• Aucun résultat trouvé

STRUCTURE OF AMORPHOUS SOLID INTERFACES USING COMPOSITIONALLY MODULATED SUPERLATTICES

N/A
N/A
Protected

Academic year: 2021

Partager "STRUCTURE OF AMORPHOUS SOLID INTERFACES USING COMPOSITIONALLY MODULATED SUPERLATTICES"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225248

https://hal.archives-ouvertes.fr/jpa-00225248

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STRUCTURE OF AMORPHOUS SOLID INTERFACES USING COMPOSITIONALLY

MODULATED SUPERLATTICES

P. Persans, A. Ruppert, B. Abeles, T. Tiedje, H. Stasiewski

To cite this version:

P. Persans, A. Ruppert, B. Abeles, T. Tiedje, H. Stasiewski. STRUCTURE OF AMORPHOUS

SOLID INTERFACES USING COMPOSITIONALLY MODULATED SUPERLATTICES. Journal

de Physique Colloques, 1985, 46 (C8), pp.C8-597-C8-601. �10.1051/jphyscol:1985895�. �jpa-00225248�

(2)

JOURNAL DE PHYSIQUE

Colloque C8, supplement au n°12, Tome 46, decembre 1985 page C8-597

STRUCTURE OF AMORPHOUS SOLID INTERFACES USING COMPOSITIONALLY MODULATED SUPERLATTICES

P.D. P e r s a n s , A . F . R u p p e r t , B. A b e l e s , T. T i e d j e and H. S t a s i e w s k i

Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, N.J. 08801, U.S.A.

ABSTRACT - We demonstrate the use of amorphous s u p e r l a t t i c e s t r u c t u r e s combined w i t h q u a n t i t a t i v e Raman spectroscopy t o study the extent of i n t e r m i x i n g at as-grown a-Si:H/a-Ge:H s o l i d - s o l i d i n t e r f a c e s . We f i n d t h a t the i n t e r f a c e can be described by ~ one monolayer of randomly mixed Si and Ge bounded by pure m a t e r i a l s .

INTRODUCTION

The recent discovery t h a t amorphous m a t e r i a l s can be prepared i n p e r i o d i c s t r u c t u r e s ( s u p e r l a t t i c e s ) w i t h a high density of r e p r o d u c i b l e i n t e r f a c e s p r o v i d e s , / 1 - 5 / i n combination w i t h conventional bulk

s p e c t r o s c o p i e s , a powerful new t o o l f o r the study of amorphous

i n t e r f a c e s . S u p e r l a t t i c e s w i t h repeat distances d

p

as small as 8A have been deposited by plasma-enhanced chemical vapor d e p o s i t i o n , thereby i n c r e a s i n g experimental s e n s i t i v i t y t o i n t e r f a c e s by orders of magnitude.

In t h i s paper we demonstrate the use of s u p e r l a t t i c e s t r u c t u r e s combined w i t h v i b r a t i o n a l Raman s c a t t e r i n g t o study the extent of atomic i n t e r m i x i n g

i n as-deposited a-Si:H/a-Ge:H m a t e r i a l s .

The a-Si/a-Ge s u p e r l a t t i c e system i s nearly i d e a l f o r the development of new t o o l s t o study i n t e r f a c e s . The s t r u c t u r e of the i n t e r f a c e i s expected t o be one of the simplest because both m a t e r i a l s have t e t r a h e d r a l random network s t r u c t u r e / 6 / and t h e i r bond lengths d i f f e r by less than 5%. In p r i n c i p l e , an i n t e r f a c e model can be constructed through which a smooth surface can be drawn which separates a-Si from a-Ge and i n which the network d i s t o r t i o n s on e i t h e r side of the surface are minor compared t o normal bulk network f l u c t u a t i o n s . This i d e a l p i c t u r e e s t a b l i s h e s a t h e o r e t i c a l basis f o r comparison t o measurements. This system i s

i n t e r e s t i n g because the s t r u c t u r e of real as-grown i n t e r f a c e s may be much more complex. The growth process f o r amorphous t e t r a h e d r a l t h i n f i l m s i s a n o n - e q u i l i b r i u m vapor d e p o s i t i o n process which may y i e l d a growth surface which i s rough on an atomic s c a l e . Atomic rearrangement t o r e l i e v e s t r a i n and thermal i n t e r d i f f u s i o n may also lead t o extensive .atomic m i x i n g .

I d e n t i f i c a t i o n of the i n t e r f a c e component of network v i b r a t i o n a l spectra i s aided by the f a c t t h a t the v i b r a t i o n a l f o r c e constants f o r Ge- Ge, S i - S i and Si-Ge bonds are nearly e q u a l / 7 / whereas p a i r masses are very d i f f e r e n t and t h e r e f o r e t h e i r o p t i c - l i k e modes are w e l l - s e p a r a t e d .

Heteropolar Si-Ge i n t e r f a c e bonds have an o p t i c - l i k e mode centered at

RESUME - L'état de mélange à l'interface solide-solide d'alliages amorphes Si-H/Ge-H est déterminé par spectrométrie Raman sur des échantillons à struc- ture de superrëseaux. L'interface paraît être une simple monocouche de mé- lange Si-Ge séparant les matériaux purs de part et d'autre.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985895

(3)

C8-598 JOURNAL D E PHYSIQUE

370 cm'l compared t o 470 cm-' f o r Si-Si and 270 cm-' f o r Ge-Ge

bonds./8,9/ I n a l l o y s , t h e r e l a t i v e mode i n t e n s i t i e s are d i r e c t l y r e l a t e d t o t h e number o f bonds o f each type i n t h e network./9/

EXPERIMENTAL DETAILS

M u l t i l a y e r s t r u c t u r e s (- 1 pm t o t a l t h i c k n e s s ) were grown by p e r i o d i c a l l y s w i t c h i n g gases i n a low pressure plasma-assisted chemical vapor d e p o s i t i o n system w h i l e m a i n t a i n i n g t h e plasma. Amorphous s i l i c o n sub-layers were grown from SiH4 and amorphous germanium sub-layers were grown from 10:l H2:GeH4 mixture. The average f i l m composition f o r t h e s e r i e s reported here was h e l d constant by h o l d i n g sub-layer growth times i n constant p r o p o r t i o n . The i n d i v i d u a l growth r a t e s were - 0.7%/s f o r a-Ge:H and - 0.%/s f o r a-Si :H l a y e r s r e s p e c t i v e l y , determined from b u l k f i l m s . The average growth timelmonolayer was - 3 sec whereas t h e gas residence t i m e was < 1 sec. D e t a i l e d growth c o n d i t i o n s , i n f r a r e d absorption, o p t i c a l absorption, x-ray reflectance/2,10/ and transmission m i c r o s c o p y / l l / s t u d i e s have been r e p o r t e d e l sewhere.

Raman s p e c t r a were taken i n near-backscattering geometry u s i n g t h e Kr 586% l i n e . Stokes s c a t t e r e d l i g h t w i t h p o l a r i z a t i o n perpendicular t o t h a t o f t h e l a s e r was analyzed w i t h a Spex 1877B spectrograph a l p detected w i t h a multichannel d e t e c t o r w i t h spect a1 e s o l u t i o n o f - 8 cm . Laser power was kept below 100 m W over 5 x cmr t o avoid i r r e v e r s i b l e sample h e a t i n g e f f e c t s . We estimate t h e sample temperature d u r i n g i l l u m i n a t i o n t o be 330 + 10K.

RESULTS

I n Fig. 1 we show t h e reduced Raman spectrum i n t h e range 200-500 cm-I f o r a-Ge:H, a-Si :H, a-Si Ge 45:H and several s u p e r l a t t i c e samples.

Reduced spectra are r e l a t z a to'measured Stokes s h i f t e d Ra an spectra b 1

phonon occupation and resonance terms, I = 1 , r ( r - to)-' [n(w) + 11-

where I i s t h e reduced spectrum, I i s t h e measureb spectrum, r~ i s t h e l a s e r energy, u i s t h e Stokes s if?, and n ( r ) = [fxp (kT/hu)-11 P I n t h e a l l o y we observe Si-Si (470 cm' ), Si-Ge (370 cm- ) and Ge-Ge (270 cm-l) bands w i t h t h e Si-Ge mode -2x stronger than e i t h e r Si-Si o r Ge-Ge as expected f o r a random a l l o y . I n t h e s u p e r l a t t i c e spectra a s u p e r p o s i t i o n o f t h e a-Si:H, a-Ge:H and a l l o y spectra i s seen.

I n order t o q u a n t i f y t h e number o f h e t e r o p o l a r bonds a t t h e i n t e r f a c e we represent t h e i n t e r f a c e as an a1 l o y - l i k e r e g i o n and analyse t h e

s u p e r l a t t i c e spectra as t h e l i n e a r s u p e r p o s i t i o n o f t h e measured a-Ge:H, a-Si :H, and a-Si 55 Ge 45:H spectra i n Fig. 1 which we use as standards.

Since i 1 lu m i n a t i 6 n and'coll e c t i o n o p t i c s were unchanged, t h e data can be scaled t o t h e volume o r depth Probed by c a l c u l a t i n g s i g n a l per u n i t volume o f t h e standard samples. The e f f e c t i v e depth probed i s determined by t h e o p t i c a l b s o r p t i o n co f f i c i e n t a a t 568% and i s given by ( 2 a ) - I , ( 2 asi )-I and ( 2 .A)-' and t h e s i g n a l per volume i s given by ( p a 1).

( 2 as1 I S . ) and ( 2 I A ) f o r germanium, s i 1 ic o n and a1 l o y respecF~ve?y .

Thus, we f i t t h e super1 a t t i c e spectra q u a n t i t a t i v e l y using t h e r e l a t i o n : ISL = L s i ( 2 aSi I s i ) + LGe ( 2 a~~ I G e )

+

LA ( 2 aA I A )

where t h e L ' s a r e a d j u s t a b l e parameters corresponding t o t h e e f f e c t i v e t h i c k n e s s o f each standard necessary t o f i t t h e Raman data. The absorption c o e f f i c i e n t s determined by transmission meas rements on t h e s t a dard f i l m s

!

were aGe = 3.3 x l o 5 cm-l, ysi = 7 x l o 4 c K y and ah = 1.2 x 10 cm-I a t

J

568%. An example of t h e f i t t o a dr = 244 sample i s shown i n Fig. 2.

I n Table 1 we give t h e e f f e c t i v e L's f o r several s u p e r l a t t i c e samples

w i t h dr from 84 t o 1604. An estimate o f t h e f i t t i n g e r r o r s are given a t

(4)

A - Difference

0 - 'v-' -

200

300 400

500

Raman Shift (cm

- 1 )

Raman Shift (cm - 1)

F i g . 1 - Reduced Raman s p e c t r a f o r a-Si :H, a-Ge:H, a-Si 5 Ge , :H and s e v e r a l s u p e i ? a t t i c e safip?es w i t h r e p e a t d i s t a n c e dr as marked.

F i g . 2 - Reduced Raman spectrum o f a dr = 24 A s u p e r l a t t i c e sample a1 ong w i t h component s p e c t r a w i t h L ' s as g i v e n i n Table 1.

F i g . 3 - Volume f r a c t i o n s fGe and fA o f germanium and a1 l o y

.c 4

r e s p e c t i v e l y , determined by Raman 2

s c a t t e r i n g as discussed i n t h e

r

t e x t , p l o t t e d a g a i n s t i n v e r s e

r e p e a t d i s t a n c e .

(5)

JOURNAL DE PHYSIQUE

Table 1 - F i t t i n g parameters f o r decomposition o f s u p e r l a t t i ce spectra i n t o standard a-Si :H, a-Ge:H and a1 l o y spectra.

dr(A) 8 16 24 32 48 96 160 E r r o r

t h e bottom o f each column i n t h e t a b l e . I n a d d i t i o n t o f i t t i n g e r r o r s , systematic e r r o r s o f + 5% o f each L may be i n t r o d u c e d by e r r o r i n t h e measurement o f a f o r %e standards. E r r o r s due t o d r i f t s i n l a s e r power are e l i m i n a t e d by t a k i n g t h e r a t i o o f each component L t o t h e t o t a l Raman depth LT = L + L + LA.and u s i n g t h e volume f r a c t i o n f f o r c a l c u l a t i o n s , f o r example Fee - ?L/L~ i s t e volume f r a c t i o n o f a-Ge:H. I n Fig. 3 we p l o t fGe and FA i g a 1 n s t (dr)-'. I f t h e i n t e r f a c e width i s independent o f l a y e r repeat d i s t a n c e we expect a l l t h r e e volume f r a c t i o n s t o be s t r a i g h t 1 in e s i n dr-l. Because o f t h e r e l a t i v e smallness o f t h e raw s i g n a l from a- Si :H, e r r o r s i n f are s u b s t a n t i a l l y l a r g e r t h e r e f o r e we concentrate on fGe and fA. The TIne through f A should i n t e r s e c t f = 1 f o r d = 2d where d i s t h e e f f e c t i v e w i d t h o f t h e i n t e r f a c e as represented by {he a l f o y . Tke l i n e through fGe i s expected t o i n t e r s e c t f = 0 f o r dr =

dA (rSi + r G e ) / r G e where rsi and r~ are t h e growth r a t e s f o r a-Si:H and a- Ge:H r e s p e c t i v e l y . From fGe we f i n s dA = 5.2 + 1 A and from fA we f i n d dA

= 5.9 21 A.

DISCUSSION

The e f f e c t i v e a l l o y thickness dA i s t h i n enough (5.54) t h a t bonds l i n k i n g t h e a l l o y l a y e r t o pure regions must be considered when

i n t e r p r e t i n g t h e data. I n order t o f a c i l i t a t e i n t e r p r e t a t i o n we convert t h e e f f e c t i v e dA t o Si-Ge i n t e r f a c e bond d e n s i t y a by m u l t i p l y i n g dA by t h e b u l k d e n s i t y o f bonds 2

p

and by t h e f r a c t i o n o f those bonds which a r e heteropolar. For a random a l l o y l a y e r o = 4 x ( l - x ) d where

p

i s t h e atom d e n s i t y and t h e a1 i s represented as a-Six Gel- F r d 5.54, x =

-9 4 =

.55 and

p

= 5 x 1 0 " ~ m - ~ we f i n d o = 2.6 + .5 x 18 cm . We note t h a t t h i s value i s i n s e n s i t i v e t o x f o r 0.4 < x-< 0.6).

The number o f bonds across an a r b i t r a r y plane i n a random

t e t r a h e d r a l l y bonded s o l i d i s estimated/l2/ t o be r p = 1.3 x 1015 cm-2 where r = 2.44 i s t h e bond length. For a random a l l o y l a y e r w i t h two i n t e r f a c e s t o pure m a t e r i a l s t h e sum o f t h e d e n s i t i e s o f Si-Ge bonds across t h e two i n t e r f a c e s i s s t i l l r

p

but h e t e r o p o l a r bonds w i t h i n t h e l a y e r now c o n t r i b u t e 2x(1-x) o~ where a8 i s t h e number o f bonds w i t h i n t h e l a y e r . For x = 0.4 < x <.6 we f i n d t h a t a random l a y e r 2.4 - 3.N t h i c k i s c o n s i s t e n t w i t h t h e measured data. This i n d i c a t e s t h a t mixing and i n t e r d i f f u s i o n d u r i n g growth i s n e g l i g i b l e .

We have demonstrated t h e u t i l i t y o f v i b r a t i o n a l Raman s c a t t e r i n g

combined w i t h s u p e r l a t t i c e s t r u c t u r a l c o n t r o l t o s t u bonding a t amorphous

sol i d - s o l i d i n t e r f a c e s . S e n s i t i v i t y t o l e s s than 10% heteropol a r bonds

per square centimeter has been demonstrated f o r t h e Si-Ge system. We f e e l

(6)

t h a t t h i s approach opens up new p o s s i b i l i t i e s f o r t h e study o f growth and re1 a x a t i o n processes i n disordered m a t e r i a l s .

REFERENCES

1. B. Abeles and T. Tiedje, Phys. Rev. Lett., 51, 2003, (1983).

2. B. Abeles, T. Tiedje, K. S. Liang, H. W. DeTman, H. E. Stasiewski, J.

C. Scanlon, and P. M. Eisenberger, J. of Non-Crystalline Solids, 66,

351 (1984).

3. H. Munekata and H. Kukimoto, Jpn. J. o f Appl. Phys., 22, L542, (1983).

4. T. Tiedje, B. Abeles, P. D. Persans, B. G. Brooks, G. D. Cody, J. o f Non-Cryst. Solids, 66, 345, (1984).

5. J. Kakalios, H. Fritzsche, N. I b a r a k i , and S. R. Ovshinsky, J. o f Non- Cryst. Solids, 66, 339, (1984).

6. D. E. Polk, J. X n - C r y s t . Solids, 5, 365, (1971).

7. M. A. Renucci, J. B. Renucci and Cardona, i n L i g h t S c a t t e r i n g i n S o l i d s ed. M. Balkanski, (Flammarion, Paris. 1 9 n ) , p. 326.

8. J. S. Lannin, i n Amorphous dnd L i u i d Semiconductors, ed. J. Stuke and W. Brenig, (Taylor and t r a n c i s , L:ndon, 1914 , p. 1245.

9. F. Yndurain, Phys. Rev. L e t t ., x, 1062 (197;).

10. P. D. Persans, €3. Abeles, H. Stasiewski, J. Scanlon, Proc. o f t h e 17th I n t '1. Conf. on t h e Physics o f Semiconductors, (Springer-Verlag, New York, 1985), p. 499.

11. H. W. Deckman, J. Dunsmuir, B. Abeles, Appl. Phys. L e t t ., 46, 171,

(1984).

12. P. D. Persans, A. F. Ruppert, B. Abeles, and T. Tiedje, t o be

published.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to