c’est dans ce canton que se concentre la majorité (33%) des Équatoriennes et Équatoriens résidant (avec ou sans papiers) en Suisse 1. D’un point de vue

C’était le moment choisi par l’aïeul, […] pour réaliser le vœu si longtemps caressé d’ accroître son troupeau que les sècheresses, les épizoodies et la rouerie de

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

l’utilisation d’un remède autre que le médicament, le mélange de miel et citron était le remède le plus utilisé, ce remède était efficace dans 75% des cas, le

Abstract. This supports the arguments that the long range order in the ground state is reached by a spontaneous symmetry breaking, just as in the classical case...

Abstract - Field evaporation of gallium phosphide and field desorption of hydrides from different gallium phosphide surfaces were studied in the temperature range of

The linear pressure dependence suggests that field evaporation is rate-determined through the process o f hydride formation within the entire range o f temperature being