• Aucun résultat trouvé

HIGH PRESSURE PHYSICS AND CHEMISTRY IN GIANT PLANETS AND THEIR SATELLITES

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH PRESSURE PHYSICS AND CHEMISTRY IN GIANT PLANETS AND THEIR SATELLITES"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00224317

https://hal.archives-ouvertes.fr/jpa-00224317

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HIGH PRESSURE PHYSICS AND CHEMISTRY IN GIANT PLANETS AND THEIR SATELLITES

D. Stevenson

To cite this version:

D. Stevenson. HIGH PRESSURE PHYSICS AND CHEMISTRY IN GIANT PLANETS AND THEIR SATELLITES. Journal de Physique Colloques, 1984, 45 (C8), pp.C8-97-C8-103.

�10.1051/jphyscol:1984819�. �jpa-00224317�

(2)

H I G H PRESSURE PHYSICS AND CHEMISTRY I N GIANT PLANETS AND T H E I R S A T E L L I T E S +

D . J . S t e v e n s o n

Division of Geoloyicul und P l a m t a r y Sciences, C a l i f o r n i a I n s t i t u t e o f Technology, Pasadena, CA 91125, U.S. A .

Resume - Les c o u c h e s p r o f o n d e s d e J u p i t e r , S a t u r n e , Uranus, Neptune a i n s i q u e l e u r s s a t e l l i t e s s o n t Q t u d i e s . Des r e s u l t a t s i m p o r t a n t s c o n c e r n a n t l a P h y s i q u e d e l a M a t i e r e Condensee s o n t e x p o s e s . La d i s c u s s i o n p o r t e s u r t o u t s u r H2, H-lie, H -H 0 , H2-CH

2 2 4 , NH3, e t CH4.5.75H 0. La P l a n e t o l o g i e b e n e f i -

c i e r a d e s dCveloppements , p r e s e n t s e t f u t u r s , t i e o r i q u e s e t e x p d r i m e n t a u x .

A b s t r a c t - The deep i n t e r i o r s o f J u p i t e r , S a t u r n , Uranus, Neptune, and t h e i r s a t e l l i t e s a r e d i s c u s s e d . The i m p o r t a n t i s s u e s r e l e v a n t t o t h e p h y s i c s o f condensed m a t t e r a r e i d e n t i f i e d . The d i s c u s s i o n emphasizes Hz, H-He, H -

H20. Hz-CHI. WH3. and CH4.5.15H20. P r e s e n t and f u t u r e t h e o r y and experiment are o f g r e a t b e n e f i t t o p l a n e t a r y s c i e n c e .

The l a s t decade h a s s e e n d r a m a t i c developments i n o u r u n d e r s t a n d i n g o f p l a n e t s , p r i m a r i l y because o f t h e d a t a r e t u r n e d by deep s p a c e missions. For example, t h e Voyager m i s s i o n c o n s i s t s o f two s p a c e c r a f t which f l e w p a s t both J u p i t e r and S a t u r n ; one o f t h o s e s p a c e c r a f t w i l l b e t h e first man-made o b j e c t t o v i s i t Uranus, i n e a r l y 1986. One o f t h e u l t i m a t e g o a l s o f t h i s e x p l o r a t i o n e f f o r t is t o e l u c i d a t e t h e o r i g i n and composition o f t h e s o l a r system. T h i s r e q u i r e s both s p a c e c r a f t d a t a and a knowledge o f t h e p r o p e r t i e s o f r e l e v a n t m a t e r i a l s a t t h e thermodynamic c o n d i t i o n s encountered w i t h i n t h e p l a n e t s and t h e i r s a t e l l i t e s . The h i g h p r e s s u r e p h y s i c s community is p r o v i d i n g a n e s s e n t i a l s e r v i c e t o p l a n e t a r y s c i e n c e i n t h i s a r e a . My g o a l i n t h i s b r i e f summary review is t o o u t l i n e t h e p r e s e n t s t a t e o f a f f a i r s and i d e n t i f y t h e a r e a s where p r e s e n t and f u t u r e experiment o r t h e o r y c a n p r o v i d e s u b s t a n t i a l advances.

A d e t a i l e d d e t e r m i n a t i o n o f t h e i n t e r n a l p r o p e r t i e s o f p l a n e t s c a n never b e achieved e x c e p t by d i r e c t sampling. The i n t e r p r e t a t i o n o f p l a n e t a r y i n t e r i o r s must r e l y h e a v i l y on "models" which s i m p l i f y , by j u d i c i o u s c h o i c e o f assumptions, t h e complex n a t u r e o f r e a l p l a n e t s . For o u r p r e s e n t d i s c u s s i o n , t h e two most i m p o r t a n t assumptions d e s e r v i n g f u r t h e r d i s c u s s i o n a r e t h o s e concerning composition and t h e i n t e r n a l d i s t r i b u t i o n o f c o n s t i t u e n t s . (Other assumptions, s u c h a s h y d r o s t a t i c e q u i l i b r i u m , are c r u c i a l t o t h e models b u t a r e o f w e l l - e s t a b l i s h e d v a l i d i t y and m e r i t l e s s concern.)

The bulk compositions o f g i a n t p l a n e t s and t h e i r s a t e l l i t e s a r e assumed t o be r e l a t e d t o Gosmio abundances ( o r , a l m o s t e q u i v a l e n t l y , t h e p r i m o r d i a l compo- s i t i o n of t h e s u n ) . The r e l a t i o n s h i p is n o t a n i d e n t i t y s i n c e p l a n e t a r y compo- s i t i o n i s a l s o determined by r e l a t i v e v o l a t i l i t y (1.e. which c o n s t i t u e n t s can condense under t h e thermodynamic c o n d i t i o n s encountered d u r i n g p l a n e t a r y f o r - mation). It i s convenient t o s u b d i v i d e t h e c o n s t i t u e n t s i n t o three c l a s s e s of m a t e r i a l s : g a s e s . ices, and rock. 'Oases' mean p r i m a r i l y hydrogen and helium,

' C o n t r i b u t i o n number 4143 o f t h e D i v i s i o n o f G e o l o g i c a l and P l a n e t a r y Sciences, C a l i f o r n i a I n s t i t u t e o f Technology, Pasadena, C a l i f o r n i a 91125.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984819

(3)

C8-98 JOURNAL DE PHYSIQUE

which comprise 0.92 and 0.08 (approximate y ) number f r a c t i o n o f a cosmic m i x t u r e . A l l o t h e r e l e m e n t s combined comprise -lo-' number f r a c t i o n . Although t h e s e e l e m e n t s a r e overwhelmingly most abundant, t h e y are a l s o the most v o l a t i l e and c a n o n l y b e i n c o r p o r a t e d i n t o a p l a n e t i n g a s e o u s form. High v o l a t i l i t y and h i g h m o l e c u l a r v e l o c i t y (implying e a s e o f e s c a p e ) p r e v e n t s t h e s e c o n s t i t u e n t s from b e i n g s i g n i f i c a n t components o n b o d i e s $ E a r t h i n s i z e . Not s u r p r i s i n g l y , however, hydrogen and helium are t h e main c o n s t i t u e n t s o f J u p i t e r and S a t u r n . The " i c e s "

mean H20, CH4. NH3, and p o s s i b l y CO, C02, N2; m a t e r i a l s which form from 0, C, and N; r e s p e c t i v e l y t h e t h i r d , f o u r t h , and s i x t h most abundant e l e m e n t s i n t h e

Universe. (The f i f t h most abundant element is Ne and is a v e r y minor component o f ' g a s e s ' ) . The "ices" a r e c a p a b l e o f c o n d e n s a t i o n ( a s s o l i d s ) i n t h e o u t e r s o l a r system, t o v a r y i n g d e g r e e s depending on d i s t a n c e from t h e Sun. Water i c e a p p e a r s t o predominate a t J u p i t e r ; t h e o t h e r i c e s a r e p r e s e n t ( b u t i n u n c e r t a i n amounts) i n more d i s t a n t bodies. The p l a n e t s Uranus and Neptune a r e predominantly i c y . The t h i r d c l a s s o f m a t e r i a l is " r o c k w ' , e s s e n t i a l l y e v e r y t h i n g o t h e r t h a n * ' g a s e s "

and "ices." The primary c o n s t i t u e n t s o f "rock1' a r e t h o s e found i n t h e E a r t h : magnesium s i l i c a t e s and i r o n ( b o t h a s m e t a l and bound up i n s i l i c a t e s o r o x i d e s ) . When models o f p l a n e t s are c o n s t r u c t e d , i t i s u s u a l t o t r e a t t h e s e t h r e e m a t e r i a l c l a s s e s a s t h e primary b u i l d i n g b l o c k s and t o assume ( w i t h minor v a r i - a t i o n s ) t h a t t h e r e l a t i v e e l e m e n t a l abundances w i t h i n a m a t e r i a l c l a s s a r e e q u a l t o t h e cosmic abundanoea. For example, t h e C:O r a t i o might be k e p t f i x e d b u t t h e H:O r a t i o might be a n a d j u s t a b l e parameter. It is i m p o r t a n t t o u n d e r s t a n d t h a t t h i s p r o c e d u r e i s a n g s s u m ~ t i o n . We do n o t u n d e r s t a n d enough a b o u t t h e e a r l y s o l a r system, o r t h e dynamics and phase mixing o f p l a n e t a r y i n t e r i o r s t o a s s e s s w i t h c o n f i d e n c e t h e v a l i d i t y o f t h i s approach. N e v e r t h e l e s s , i t y i e l d s r e s u l t s con- s i s t e n t w i t h o b s e r v a b l e p r o p e r t i e s . An o b v i o u s c o r o l l a r y o f t h i s approach is t h a t p l a n e t s and p e r h a p s s a t e l l i t e s a r e l a y e r e d . i n a c c o r d a n c e w i t h t h e r e l a t i v e den- sities o f t h e t h r e e c o n s t i t u e n t o l a s s e s : r o c k c o r e , i c e l a y e r , g a s envelope.

Although t h i s g i v e s t h e l o w e s t (1.e. most n e g a t i v e ) g r a v i t a t i o n a l e n e r g y , i t i s n o t n e c e s s a r i l y t h e p r e f e r r e d thermodynamic s t a t e if t h e l a y e r s are m i s c i b l e (e.g. i f t h e " i c e * ' can mix f u l l y w i t h t h e "gas"). It is i n t h i s a r e a , i n p a r t i c u l a r , t h a t o u r knowledge i s most l i m i t e d and where f u t u r e experiment and t h e o r y w i l l h e l p immense1 y .

It i s n o t p o s s i b l e t o d e s c r i b e t h e c o n s t r u c t i o n o f p l a n e t a r y models h e r e . The i n t e r e s t e d r e a d e r w i l l f i n d a b r i e f r e v i e w 111 o r more d e t a i l e d d i s c u s s i o n s

[2,3,41 elsewhere. For o u r p r e s e n t purpose, i t is most u s e f u l t o list t h e thermo- dynamic c o n d i t i o n s encountered:

Large S a t e l l i t e s Mercury, Mars E a r t h , Venus Uranus, Neptune S a t u r n

J u p i t e r

T a b l e I

Thermodynamic C o n d i t i o n s i n P l a n e t s and S a t e l l i t e s

'center T c e n t e r (K)

P r e s s u r e s a r e o b t a i n e d from s o l u t i o n o f t h e e q u a t i o n o f h y d r o s t a t i c e q u i l i b r i u m w i t h g i v e n a s s u m p t i o n s f o r t h e c o n s t i t u e n t s and t h e i r l a y e r i n g . Temperatures are

(4)

p l a n e t s and s a t e l l i t e s e l i m i n a t e h e a t p r i m a r i l y by c o n v e c t i o n - r e g a r d l e s s o f whether t h e y a r e s o l i d o r f l u i d ) . We w i l l now d i s c u s s b r i e f l y e a c h body ( o r c l a s s o f body) i n t h e o u t e r s o l a r system, i n o r d e r o f d e c r e a s i n g mass.

J u p i t e r is a r g u a b l y t h e b e s t understood p l a n e t i n o u r s o l a r system

( i n c l u d i n g E a r t h ) . A l l known p r o p e r t i e s a r e c o n s i s t e n t w i t h a body t h a t c o n s i s t s o f -95% cosmic abundance m i x t u r e (by mass), w i t h t h e remaining -5% (i.e. ten-twenty E a r t h masses) i n t h e form o f a dense ( p r o b a b l y r o c k ) c o r e . O f t h e cosmic envelope, roughly 70% is a m e t a l l i c hydrogen-helium-minor c o n s t i t u e n t m i x t u r e . The o u t e r m o s t 30% i s a m o l e c u l a r hydrogen-helium-minor c o n s t i t u e n t m i x t u r e . The amount o f i c e might be i n e x c e s s o f cosmic abundance s i n c e d i r e c t o b s e r v a t i o n s o f t h e atmosphere i n d i c a t e a f a c t o r of two enhancement o f methane. The t e m p e r a t u r e w i t h i n J u p i t e r is h i g h enough t h a t no first o r d e r phase t r a n s i t i o n s ( o t h e r t h a n c l o u d c o n d e n s a t i o n o f minor c o n s t i t u e n t s ) a r e encountered a t P $ 1 Mbar, and i t is u n c l e a r whether molecular -> m e t a l l i c hydrogen is a first o r d e r t r a n s i t i o n o r i m m i s c i b i l i t y o f helium o c c u r a t still g r e a t e r d e p t h s ( t h e s e i s s u e s a r e d i s c u s s e d f u r t h e r below).

S a t u r n is s u p e r f i c i a l l y r a t h e r s i m i l a r t o J u p i t e r , b u t w i t h some i m p o r t a n t d i f f e r e n c e s . It h a s a h i g h e r mass f r a c t i o n (-209b) i n t h e form o f dense ( r o c k ? ) c o r e and I R d a t a s u g g e s t s t h a t i t h a s a helium d e p l e t i o n (by - f a c t o r o f two r e l a t i v e t o cosmic) i n t h e o u t e r envelope. S a t u r n ' s lower mass a l s o means t h a t a much s m a l l e r f r a c t i o n (-one t h i r d ) o f its mass is a m e t a l l i c hydrogen-dominated mixture. The helium d e p l e t i o n s u g g e s t s l i m i t e d s o l u b i l i t y o f helium i n hydrogen

( d i s c u s s e d f u r t h e r below).

Uranus and Neptune are much l e s s w e l l understood b u t a r e c l e a r l y v e r y d i f - f e r e n t from J u p i t e r and S a t u r n . A c o n s i s t e n t model h a s a rock c o r e o f s e v e r a l E a r t h masses surrounded by a w a t e r - r i c h l a y e r which e x t e n d s p a r t way o r a l l t h e way t o a n atmosphere t h a t is known t o be hydrogen-dominated. It i s n o t known whether t h e r e is a n a b r u p t o r g r a d u a l t r a n s i t i o n from water-dominated c o n d i t i o n s , a l t h o u g h i t i s a r g u e d below t h a t a n a b r u p t ("ocean" -> atmosphere) t r a n s i t i o n is n o t r e q u i r e d . I n any e v e n t , t h e i c e component o f t h e s e p l a n e t s is t y p i c a l l y - h a l f t h e t o t a l mass, b u t w i t h a l a r g e u n c e r t a i n t y .

a s a t e l l i t e s r a n g e from 10 and Europa (rock-dominated), through Ganymede and C a l l i s t o ( w a t e r i c e and r o c k ) t o T i t a n and T r i t o n ( u n c e r t a i n composition b u t p o s s i b l y l i k e Ganymede w i t h a n a d d i t i o n o f a t l e a s t some more v o l a t i l e i c e s , e s p e c i a l l y CH4). I n t h e more i c e - r i c h s a t e l l i t e s , t h e s t r u c t u r e i s u s u a l l y b e l i e v e d t o be a rock-rich c o r e surrounded by a n i c e l a y e r t h a t is p a r t i a l l y o r e n t i r e l y s o l i d C51. The t e m p e r a t u r e (1300 K) anc! p r e s s u r e ( s e w t e n s o f k i l o b a r s ) encountered i n t h i s i c e r e q u i r e d e t a i l e d c o n s i d e r a t i o n o f t h e w a t e r i c e , NH3-H20 and CHI-H 0 phase diagrams, some a s p e c t s o f which a r e d i s c u s s e d f u r t h e r below.

T i t a n is b e l i e v e d t o have a hydrocarbon ocean 161 and T r i t o n may have l i q u i d N2 o n its s u r f a c e [71.

IWORTANT CONDENSED MATTER PROBLEMS

We t u r n from t h e s e g e n e r a l i t i e s a b o u t p l a n e t s t o a c o n s i d e r a t i o n o f t h e m a t e r i a l p r o p e r t i e s r e q u i r e d f o r a n improved u n d e r s t a n d i n g o f p l a n e t a r y i n t e r i o r s . The f o l l o w i n g Table i d e n t i f i e s t h e i m p o r t a n t p u r e c o n s t i t u e n t s and m i x t u r e s ; t h e subsequent d i s c u s s i o n summarizes t h e c u r r e n t s t a t e o f knowledge and i d e n t i f i e s t h e work needed f o r f u r t h e r p r o g r e s s .

(5)

C8-100 JOURNAL DE PHYSIQUE

Table I1

P l a n e t a r y M a t e r i a l s and Problems

M a t e r i a l Thermodynamic Conditions Problem

H-He P - few mar, T - lo4 K

H20 100 kbar 5 P 5 Mbar, T 5000 K

H2-H20 same c o n d i t i o n s

H2-CH4 same c o n d i t i o n s

H2-CH4-C0 same c o n d i t i o n s

NH <-> N2, H2 P 2 1 0 kbar. T - 1000 K +

~ o % l e g a s e s same

d i a n o c i a t i o n , e l e c t r i c a l c o n d u c t i v i t y

s o l u b i l i t y , volume of mixing n a t u r e of bonding ( i o n i c ? ) , decomposition?, e l e c t r i c a l c o n d u c t i v i t y

s o l u b i l i t y , i o n i z a t i o n , d i s s o c i a t i o n , c o n d u c t i v i t y s o l u b i l i t y , d i s s o c i a t i o n d i s s o c i a t i o n , s o l u b i l i t y , c l a t h r a t e s , chemistry?

d i s s o c i a t i o n

s o l u b i l i t y i n metals, p a r t i t i o n i n g between phases, xenology

This t a b l e is not exhaustive and tends t o emphasize binary endmembers o f t h e r e a l multicomponent system. The emphasis is on t h e major c o n s t i t u e n t s , except f o r t h e e n t r y on noble g a s e s which has been included because t h e s e minor c o n s t i t u e n t s may be important t r a c e r s of i n t e r n a l processes and ( i n t h e p a r t i c u l a r c a s e o f xenon) may even have chemistry.

Molecular Hvdroaen. The behavior of H2, e s p e c i a l l y a t P 2 0.5 Mbar, is f a r from well understood. Simple models f o r d i s s o c i a t i o n and e l e c t r o n i c e x c i t a t i o n suggest a s u b s t a n t i a l change i n t h e s p e c i f i c h e a t and Gruneisen 7 , which may have a dramatic e f f e c t on t h e dynamics and e v o l u t i o n o f J u p i t e r and Saturn. Perhaps t h e most i n t e r e s t i n g r e l e v a n t experiment o r theory f o r H2 concerns t h e value o f t h e band gap energy between valence and conduction l e v e l s a s a f u n c t i o n o f p r e s s u r e , s i n c e t h i s a f f e c t s e s t i m a t e s of both thermodynamic and t r a n s p o r t p r o p e r t i e s , e s p e c i a l l y e l e c t r i c a l conductivity. The l a t t e r is important, s i n c e r e c e n t magneto- hydrodynamic c a l c u l a t i o n s [81 suggest t h a t t h e observed wind p r o f i l e s i n t h e atmos- pheres o f J u p i t e r and Saturn may be p a r t l y d e t rmlned by t h e e l e c t r i c a l conduc- t i v i t y o f H2 i n t h e r e g i o n where p' - 0.2 ..om-' and T - 5000 K . E x i s t i n g band s t r u c t u r e c a l c u l a t i o n s [91 i n d i c a t e t h a t t h e band gap i n H2 decreases t o z e r o a t P

- 1 Mbar (presumably a precursor t o t h e H2 -> monatomic m e t a l l i c hydrogen tran- s i t i o n ) . D i r e c t confirmation of t h i s behavior (e.g. o p t i c a l r e f l e c t i v i t y s t u d i e s ) or i n d i r e c t evidence o f t h i s behavior (e.g., e l e c t r i c a l c o n d u c t i v i t y a t high T ) would be highly d e s i r a b l e .

Hvdronen-Helium Mixtures. I n t h e molecular regime, an a c c u r a t e equation of s t a t e f o r HZ-He would provide a determination of t h e H2-He i n t e r a c t i o n p o t e n t i a l , e s s e n t i a l f o r c o n s t r u c t i n g equations of s t a t e f o r p l a n e t a r y i n t e r i o r s . Currently, t h i s p o t e n t i a l is estimated by t h e o r e t i c a l arguments alone. However, t h e most important problem concerns t h e s o l u b i l i t y of helium i n m e t a l l i c hydrogen. Although t h i s system is well understood i n t h e i n f i n i t e p r e s s u r e l i m i t [I01 and moderately well understood i n t h e low e l e c t r o n d e n s i t y l i m i t C111, t h e phase diagram is l e a s t well understood i n p r e c i s e l y t h e p r e s s u r e range of most i n t e r e s t (-1 t o 10 Mbars).

An a p p r o p r i a t e t h e o r e t i c a l c a l c u l a t i o n would involve e v a l u a t i o n of t h e "immersion energy": t h e energy c o s t o f i n s e r t i n g a helium atom i n t h e e l e c t r o n g a s

(6)

Water. A t high p r e s s u r e ( P - 0.2-0.6 Mbar), H20 a p p e a r s t o e i t h e r i o n i z e a s H ~ O + O H - i f t h e t e m p e r a t u r e i s h i g h (T 2 1500 K) [12,131 o r ~ p o l y m e r i z ~ ( i . e . hydrogen bond is no l o n g e r d i s t i n g u i s h a b l e from a c o v a l e n t bond) i f t h e t e m p e r a t u r e is low (T - 300 K) 1141. It i s c l e a r t h a t t h e r a n g e of p o s s i b l e b e h a v i o r is l a r g e ; f u r t h e r u n d e r s t a n d i n g o f t h i s is e s s e n t i a l . Water s h o u l d e v e n t u a l l y m e t a l l i z e and might e v e n decompose o r d i s p r o p o r t i o n a t e a t s u f f i c i e n t l y h i g h p r e s s u r e . None of t h e s e p o s s i b i l i t i e s h a s been a n a l y z e d y e t . One p o s s i b l e measurement o f i n t e r e s t would be t h e o p t i c a l band g a p . T h i s would p r o v i d e i n f o r m a t i o n on e l e c t r i c a l con- d u c t i v i t y ( e v e n though t h e s m a l l e s t band g a p may h e i n d i r e c t ) and may a i d d e t e r - m i n a t i o n o f t h e m e t a l l i z a t i o n p r e s s u r e ; b o t h v e r y i m p o r t a n t f o r improved o f Uranus and Neptune and t h e i r p r o b a b l e m a g n e t i c f i e l d s .

Water-Hvdronen. Recent low p r e s s u r e ( P ,( 3 k b a r ) measurements 1151 i n d i c a t e t h a t w a t e r and hydrogen mix i n a l l p r o p o r t i o n s f o r T 2 650 K. It is n o t known whether t h i s b e h a v i o r e x t e n d s t o v e r y h i g h p r e s s u r e s . I f i t d o e s , t h e n models f o r t h e deep atmosphere o f Uranus [ I 6 1 s u g g e s t a w a t e r c l o u d b a s e a t P - 1 t o 2 k b a r , below which a uniform HZ-H20 m i x t u r e (50-75s H20 by e x t e n d s t o i n d e f i n i t e d e p t h s . An i n t e r e s t i n g consequence o f t h i s w a t e r - r i c h , hydrogen-poor e n v i r o n m e n t is t h e f i n i t e e q u i l i b r i u m abundance o f N2 ( a t t h e e x p e n s e o f NH3) and CO ( a t t h e expense o f CH4 and H20), u n l i k e t h e d e e p a t m o s p h e r e s o f J u p i t e r and S a t u r n where CH4 and NH3 a r e t h e overwhelmingly p r e f e r r e d forms o f c a r b o n and n i t r o g e n , respec- t i v e l y . I n a n y e v e n t . i t is v e r y i m p o r t a n t t o u n d e r s t a n d t h e H20-H2 phase diagram t o e x t r e m e p r e s s u r e s . It is p o s s i b l e , f o r example, t h a t t h i s m i x t u r e is analogous t o metal-ammonia ( o r a l k a l i m e t a l - a l k a l i h a l i d e ) m i x t u r e s a t e x t r e m e p r e s s u r e ? A m e t a l l i c s t a t e s u c h a s t h i s may e x i s t a t a p r e s s u r e s u b s t a n t i a l l y l e s s t h a n t h a t needed t o m e t a l l i z e p u r e w a t e r . A s a s i d e i s s u e , i t would a l s o be o f i n t e r e s t t o know t h e s o l u b i l i t y o f He i n H20 s i n c e t h e s y s t e m o f i n t e r e s t is, i n r e a l i t y . approximated a s t h e t e r n a r y m i x t u r e HZ-He-H20.

Methane-Hydrone~, There is c l e a r e v i d e n c e t h a t many h y d r o c a r b o n s decompose ( o r c o l l a p s e ) upon s h o c k compression, p r o b a b l y i n t o g r a p h i t e and hydrogen 117,181.

It i s v e r y i m p o r t a n t t o e s t a b l i s h t h e r a n g e o f t e m p e r a t u r e and C:H r a t i o s f o r which t h i s d e c o m p o s i t i o n c a n o c c u r . It i s e q u a l l y i m p o r t a n t t o e s t a b l i s h whether a n a c t u a l p h a s e s e p a r a t i o n o c c u r s ( i m p l y i n g p o s s i b l e f o r m a t i o n o f a diamond o r l i q u i d m e t a l l i c ( 1 ) c a r b o n l a y e r i n Uranus and Neptune) o r whether a c o l l a p s e d b u t i n t i - m a t e l y mixed C-H s t r u c t u r e r e s u l t s . Hugoniot d a t a a l o n e a r e i n s u f f i c i e n t t o answer t h i s q u e s t i o n . Diamond c e l l work, p e r h a p s a t e l e v a t e d t e m p e r a t u r e s , would seem most a p p r o p r i a t e . i n i t i a l l y o n p u r e methane o r some o t h e r ( s a t u r a t e d ) hydrocarbon.

There is a l r e a d y evidence t h a t u n s a t u r a t e d bonds d o n o t p e r s i s t a t h i g h p r e s s u r e 1191.

Methane-Water. Pure methane ice d o e s n o t condense under s o l a r n e b u l a con- d i t i o n s u n t i l T ,( 20 K and i t is q u e s t i o n a b l e w h e t h e r t h e s e v e r y c o l d c o n d i t i o n s were e v e r a c h i e v e d . However, t h e n e a r l y s t o i c h i o m e t r i c c l a t h r a t e h y d r a t e

(CH4'5.75H20, i f a l l c a g e s i t e s a r e f i l l e d ) f o r m s more r e a d i l y ( a t T - 40 K i n t h e s o l a r n e b u l a , p e r h a p s a t T - 80-100 K i n t h e n e b u l a e s u r r o u n d i n g p r o t o - g i a n t p l a n e t s ) . Remarkably l i t t l e is known a b o u t c l a t h r a t e compounds a t h i g h p r e s s u r e . e x c e p t f o r t h e t e t r a h y d r o f u r a n c l a t h r a t e 1201, p r o b a b l y a poor a n a l o g f o r t h e CH4 c l a t h r a t e b e c a u s e o f i t s d i f f e r e n t s t r u c t u r e . A r e c e n t , d e t a i l e d s t a t i s t i c a l m e c h a n i c a l t r e a t m e n t o f c l a t h r a t e s 1211 p r e d i c t s t h a t t h e methane c l a t h r a t e decom- p o s e s a t P - 1 2 t o 1 4 k b a r a t a l l T 1 3 0 0 K i n t o i c e V I and s o l i d CH4. (At h i g h e r T, i t decomposes a t lower P.) T h i s may have p r o f o u n d i m p l i c a t i o n s f o r t h e t h e r m a l h i s t a r y o f T i t a n , p e r h a p s o f f e r i n g a n e x p l a n a t i o n f o r t h e o r i g i n o f CH from which t h e p r e s e n t e t h a n e - r i c h o c e a n is d e r i v e d [5,61. A h i g h p r i o r i t y exper4ment.

p r o b a b l y a c c e s s i b l e e v e n w i t h p i s t o n a p p a r a t u s , is t h e s t a b i l i t y o f methane c l a t h r a t e u n d e r p r e s s u r e .

(7)

C8-102 JOURNAL DE PHYSIQUE

A t higher T and P, it is o f i n t e r e s t t o know t h e mixing p r o p e r t i e s and chemical e q u i l i b r i a o f t h e CH4-H20 system. What a r e t h e e q u i l i b r i u m abundances o f CO, H2, ... ? Is phase s e p a r a t i o n p o s s i b l e i n t h e deep i n t e r i o r , where water i o n i z e s but CH4 remains n e u t r a l ?

Nitrogen. A t high p r e s s u r e and temperature, it i s known t h a t NH3 is a good i o n i c conductor [131, presumably because o f t h e formation of N H ~ N H ; p a i r s . How- e v e r , i t may a l s o be p o s s i b l e t o form a f i n i t e amount of N a p r o c e s s which is known t o occur a t low p r e s s u r e s i n shock t u b e s . This may g i of importance f o r t h e o r i g i n of molecular n i t r o g e n i n T i t a n and p o s s i b l y T r i t o n . The i m p o r t a n t p o i n t t o s t r e s s i s t h a t d e s p i t e t h e very high abundance o f hydrogen i n t h e o u t e r system, i t is p o s s i b l e t o encounter c o n d i t i o n s i n which s m a l l but s i g n i f i c a n t amounts o f N2 a r e produced and preserved. High p r e s s u r e and temperature p r o c e s s e s a r e a l i k e l y example. The r e c e n t l y d e t e c t e d anomalous behavior o f N2 under shock compression [221, s u g g e s t i n g d i s s o c i a t i o n o r even m e t a l l i z a t i o n , r a i s e s i n t e r e s t i n g q u e s t i o n s about t h e behavior o f N-H mixtures a t megabar pressures.

Noble Oases. These a r e i n c l u d e d h e r e because n o b l e g a s e s a r e o f t e n u s d a s t r a c e r s of p r o c e s s e s i n p l a n e t a r y i n t e r i o r s . For example, t h e o u t g a s s i n g of He f

from E a r t h i s sometimes used a s a n i n d i c a t o r o f a "primordial r e s e r v o i r " o f m a t e r i a l . An i n t e r e s t i n g q u e s t i o n f o r t h e noble g a s e s concerns t h e behavior o f xenon. T h i s element i s more chemically r e a c t i v e t h a n t h e o t h e r noble gases and is b e l i e v e d t o undergo a n i n s u l a t o r - m e t a l t r a n s i t i o n a t P - 1 ' 3 Mbar [231. It is a l s o

"depleted" i n t h e E a r t h ' s atmosphere, i n t h e s e n s e t h a t XeIKr ( f o r example) is l e s s on E a r t h t h a n i n m e t e o r i t e s . The cause o f t h i s i s unknown but may be r e l a t e d t o t h e high p r e s s u r e p r o p e r t i e s o f Xe. It i s i n t e r e s t i n g t o s p e c u l a t e whether analogous anomalies w i l l a r i s e when t h e G a l i l e o probe (containing a mass spectrom- e t e r ) e n t e r s J u p i t e r ' s atmosphere i n t h e l a t e 1980's and measures t h e noble g a s abundances .

CONCLUDING COMMENTS

The emerging p e r s p e c t i v e o f p l a n e t a r y i n t e r i o r s s u g g e s t s complexity and chemistry of a v a r i e t y seldom s u s p e c t e d a decade ago. The l i g h t molecular m a t e r i a l s which predominate i n t h e o u t e r system e x h i b i t a s t a r t l i n g r i c h n e s s of behaviors which a r e becoming i n c r e a s i n g l y e v i d e n t from shock compression and diamond a n v i l c e l l experiments. I n some r e s p e c t s , extreme p r e s s u r e c r e a t e s

s i m p l i c i t y (e.g. e v e r y t h i n g e v e n t u a l l y m e t a l l i z e s ) but p l a n e t a r y c o n d i t i o n s i n c l u d e a f a r more complicated i n t e r m e d i a t e regime where d i s s o c i a t i o n , phase s e p a r a t i o n , and semiconduction a r e p o s s i b l e , probably l i k e l y . The e x c i t i n g p r o s p e c t o f r e l a t i n g e x t e r n a l o b s e r v a t i o n s t o c o n d i t i o n s deep w i t h i n t h e p l a n e t ( t h e o u t e r p l a n e t analog o f p e t r o l o g y ) l e a d s one t o hope t h a t t h e high p r e s s u r e p h y s i c s community c o n t i n u e t o be aware of t h e important a p p l i c a t i o n s o f t h e i r work t o p l a n e t s .

REFERENCES

1. STEVENSON, D.J., Mat. Res. Soc. SYPIE+ Proc., 22, (1984), 357.

2. ZHARKOV. V.N. and TRUBITSYN. V.P., P h y s i c s qf P l a n e t a r y I n t e r i o r s ( h b l . P a c h a r t , Tucson, Arizona, USA), 1978, 388 pp.

3. HUBBARD, W.B., P l a n e t a r y I n t e r i o r s (Publ. Van Nostrand Reinhold, New York).

1984, 334 pp.

4. HUBBARD, W.B. and STEVENSON. D.J.. I n Saturn. ed. T. Gehrels (publ. Un.

Arizona P r e s s , Tucson, Arizona), 1984, p. 47.

5. HUNTEN, D.M., TOUASKO, M.G., FLASAR, F.M., SAMUELSON, R.E., STROBEL. D.F.

and STEVENSON, D.J., I n S a t u r n , ed. T. Gehrels (publ. Un. Arizona P r e s s . Tucson, Arizona), 1984, p. 671.

6. LUNINE, J . I . , STEVENSON, D . J . and YUNG. Y.L., S c i e n c e , 222, (1983), 1229.

7. CRUIKSHANK. D.P., BROWN, R.H. and CLARK, R.N., I c a r u s , 58, (1984), 293.

8. K I R K . R.L. and STEVENSON, D.J., B u l l . Am, Astron. Sot.. 15. (1983). 825.

(8)

STEVENSON, D.J., & Phys. F. MetaL g h v s l c q . 9 (19791, 791.

HAMANN, S.D. and LINTON, M., Trans. Faraday &&, (GB) 62 (1966), 2234.

MITCHELL, A.K. and NELLIS, W.J., Phys., 76, (1982). 6273.

POLIAN, A. and GRMSDITCH, M., phys. Rev. Lett., 52 (19841, 1312.

SEWARD, T.M. and FRANCK, E.U., & Bunsenaes Chem%. 85 (1981). 2 . STEVENSON, D.J., Am. Astron. Soc., 15 (1984). i n p r e s s .

REE, F.H., J. Chem. PhysL. 70 (1979). 974.

ROSS, M., Nature, 292 (1981). 435.

NICOL, M., t h i s conference.

ROSS, R .G. and ANDERSSON. P . , Can. & Chem.. 60 (1982). 881.

LUNINE, J.I. and STEVENSON, D.J., A s t r o ~ h Y s , L StrDDI. (1985) i n P r e s s . NELLIS, W.J., HOLMES, N.C., MITCHELL, A.C. and VAN THIEL, H., s u b m i t t e d t o Phvs. Rev. L e t t . (1984).

ROSS, M. and McMAHAN, A.K., P h ~ s . RevL. 21B ( 1 9 8 0 ) , 1658.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to