• Aucun résultat trouvé

KK-theory for quantum groups : functorial and geometrical methods

N/A
N/A
Protected

Academic year: 2021

Partager "KK-theory for quantum groups : functorial and geometrical methods"

Copied!
8
0
0

Texte intégral

(1)

KK -theory for quantum groups : functorial and

geometrical methods

Roland Vergnioux vergniou@math.jussieu.fr

May 15, 2003

(2)

Crossed Products by Quantum Groups L.c. quantum groups

I dual Hopf C-algebras S, Sˆ

I regular representations λ : S Sred L(H) and Sˆ → Sˆred ⊂ L(H)

I trivial representations ε : S → C, ˆε : ˆS C

Woronowicz C-algebras

I S unital Hopf-C-algebra with

δ(S)(1⊗S) and δ(S)(S⊗1) dense in S⊗S

I category of corepresentations C s.t.

Sˆ = ˆSred = Lr∈IrrC prSˆ and prSˆ ' L(Hr) Ex. : S = Sred = C(G), H = `2(G)

Ex. : S = C(Γ), Irr C = Γ, pr = 11{r} ∈ C0(Γ)

Crossed products

If Sred coacts on A, one can define crossed- product C-algebras A o Sˆ, A ored Sˆ.

(3)

Descent Morphisms

I S, Sˆ : full C-alg. of a l.c. quantum group

I A, B endowed with coactions of Sred

Proposition

We put E o Sˆ = E⊗B(B o Sˆ) 1. KBoSˆ(E o Sˆ) ' KB(E) o Sˆ. 2. If (E, π, F) ∈ E

Sred(A, B) then

(E o S, πˆ o id, F o 1) E(A o S, Bˆ o Sˆ).

3. this defines a morphism j from KKSred(A, B) to KK(A o S, Bˆ o Sˆ)

4. j(x⊗Dy) = j(x)⊗DoSˆ j(y)

(4)

Green-Julg Theorem

I Sred : Woronowicz C-algebra

I A, B endowed with coactions δA, δB of Sred

I δA trivial, B Sred-algebra

Theorem There is an isomorphism

KKSred(A, B) ' KK(A, B ored Sˆ) given by

KKSred(A, B) jr

KK(A ored S, Bˆ ored Sˆ)

φ KKSred(A1,(B ored Sˆ)1)

· ⊗β

KK(A, B ored Sˆ) ψ

(5)

K-amenability

I S, Sred, Sˆ, Sˆred : C-algebras of a locally compact quantum group

I λ : S → Sred : regular representation

I ε : S → C : trivial representation Ex. : S = C(G), Sˆ = ˆSred = C0(G)

Theorem We have i ⇒ ii ⇒ iii ⇒ iv, and iv ⇒ i when Sred is unital (discrete case) :

i. 11 ∈ KKSˆ

red(C,C) is represented by (E,1, F) with δE ≺ δSˆ

red (K-amenability)

ii. ∀ A [λA] ∈ KK(AoS, AoredS) is invertible iii. [λ] ∈ KK(S, Sred) is invertible

iv. ∃ α ∈ KK(S ,C) λ(α) = [ε] KK(S,C).

(6)

Amalgamated Free Products

I T ⊂ S1, S2 : amenable Wor. C-algebras

I S = S1T S2 : amalgamated free product

I P : S T, Ri : S Si cond. expect.

I E, Fi associated GNS constructions

I ε : T, Si → C trivial representation

Ex. : Si = Ci), T = C(∆), Γ = Γ1 Γ2

Definition Quantum Serre Tree

I H = F1εC F2εC, K0 = EεC

I GNS representations of S

The classical « Serre » tree (V, E) associated to « Irr C1D Irr C2 » induces a decomposition H = LpnH and the J.-V. operator F :

I E(r, i)εC F

iεC, ηC η2ε1C

Theorem

1. (H ⊕ K0, πGNS, F) defines γ ∈ KK(Sred,C) 2. ( ˆS,ˆδ) is K-amenable

(7)

Quantum Cayley Graph

I S Wor. C-algebra, Sˆ = ˆSred ⊂ L(H)

I pr ∈ Sˆ min. central proj. (r ∈ Irr C)

I p1 = Pr∈D pr, 1C ∈ D/ , D¯ = D

Ex. : S = C(Γ), Sˆ = C0(Γ), pr = 11{r}, r ∈ Γ

Definition Quantum Cayley Graph

I H : space of the regular repr. of S, Sˆ

I K = H⊗p1H, S = id⊗ : K → H

I Θ = Σ(1⊗U)V (U ⊗U)Σ

I regular repr. on H, trivial repr. on p1H

Definition Classical Cayley Graph

I V = Irr C, θ(r, r0) = (r0, r)

I E = {(r, r0) ∈ V 2 | r0 ⊂ r⊗D}

I C0(V ) → L(H), 11{r} 7→ pr

(8)

Free Quantum Groups

(E, V ) is a tree iff S is a free product of free quantum groups Ao(Q), Au(Q) (Wang, Banica).

Then (E, V ) induces a projection pF+ ∈ L(H)

« on ascending edges ».

Problems I Θ2 6= 1

I p+F := 1−ΘpF+Θ 6= pF+ I p++ = pF+p+F

I [pF+, ui,j] is compact but not of finite rank

I F = T p++ : Kg → H is not Fredholm

Theorem There exists a natural representa- tion π : Ao(Q) → L(H) such that

Kg p

++

K++ B

H H R

defines γ ∈ KKSˆ(C,C) when Tr QQ > 2. In the classical case H = 0.

Références

Documents relatifs

The corresponding canonical problem is an acoustical plane wave hitting an edge of a semi-infinite plate with incidence θ tangent to the edge and polar angle α (Fig.. Again, a

Our kinetic equation is a new step in the theory of the quantum kinetic processes, because we further extend the previous theories to include in our description some variables of

Amenability of the boundary action and the Akemann-Ostrand property We introduce the notion of an amenable action of a discrete quantum group on a unital C ∗ -algebra...

The natural candidates for interesting quantum examples are the free quantum groups of Wang-Banica [21, 3], and we will show that the unimodular ones indeed have Property RD: this

smallest stable under suspensions, countable direct sums, K-equivalences and taking cones. Classical case : =

[Julg-Valette 1989] and [Kasparov-Skandalis 1991] I Dirac element Invertibility of the associated Dirac element without “rotation trick”. Actions of Drinfel’d double D(F U(Q )) in

KK -Theory for Quantum Groups : Functorial and1.

The paper is organized as follows: 1-2 contain preliminaries on the soft and hard liberation operations, in 3-4 we discuss the quantum reflection groups, in 5-6 we discuss the