• Aucun résultat trouvé

SYNTHESIS AND PROPERTIES OF CONDUCTING MATERIALS IN THE TiO2 - SnO2 SYSTEM

N/A
N/A
Protected

Academic year: 2021

Partager "SYNTHESIS AND PROPERTIES OF CONDUCTING MATERIALS IN THE TiO2 - SnO2 SYSTEM"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225486

https://hal.archives-ouvertes.fr/jpa-00225486

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SYNTHESIS AND PROPERTIES OF CONDUCTING MATERIALS IN THE TiO2 - SnO2 SYSTEM

M. Hennaut, P. Duvigneaud, E. Plumat

To cite this version:

M. Hennaut, P. Duvigneaud, E. Plumat. SYNTHESIS AND PROPERTIES OF CONDUCTING

MATERIALS IN THE TiO2 - SnO2 SYSTEM. Journal de Physique Colloques, 1986, 47 (C1), pp.C1-

13-C1-17. �10.1051/jphyscol:1986102�. �jpa-00225486�

(2)

SYNTHESIS AND PROPERTIES OF CONDUCTING MATERIALS IN THE TiOz - SnO,

SYSTEM

M.F. HENNAUT, P . H . DUVIGNEAUD and E . PLUMAT

U n i v e r s i t e de B r u x e l l e s , 5 0 , Avenue F . Roosevelt, B - 1 0 5 0 Bruxell e s , Belgium

Resume.- Oes poudres submicroniques de T i 0 2 o n t 6 t 6 s y n t h e t i s 6 e s p a r h y d r o l y - iF%Griag@e de 1 ' i s o ~ r o p o x y d e de t i t a n e . L ' i n f l u e n c e de l a c o n c e n t r a t i o n des r e a c t i f s a StP @ t u d i @ e . L ' a d d i t i o n de Niobium c o n d u i t 5 des p a r t i c u l e s sphe- r i q u e s . D ' a u t r e p a r t des oxydes m i x t e s Ti02-Sn02 o n t e t e i l a b o r @ s p a r l ' h y - d r o l y s e d ' u n e s o l u t i o n de c h l o r u r e s d ' 6 t a i n e t d ' a n t i m o i n e c o n t e n a n t une sus- c e n s i o n de T i 0 2 dope p a r Nb. Les s o l u t i o n s s o l i d e s Sn02-Ti02 se f o r m e n t a i s e - ment dPs llOO°C rnais l ' i n c o r p o r a t i o n des dopants s p e c i f i q u e s dans ces s o l u - t i o n s e s t l i m i t 6 e . La c o n d u c t i b i l i t e 6 l e c t r i q u e e s t une f o n c t i o n n o n - l i n h a i - r e de l a c o m ? o s i t i o n .

A b s t r a c t . - T i 0 2 s u b m i c r o n i c po:rders have been s y n t h e s i s e d by c o n t r o l 7 e d hydro- fiFi's-Cf t i t a n i u m t e t r a i s o p r o p o x i c i e . The i n f l u e n c e o f r e a g e n t s c o n c e n t r a t i o n has been i n v e s t i ~ a t e d . A d d i t i o n s o f Niobium r e s u l t i n s p h e r i c a l p a r t i c l e s . Mixed powders o f Ti@-SnC2 have been produced by h y d r o l y s i s o f SnC14-SbC13 s o l u t i o n s c o n t a i n i n g t h e Nb doped T i 0 2 p a r t i c l e s . The SnO2-Ti02 s o l i d s o l u - t i o n s a r e e a s i l y formed f r o m llOO°C. However, t h e i n c o r p o r a t i o n o f t h e s?e- c i f i c dopants i s l i m i t e d . The e l e c t r i c a l c o n d u c t i v i t y i s a n o n - l i n e a r f u n c - t i o n o f t h e c o m p o s i t i o n .

I - IMTRODUCTIOPI.

T i n and t i t a n i u m d i o x i d e s have t h e same r u t i l e s t r u c t u r e and f o r m complete s o l i d so- l u t i o n s a t 1430 " C 1 1 . - 21. On t h e ocher hand, b o t h o x i d e s a r e o x y g e n - d e f i c i e n t and n - t y p e semiconductors. The e l e c t r i c a l c o n d u c t i v i t y i s enhanced by a p p r o p r i a t e do- p i n g , e.g. antimony f o r Sn02 and n i o b i u m f o r T i 0 2 . The complete i o n i s a t i o n o f donor l e v e l s i n t r o d u c e d by t h e s e dopants o c c u r s a t l o w e r t e r r p e r a t u r e i n SnO2 t h a n i n T i 0 2 so t h a t a t room temperature, t h e e l e c t r i c a l c o n d u c t i v i t y o f Sb-doped Sn02 ( - 1 0 & - 1 cm-1 i n t h e f i l ~ s ) i s s e v e r a l o r d e r s o f magnitude g r e a t e r t h a n t h a t o f Nb-doped T i 0 2 . The l o w t e m 7 e r a t u r e c o e f f i c i e n t o f c o n d u c t i v i t y o f Sb-doped SnO? f r o m room terrpera- t u r e u3 t o llOO°C, p e r m i t s a p p l i c a t i o n s as h e a t i n g elements and e l e c t r o d e s . Mowever,

? r o l o n q e l t h e r m a l t r e a t m e n t s a t temperatures h i g h e r t h a n 1100°C r e s u l t i n t h e break- dovn o f t h e e l e c t r i c a l p r o p e r t i e s because o f t h e v o l a t i l i s a t i o n o f t h e Sn and Sb o x i d e s and t h e r e d u c t i o n o f ~ b 5 + i n t o Sb3+ 1 3 - 4 /. On t h e o t h e r hand, i t i s known t h a t T i 0 2 do?ed by 1-3 a t . % Nb e x h i b i t s h i g h and s t a b l e v a l u e s o f e l e c t r i c a l conduc- t i v i t y (-1-5 cm-1) up t o 1350°C / 6 /. The q u e s t i o n o f whether T i 0 2 can p a r t i a l l y r e p l a c e SnOp f o r h i g h - t e m p e r a t u r e e l e c t r i c a l a p p l i c a t i o n s i s o f g r e a t i n t e r e s t es- p e c i a l l y i n SnOz-coated ceramics f o r which p r e v i o u s i n v e s t i g a t i o n s have been c a r r i e d o u t / 4 - 5 1

An o b v i o u s ' a p ? r o a c h t o answer t h e above q u e s t i o n i s t o s i n t e r n i x t u r e s o f doped Sn02 and Ti0,particles and i n v e s t i g a t e t h e r e l e v a n t e l e c t r i c a l p r o p e r t i e s as a f u n c t i o n o f phase c o m p o s i t i o n a t h i g h temperature.

T h i s communication d e s c r i b e s :

i - The s y n t h e s i s o f submicronic l4b-doped T i 0 2 p a r t i c l e s by c o n t r o l l e d a l k o x i d e hydro- l y s i s . T h i s method enables us t o s i n t e r packed powder compacts w i t h e x c e l l e n t r e l a - t i v e d e n s i t i e s ( >95 %) a t temperatures as l c w as 1100"C, as shown by t!.Kent Bowen

and a1./7-9/.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986102

(3)

J O U R N A L DE PHYSIQUE

ii- The synthesis o f doped TiOp-SnO2 pcwders r i x t u r e s by p r e c i ? i t a t i o n o f SnC14-SbC13 s o l u t i o n s c o n t a i n i n g t h e Ti02 p a r t i c l e s .

iii- The study o f s i n t e r i n g , phase f o r m a t i o n and e l e c t r i c a l c o n d u c t i v i t y o f compacted powders between 1100°C and 1.900°C.

I I . EXPERIMENTAL.

The T i 0 2 powders were prepared by t h e c o n t r o l l e d h y d r o l y s i s o f a d i l u t 6 d i s o p r o p y l - a l c o h o l s o l u t i o n o f t i t a n i u m t e t r a i s o p r o p o x i d e (Janssen). l l a t e r was d i s s o l v e d i n separate p o r t i o n s o f a l c o h o l . The concentrations ran7e between 0.3 t o 1.3 M H20.

Niobium was added as ethoxide (Ventron). The powders were c e n t r i f u ~ e d and d r i e d a t 80°C. P a r t i c l e sizes, y i e l d o f p r e c i p i t a t i o a and delay t i m e f o r t u r b i d i t y were de- termined as a f u n c t i o n o f t h e reagents concentrations. Phase t r a n s f o r m a t i o n and s i n t e r i n g o f these powders were s t u d i e d by d i l a t o m e t r i c , t h e r n o g r a v i m e t r i c and X-ray d i f f r a c t i o n measure~ents.

The Ti02 powders doped w i t h 1 a t . % Nb were disoersed i n a l c o h o l i c s o l u t i o n s c o n t a i - n i n g SnCIE and SbCl (Sb/Sn = 0.1) / 9/. T i n and antimony hydroxides were p r e c i p i t a - t e d on t h e TiOZ p a r g i c l e s w i t h ammonia. The powders were c a l c i n e d a t 500°C, then pressed i n t o d?scs (0 = 13 mm) under a l o a d o f 8000 ~g/crnz and s i n t e r e d between 1100°C and 1400°C.The e l e c t r i c a l measurements have been described elsewhere /lo/.

111. RESULTS AND DISCUSSION.

The i n d u c t i o n times necessary f o k t h e t i t a n i u m hydroxide n u c l e a t i o n have been p l o t t e d as a f u n c t i o n o f i n i t i a l water c o n c e n t r a t i o n f o r two concentration o f Ti(OC3H7)4, e.g. 0.1 and 0.15H/1 on a l o g a r i t h m i c diagram (Rg. l a ) . The r a t e o f nucleatior, i s

~ n v e r s e i y p r o p o r t i o n a l t o t h e i n d u c t i o n t i m e so t h a t t h e slopes o f Fig.1, c l o s e t o -3, i n d i c a t e t h a t t h e r a t e = k ( ~ ~ 0 ) 3 . Pence, t h e t h i r d step o f t h e h y d r o l y s i s reac- t i o n , e.g. :

Ti(OC3E7)* + 3 H20 -. Ti(OC3H7) (OH)3 + 3 C3H70H

appears t o be t h e l i m i t i n g process o f t h e p a r t i c l e formation. This r e s u l t i s i n agreement w i t h t h a t o f Garringer concernin? t h e h y d r o l y s i s o f t i t a n i u v e t h o x i d e / 3 / . F i g . 1 b shows t h a t t h e y i e l d o f p r e c i p i t a t i o n becomes appreciable (75 % and more) o n l y when (H20/(Ti (OC3H7)4)> 3. This r e s u l t confirms t h e i n t e r p r e t a t i o n o f Fig. 1 a.

The c o n d i t i o n s compromising a good m i x i n g o f reagents p r i o r t o t h e n u c l e a t i o n and a good y i e l d o f p r e c i p i t a t i o n are achieved f o r 0.15M Ti(OC3ti7)4 and 0.5 t o Q.6M H2O/11/

The p a r t i c l e s p r e c i p i t a t e d w i t h G.5 H Hz0 a r e shown i n Fig. 2 a. The mean rain

s i z e i s 0.3 um. These p a r t i c l e s a r e n o t r e a l l y equiaxed b u t a r e r a t h e r m u l t i n u c l e a r as p r e v i o u s l y observed / 7 / .

t

1 0 0 -

o Ti10C3HJL 0 1 M

+ nrogq,~, o l s n

OITIIOGH,~, + 0 0 1 a t % Ybl OISaw

0 IS 0.5 1 rn,olr M I

-

I :t

oc.2.~ , ,

o 3

n

---

1 TI OC><' 0 ? il

1 .

0 k5 LA?31 ( M I

~ i g . 1 a - l o g a r i t h m o f delay t i r e before t u r b i d i t y versus i n i t a l water c o n c e n t r a t i o n

b - y i e l d o f p r e c i p i t a t i o n versus i n i t i a l water c o n c e n t r a t i o n .

(4)

F i g . 2a - Undoped T i 0 2 p a r t i c l e s - 0.5,U-m F i g 2b - Nb-doped T i 0 2 p a r t i c l e s 0.1 p m

When Nb e t h o x i d e i s added t o t h e s o l u t i o n so t h a t Mb/Ti=O.Ol, t h e behavior i s q u i t e d i f f e r e n t : t h e i n d u c t i o n times a r e m o d i f i e d ( F i g . l a ) ; th e p a r t i c l e shape becomes e- q u i axed and s h e r i c a l (Fig.2b). The niobium precursor which i s probably l e s s s t a b l e than Ti(0C H P appearr t o enhance t h e n u c l e a t i o n and t h e growth o f t h e p a r t i c l e s so t h a t smal 1 3 p g r ? i c l e f l o c c u l a t i o n i s impeded and t h e g r a i n s are mononuclear.

Di 1 a t o m e t r i c measurements(Fig. 3) performed on an amorphous T i 0 compact show t h a t

most o f t h e shrinkage occurs d u r i n g t h e a l l o t r o p i c transformatqons: amorphous ac

anatase 75O0c,ruti l e . The shrinkage i n v o l v e d i n t h e l a s t t r a n s f o r m a t i o n (1 1%) i s g r e a t e r than t h a t p r e d i c t e d by t h e c r y s t a l lo g r a p h i c t r a n s i t i o n a n a t a s e - r u t i l e (2.5%).

A rearrangement o f t h e p a r t i c l e s occurs and induces a s u i t a b l e packing f o r t h e s i n - t e r i n g step.'h's step has a maximum speed around llOOOc so t h a t appreciable densi- t i e s (>go%) can \ e reached from t h i s temperature.

The Sb-doped t i n oxide p r e c i p i t a t e d on amorphous and r u t i l e T i 0 c o n s i s t s o f f i n e c r y s t a l l i t e s as shown by t h e X-ray peak broadening observed up

20

800°c. These pow- ders are v e r y r e a c t i v e and form s o l i d s o l u t i o n s a t llOOoc. A t 1400°c, t h e l a t t i c e parameters measured from t h e (220), (2001, (1 01 ) a r d (21 1 ) X-ray d i f f r a c t i o n peaks i n - d i c a t e t h a t complete s o l i d s o l u t i o n s e x i s t f o r SnO concentrations l e s s than 35% and more than 65%. This i s c o n s i s t e n t w i t h t h e e q u i l i b ? i u m diagram r e p o r t e d by Park/2/

( ~ i g . 5 ) . The r e l a t i v e d e n s i t i e s o f these s o l i d - s o l u t i o n s ( F i g . 6 ) decrease w i t h i n c r e a - s i n g Sn02 content. I n f a c t , t h e d e n s i f i c a t i o n o f pure and Sb-doped Sn02 i s d i f f i t u l t t o perform as p r e v i o u s l y r e p o r t e d /12/.

The preen p e l l e t s o f SnO - T i 0 mixed powdcv's exhi b i t e l e c t r i c a l c o n d u c t i v i t y values ranging from IO-?A-~ cm21 (160% SnO ) t o 3.5 1 0 - ~ ? - 1 cm-1 (50% SnO ) a t r om tem- perature, whereas t h e Nb-doped T i 0 2 G e l l e t s are i n s u l a t i n g ( <I 0-7&-1 cm-?).

0 500 1000 Tl'cl

Fig.3 - D i l a t o m e t r i c curve o f an amorphous compacted sample o f doped TiOp

I4eating r a t e : 3 c/min.

(5)

J O U R N A L DE PHYSIQUE

I I I I

Tc =

1430°

1400

- -

-

-

T10z 55 + SnOz ss

-

-

Sn02 20 40 60

Mol % 80 T102

F i g . 4 - E v o l u t i o n o f l a t t i c e parameters o f Sn02-Ti02 system a f t e r s i n t e r i n g a t 1400°c ( I h o u r )

F i g . 5 - System Sn02-Ti02 a f t e r /2/.

A f t e r f i r i n g a t l l O O O c and 1400°c, t h e Nb-doped T i 0 samples become c o n d u c t i n g ( 6 3 1 0-4&1 c m - I ) . The Sb-doped SnO remains c o n d u $ t i n g a f t e r t h e s e t r e a t m e n t s . On t h e o t h e r hand, t h e doped SnO - ~ i 8 m i x t u r e s a r e l e s s c o n d u c t i v e t h a n t h e s i n g l e doped o x i d e s i n t h e o v e r a l l rang& o f $ompositions. The a d d i t i o n o f Sb-doped SnO t o Nb-doped TiOp i n t h e one-phase r e g i o n (up t o 35% Sn02) l o w e r s t h e c o n d u c t i v i t y

$0

a l a r g e minimum c o r r e s p o n d i n g a p p r o x i m a t e l y t o t h e two-phases r e g i o n . It i s l i k e l y t h a t i/ t h e r e l e v a n t l a t t i c e exp?ns.ion i m e d e s t h e charae t r a n s f e r betweer t h e

T i and Nb c a t i o n s

ii/ t h e s o l u b i l i t y o f sb5+ i n t h i s phase i s poor

On-the o t h e r hand, t h e a d d i t i o n o f T i 0 t o Sb-doped SnO p e r t u r b s t h e band conduc- t i o n o f t h e l a s t o x i d e t o a s i g n i f i c a n ? e x t e n t so t h a t $he donnor a c t i o n o f t h e do- pants i s l e s s e f f i c i e n t .

I

I 20

. . -

_ _ - o ' / /

0 25 50 75 100 ./' SnO,

F i g . 6 - R e l a t i v e d e n s i t y and e l e c t r i c a l c o n d u c t i v i t y versus c o m p o s i t i o n o f t h e

Nb-Ti02 / Sb-Sn02 system.

(6)

Nb and Sb-do7ed Sn02-Ti02 s o l i d s o l u t i o n s a r e e a s i l y formed ( a t T > llOO°C) by t h e l i q u i d m i x t e c h n i q u e d e s c r i b e d above. The s p e c i f i c donnor e f f e c t s o f ~ b 5 + and sb5+

decrease as Ti02-Sn02 s o l i d s o l u t i o n s a r e formed. The e l e c t r i c a l c o n d u c t i v i t y has a minimum i n t h e two-phases r e g i o n . The b e s t c o n d i t i o n s compromising t h e e l e c t r i c a l p r o p e r t i e s and t h e chemical s t a b i l i t y a r e t o b e f o u n d i n t h e SnO2 r i c h r e g i o n o f t h e b i n a r y diagram f o r T i 0 2 c o n t e n t l e s s t h a t 20 %. Such c o m p o s i t i o n s can a l s o be depo- s i t e d by vapor p y r o l y s i s and some p r e l i m i n a r y experiments show t h a t such f i l m s a r e more s t a b l e a t 1200°C t h a n t h e Sb-doped s i n g l e SnOp f i l m s .

REFERENCES.

/1/ D. GARCIA-D. SPEI3EL. J . Am.Ceram.Soc. 55 ( 6 ) pp.322 (1972)

/2/ F". PARK- T. E. MITCHELL-A. H. HEUER. J .AmXeram. Soc. 58 (1-2) pp.43-47 (1975) /3/ C.P.. VINCENT, D.C.G. \IESTON. J . E l e c t r . S o c . 119 ?p.5f5-521 (1972)

/C-/

P.H. DUVIGNEAUD- 1°F. HENNAUT. Sprechsaal 1 1 8 7 5 ) pp. 402-410 (1985)

/5/ i-1.F. HEXNPXT - P.H. DUVIGllEAUD - E. PLUKP.TI--Sil i c a t e s I n d u s t r i e l s, -- 49, pp. 171-177 (1984)

/6/ J.F. BAUMARD - E. TANI. J.Chem.Phys. 67 ( 3 ) pp. 857-860 (1977) /7/ E.A. BARRINGER - H.K. BOWEN. J.An.CeraKTSoc. pp. C. 199-201 (1932) /8/ E.A. BARRINGER. P. H. D. T h e s i s (11. I. T. 1983)

/9/ B. FEGLEY J u - E.P,. BARRINGER, H.K. BOIrlEN. J.P.m.Ceram.Soc. pp. C 113-116 (1984.)

/ l o / H. YOSHIZUNI. Com. Congress " E l e c t r o c e r a m i c s " B r u s s e l s 1984 /11/ L. VAN DEN BOSSCHE - T r a v a i l de f i n d l @ t u d e s , U.L.B. 1985

/12/ P.H. DUVIGNEP.UD - D. REIMHARD. "Science o f Ceramics 12", pp.287-92 (1983)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to