• Aucun résultat trouvé

KK-Theory for Quantum Groups : Functorial and Geometrical Methods

N/A
N/A
Protected

Academic year: 2021

Partager "KK-Theory for Quantum Groups : Functorial and Geometrical Methods"

Copied!
8
0
0

Texte intégral

(1)

KK -Theory for Quantum Groups : Functorial and

Geometrical Methods

Roland Vergnioux October 25, 2003

1. Quantum Groups (notations) 2. Green-Julg Isomorphism

3. K-Amenability

4. Amalgamated Free Products 5. Quantum Cayley Graphs

6. Free Quantum Groups 7. Negative Type Function

(2)

Quantum Groups

Locally compact quantum groups

I “dual” Hopf C-algebras S, Sˆ

I coproduct δ : S → M˜(S⊗S) (coassociative)

I regular representations λ : S Sred L(H) and Sˆ → Sˆred ⊂ L(H)

I trivial representations ε : S → C, ˆε : ˆS C Ex. : S = Sred = C0(G), δ(f)(r, s) = f(rs),

Sˆ = C(G), Sˆred = Cred (G), H = L2(G)

Discrete quantum groups

I S unital (Woronowicz C-algebra)

I the category of corepr. C induces

Sˆ = ˆSred = Lr∈IrrC prSˆ with prSˆ ' L(Hr) Ex. : S = C(Γ), Sˆ = c0(Γ), Irr C = Γ,

prSˆ = C11

{r} ∈ `2(Γ)

(3)

Green-Julg Theorem

I S unital (compact case)

I coactions δA, δB of Sred on A, B

I δA trivial, B Sred-algebra

Theorem There is an isomorphism

KKSred(A, B) ' KK(A, B ored Sˆ) given by

KKSred(A, B) jr

KK(A ored S, Bˆ ored Sˆ)

φ KKSred(A1,(B ored Sˆ)1)

· ⊗β

KK(A, B ored Sˆ) ψ

(4)

K-amenability

I S, Sred, Sˆ, Sˆred : C-algebras of a locally compact quantum group

I λ : S → Sred : regular representation

I ε : S → C : trivial representation

Theorem We have i ⇒ ii ⇒ iii ⇒ iv, and iv ⇒ i when Sred is unital (discrete case) :

i. 11 ∈ KKSˆ

red(C,C) is represented by (E,1, F) with δE ≺ δSˆ

red (K-amenability)

ii. ∀ A [λA] ∈ KK(AoS, AoredS) is invertible iii. [λ] ∈ KK(S, Sred) is invertible

iv. ∃ α ∈ KK(Sred,C) λ(α) = [ε] KK(S,C).

(5)

Amalgamated Free Products

I T ⊂ S1, S2 : amenable Wor. C-algebras

I S = S1T S2 : amalgamated free product

I P : S T, Ri : S Si cond. expect.

I E, Fi associated GNS constructions

I ε : T, Si → C trivial representation

Ex. : Si = Ci), T = C(∆), Γ = Γ1 Γ2

Definition Quantum Bass-Serre Tree

I H = F1εC F2εC, K0 = EεC

I GNS representations of S

The classical « Serre » tree (V, E) associated to « Irr C1D Irr C2 » induces a J-V operator :

I F : E(r, i)εC F

iεC, ηC η2ε1C

Theorem

1. (H ⊕ K0, πGNS, F) defines γ ∈ KK(Sred,C) 2. ( ˆS,ˆδ) is K-amenable

(6)

Quantum Cayley Graphs

I S Wor. C-algebra, p1 = Pr∈D pr with

I D ⊂ Irr C finite, 1C ∈ D/ , D¯ = D Ex. : S = C(Γ), Sˆ = C0(Γ), D ⊂ Γ

Definition Quantum Cayley Graph

I H : space of the regular repr. of S, Sˆ

I K = H⊗p1H, S = id⊗ : K → H

I Θ = Σ(1⊗U)V (U ⊗U)Σ, Kg = Ker(Θ+id)

I regular repr. on H, trivial repr. on p1H

Definition Classical Cayley Graph

I V = Irr C, θ(r, r0) = (r0, r)

I E = {(r, r0, s, i) ∈ V 2 | r0i r⊗s, s ∈ D}

I C0(V ) → L(H), 11{r} 7→ pr

(7)

Free Quantum Groups

(E, V ) is a tree iff S is a free product of free quantum groups Ao(Q), Au(Q). Then (E, V ) induces a projection pF+ ∈ L(K) « on ascen- ding edges ».

Problems I Θ2 6= 1

I p+F := 1−ΘpF+Θ 6= pF+ I p++ = pF+p+F

I [pF+, uij] is compact but not of finite rank

I F = T p++ : Kg → H is not Fredholm

Theorem There exists a natural representa- tion π : Ao(Q) → L(H) such that

Kg p

++

K++ B

H H R

defines γ ∈ KKSˆ(C,C), when Tr QQ > 2. In the classical case H = 0.

(8)

Negative Type Function on Ao(Q)

I dense sub-*-Hopf algebra S ⊂ S

I co-unity ε : S → C, antipode κ : S → S Ex. : S = CΓ C(Γ), ε(g) = 1, κ(g) = g−1

Proposition

I π : S → L(H) *-representation.

I real π-cocycle : a linear c : S → H st :

I c(1) = 0, c(xy) = π(x)c(y) + ε(y)c(x) and

I (c(κ(x))|c(κ(x))) ∈ R.

Put ϕ = (· | ·) ◦ (c⊗c) ◦ (∗κ⊗id) ◦ δ on S. Then ϕ(xx) ≤ 0 for all x ∈ Ker ε.

Theorem (Ao(Q), QQ¯ ∈ Cid, Tr QQ > 2)

Then Ker(T−S) = Kg and (T−S)(Kg) contains c0(x) = (λ(x) − ε(x)) ΛH(1) for all x ∈ S.

I Path and distance to the origin in the quantum Cayley graph

Références

Documents relatifs

The paper is organized as follows: 1-2 contain preliminaries on the soft and hard liberation operations, in 3-4 we discuss the quantum reflection groups, in 5-6 we discuss the

The natural candidates for interesting quantum examples are the free quantum groups of Wang-Banica [21, 3], and we will show that the unimodular ones indeed have Property RD: this

smallest stable under suspensions, countable direct sums, K-equivalences and taking cones. Classical case : =

[Julg-Valette 1989] and [Kasparov-Skandalis 1991] I Dirac element Invertibility of the associated Dirac element without “rotation trick”. Actions of Drinfel’d double D(F U(Q )) in

Gamma-Elements for Free Quantum Groups..

KK -theory for quantum groups : functorial and..

Our formalism is used to discuss possible manifestations in Atomic Physics and to investigate the new cyclic quantum phase recently introduced by Aliaronov

Our kinetic equation is a new step in the theory of the quantum kinetic processes, because we further extend the previous theories to include in our description some variables of