• Aucun résultat trouvé

The curve and the Langlands program

N/A
N/A
Protected

Academic year: 2022

Partager "The curve and the Langlands program"

Copied!
19
0
0

Texte intégral

(1)The curve and the Langlands program Laurent Fargues (CNRS/IMJ). µ Îà. KozoI t.at. t'etlp.at. 2in. spoliais. Ü. c. Gallotta.

(2) The curve I Defined and studied in our joint work with Fontaine I Two aspects : compact p-adic Riemann surface / algebraic curve I Starting datum : F |Fp perfectoid field I p=variable, Y = {0 < |p| < 1} open punctured disk, adic space n X o 1 ]= [xn ]p n | xn ∈ F , sup |xn | < +∞ W (OF )[ p1 , [$] n−∞. n. I O(Y ) completion of the preceding. Fontaine’s ring. No explicit formula for elements of O(Y ).

(3) The curve. I Y. w. ϕ. Frobenius X = Y /ϕZ. compact adic space /Qp I O(1) line bundle /X ↔ automorphic factor j(ϕ, p) = p I Schematical curve X = Proj ⊕d≥0 O(Y )ϕ=p I GAGA type morphism X −→ X. d. .

(4) The curve Theorem (F.-Fontaine) I The curve is a curve : X is a Dedekind scheme, X noetherian regular dimension 1 adic space I Perfectoid residue fields : ∀x ∈ |X|, k(x)|Qp perfectoid, [k(x)[ : F ] < +∞ bX,x = B + (k(x)) I O dR I X is ”complete” : deg(x) := [k(x)[ : F ] ∀f ∈ Qp (X)× , deg(divf ) = 0.

(5) The curve. I X \ {x} = Spec(Bx ), Bx Dedekind, P.I.D. if F alg. closed. (Bx , −ordx ) not euclidean i.e. H 1 (O(−1)) 6= 0. I F alg. closed. ⇒ |X| = untilts of F up to Frob..

(6) Vector bundles on the curve ∼ I GAGA verified : BunX −− → BunX I X complete ⇒ good Harder-Narasimhan reduction theory. µ=. deg rk. I λ ∈ Q O(λ) stable slope λ vector bundle, λ = dh , pushforward of O(d) via cyclic cover Y /ϕhZ → Y /ϕZ. Theorem (F.-Fontaine) F alg. closed {λ1 ≥ · · · ≥ λn | λi ∈ Q}. ∼. − →. BunX / ∼. (λ1 , . . . , λn ) 7−→ [⊕i O(λi )]..

(7) Vector bundles on the curve : applications. I Quick simple proofs of the two fundamentals theorems of p-adic Hodge theory : I weakly admissible ⇒ admissible (Colmez-Fontaine) I de Rham ⇒ pot. semi-stable (Berger). I F = C[p , X. x. Gal(Qp |Qp ). ∞ ∈ |X| fixed. Study Galois equivariant vector bundles and their modifications at ∞ I Look at modifications of vector bundles I ϕ-modules over Ainf I Scholze-Weinstein.

(8) G -bundles un , σ = Frob, d I G reductive group /Qp , Q̆p := Q p. B(G ) = G (Q̆p )/σ−conj, b ∼ gbg −σ I b ∈ G (Q̆p ) Eb = Y × G ϕ. G -bundle /X , ϕ acts on G via conjugation by bσ. Theorem (F) F alg. closed ∼. 1 B(G ) −−→ Hét (X, G ). [b]. 7→. [Eb ]. I Dictionary : reduction theory (Atiyah-Bott) for G -bundles / Kottwitz description of B(G ). I Example : Eb semi-stable ⇔ b is basic (isoclinic).

(9) G -bundles : applications. I (Chen, F, Shen) : Proof of F.-Rapoport conjecture on period spaces (p-adic analogs of Griffith’s period spaces). Example : computation of p-adic period spaces for SO(2, n − 2) I Construction of local Shimura varieties (Scholze) Sht(G , b, µ) as moduli of modifications E1 Eb I Newton stratification of Hodge-Tate flag manifold (Caraiani-Scholze), modification E1,x , x ∈ flag manifold, E1,x ' Eb for some b stratification by the set of such [b].

(10) The stack BunG of G -bundles/curve I Introduced to formulate a geometrization conjecture of the local Langlands correspondence ϕ |{z}. 7−→. Langlands parameter. Fϕ |{z}. perverse sheaf on BunG. I S = Fp -perfectoid space XS adic space/Qp = ”family of curves (Xk(s) )s∈S ” I BunG = v -stack on Perf F of G -bundles/curve p ∼. B(G ) −−→ |BunG | a BunG = BuncG1 =α α∈π1 (G )Γ.

(11) The stack BunG I.   open  / BunG BuncG1 =0,ss = • /G (Qp ) . I Aut(trivial G -bundle) = G (Qp ) topological group 6= classical case G algebraic group I More generally ∀α ∈ π1 (G )Γ   BuncG1 =α,ss = • /Jb (Qp ) b basic, Jb inner form of G I In general each H.N. stratum is a classifying stack   • /Jb Jb = Jb0 o Jb (Qp ), Jb0 =unipotent diamond.

(12) The geometrization conjecture. I ϕ = discrete Langlands parameter ϕ : WQp −→ L G I Conjecture ϕ 7−→ Fϕ Sϕ -equivariant perverse Hecke eigensheaf on BunG I s.t. the stalks of Fϕ at semi-stable points gives local Langlands + internal structure of L-packets for all extended pure inner forms of G.

(13) The geometrization conjecture For this : I Need to give a meaning to ”perverse sheaf on BunG ” I Need to give a meaning to the Hecke eigensheaf property : establish geometric Satake in this context. joint work with Scholze : give a precise statement of the conjecture + construction of the local Langlands correspondence π 7→ ϕπ à la V. Lafforgue using BunG.

(14) Constructible and perverse étale sheaves on BunG. Joint with Scholze. Λ ∈ {F` , Q` } étale coefficients, ` 6= p I BunG is a (cohomologically) smooth stack of dimension 0 I Good notion of constructible sheaf on BunG = reflexive sheaves w.r.t. Verdier duality I Fiberwise criterion of constructibility in terms of representation theory : ∀b ∈ G (Q̆p ), the stalk at the point given by b is an admissible representation of Jb (Qp ).

(15) Geometric Satake I Div1 = Spa(Qp ) /ϕZ sheaf of deg. 1 effective div. on the curve I BdR GrG −→ Spa(Qp ) Scholze’s BdR affine grassmanian, Z 1 dR GrB G /ϕ → Div. Beilinson-Drinfeld type affine Grassmanian. Theorem (F.-Scholze) L dR Geometric Satake holds for GrB G , Satake category ' Rep( G , Λ)..

(16) Construction of Langlands parameters. I Factorization enhancement : I finite set.  I dR GrB G ,I → (Spa(Qp ) ). + factorization property when I varies. I HeckeI z. BunG I W ∈ Rep( L G I , Λ). (. BunG × (Spa(Qp ) )I ICW kernel on HeckeI via geo Satake.

(17) Construction of Langlands parameters I Coupled with V. Lafforgue strategy (global function field) we construct local Langlands π 7−→ |{z}. irred. rep. of G (Qp ). ϕπ |{z}. semi-simple Langlands parameter. I Very little known about this correspondence : surjectivity, finiteness of fibers ? I Geometrization conjecture goes in the other direction Langlands parameter 7−→ representation and would give this + internal structure of L-packets.

(18) Back to the geometrization conjecture I The GL1 -case. Classically : Abel-Jacobi morphism locally trivial fibration in simply connected alg. var. (projective spaces) in high degree I Reduced to the following theorem. Theorem (F) For d ≥ 3, the Abel-Jacobi morphism AJ d : Divd −→ Picd is a pro-étale locally trivial fibration in simply connected diamonds. Here Divd = Hilbert diamond = (Div1 )d /Sd with Div1 = Spa(Qp ) /ϕZ ..

(19) That’s only the beginning of the story !.

(20)

Références

Documents relatifs

À l’aide du Guide sur les nouveaux anticoagulants oraux du CIUSSS de l’Estrie - CHUS, nous avons élaboré des indicateurs de conformité pour déterminer l’arrêt et la reprise

Mainstreaming ‘One health’ will lead to closer cooperation between human and animal health and with other health related sectors (i.e. social and environmental sciences and

&amp; The juvenile products, in the size range 2–6 cm, of the climactic sub-Plinian explosion of May 6, 2008, of Chaitén volcano (Layer β) are characterized by a density range 400

Malgré les peu encourageantes expé­ riences faites par beaucoup de gens dans le commerce, l'industrie et les métiers manuels, ces b ran h es d'activité sont en­ core les

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The graph Γ Φ and the action of Definition 3 on it does not depends on the particular generating set obtained from Lemma 5. (2) By Lemma 13 and Corollary 3 the group acts

On utilise maintenant le th´eor`eme de densit´e des int´egrales orbitales r´eguli`eres [VW F.17].. Les autres int´egrales orbitales r´eguli`eres de f B sont nulles. Alors

The above exact sequence then gives the prime-to-p part of the main theorem of unramified class field theory for surfaces over a finite field (studied by Parshin, Bloch,