• Aucun résultat trouvé

COLLISIONAL IONIZATION IN A RESONANTLY EXCITED ATOMIC VAPOR

N/A
N/A
Protected

Academic year: 2021

Partager "COLLISIONAL IONIZATION IN A RESONANTLY EXCITED ATOMIC VAPOR"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00224488

https://hal.archives-ouvertes.fr/jpa-00224488

Submitted on 1 Jan 1985

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COLLISIONAL IONIZATION IN A RESONANTLY EXCITED ATOMIC VAPOR

B. Carré, J. Bizau, D. Cubaynes, P. Dhez, D. Ederer, P. Gérard, J. Keller, P.

Koch, J. Le Gouët, J. Picqué, et al.

To cite this version:

B. Carré, J. Bizau, D. Cubaynes, P. Dhez, D. Ederer, et al.. COLLISIONAL IONIZATION IN A

RESONANTLY EXCITED ATOMIC VAPOR. Journal de Physique Colloques, 1985, 46 (C1), pp.C1-

163-C1-172. �10.1051/jphyscol:1985117�. �jpa-00224488�

(2)

JOURNAL DE PHYSIQUE

Colloque C l , suppl6ment au nO1, Tome 46, janvier 1985 page Cl-163

COLLISIONAL IONIZATION IN A RESONANTLY EXCITED ATOMIC VAPOR

b b b

B . c a r r d a , J . M . Bizau , D . Cubaynes , P. ~ h e z ~ , D.L. ~ d e r e r ~ , P. GGrard ,

J . C . ell er^, P.M. ~ o c h ~ , J.L. Le ~ o u ~ t ~ , J.L. ~ i c ~F. Roussela, G. S p i e s s a u ~ ~ , and F . J . l ~ u i l l e u m i e r ~

LURE, U n i u e r s i t e ' P a r i s Sud, Bet. 209c, 91405 Orsay, France

Rdsumi

-

L ' i o n i s a t i o n c o l l i s i o n n e l l e de vapeurs de sodium e t de baryum excitges p a r un rayonnement l a s e r r i s o n n a n t , continu ou p u l s d , e s t d t u d i i e p a r s p e c t m s - c o p i e Blectronique. Dans l e c a s du sodium, on ddduit d e s r z s u l t a t s des sec- t i o n s e f f i c a c e s d ' i o n i s a t i o n associative e t Penning pour l e s B t a t s e x c i t g s . Abstract

-

C o l l i s i o n a l i o n i z a t i o n of sodium and barium vapors r e s o n a n t l y exci- t e d w i t h C . W . o r pulsed l a s e r s o u r c e s , and subsequent electron-atom energy t r a n s f e r s , a r e s t u d i e d by e l e c t r o n spectroscopy. Cross s e c t i o n s f o r a s s o c i a - t i v e and Penning i o n i z a t i o n of sodium i n e x c i t e d s t a t e s , a r e obtained.

The experimental s t u d i e s of t h e i o n i z a t i o n of m e t a l l i c vapors, which a r e r e s o n a n t l y e x c i t e d by l a s e r s , have considerably developed i n t h e p a s t few y e a r s . These s t u d i e s have shown t h a t a l a r g e v a r i e t y of mechanisms t a k e p l a c e i n t h e e x c i t e d media. Of p a r t i c u l a r i n t e r e s t a r e i ) t h e b n i z a t i o n mechanisms i i ) energy t r a n s f e r mechanisms which a r e implied i n o r s e r v e t h e i o n i z a t i o n .

We r e c a l l t h e main f e a t u r e s which have been o u t l i n e d by t h e i n i t i a l experimental works and which have o r i e n t e d many f u r t h e r e x p e r i n e n t s :

1) Eigh f r a c t i o n a l i o n i z a t i o n (50% up t o 100%) i s observed i n dense vapors of Na, L i / 1 , 2 , 3 , 4 , 5 / . It r a p i d l y appeared t h a t t h i s e f f i c i e n t i o n i z a t i o n , which i s o b t a i n e d w i t h i n s h o r t times (

<

1 P S ) , i s t h e r e s u l t of s e q u e n t i a l p r o c e s s e s 161: i) a see- ding process produces t h e f i r s t f r e e e l e c t r o n s i n t h e medium i i ) t h e f r e e e l e c t r o n s a r e "heated" i n s u p e r e l a s t i c c o l l i s i o n s w i t h e x i c t e d atoms i i i ) In a l a s t s t e p , t h e

"hot" e l e c t r o n s i n i t i a t e electron-impact i o n i z a t i o n of t h e vapor which combines with s t e p i i ) i n t o a cascade regime of i o n i z a t i o n . T h i s l e a d s r a p i d l y t o an almost complete i o n i z a t i o n of t h e e x c i t e d vapor.

2) Among t h e seeding p r o c e s s e s , c o l l i s i o n a l i o n i z a t i o n i s dominant i n t h e u s u a l ex- perimental c o n d i t i o n s of d e n s i t y (n

2

1

o1

a t cn-3) and l a s e r e x c i t a t i o n . It irrcludes a s s o c i a t i v e i o n i z a t i o n of e x c i t e d atoms / 7 , 8 1 and Penning i o n i z a t i o n of e x c i t e d atoms /9, 10/. The energy pooling c o l l i s i o n 111 / of l a s e r - e x c i t e d atoms p l a y s an important r o l e a s an i n t e r m e d i a t e s t e p of t h e s e i o n i z a t i o n p r o c e s s e s , i n which atoms a r e produced i n h i g h l y e x c i t e d s t a t e s ne. For h i g h l a s e r i n t e n s i t y , laser-induced c o l l i s i o n a l i o n i z a t i o n may become o b s e r v a b l e /12/.

In a l l t h e i n i t i a l experiments concerned with i o n i z a t i o n of l a s e r - e x c i t e d m e t a l l i c vapors, i o n i z a t i o n was s t u d i e d w i t h i o n d e t e c t i o n techniques. We p r e s e n t complemen- t a r y r e s u l t s which a r e obtained on t h o s e systems, w i t h use of e l e c t r o n spectroscopy.

E l e c t r o n spectroscopy h a s been developed and improved t o an h i g h l y r e f i n e d e x t e n t f o r studying c o l l i s i o n a l i o n i z a t i o n i n r a r e gas systems 1131. Turning t o a new type of experiment on l a s e r - e x c i t e d m e t a l l i c vapors /14, 1 5 / , we w i l l show i n p a r t i c u l a r t h a t e l e c t r o n spectroscopy permits i ) t o r e s o l v e t h e d i f f e r e n t i o n i z a t i o n mecha- nisms and t o c h a r a c t e r i z e them by t h e energy of t h e e j e c t e d e l e c t r o n s i i ) t o ob-

s e r v e t h e e l e c t r o n s heated o r cooled by i n e l a s t i c p r o c e s s e s , l i k e s u p e r e l a s t i c col- l i s i o n w i t h e x c i t e d atoms. F i n a l l y , i t i s important t o n o t i c e t h a t t h e d i f f e r e n t p o p u l a t i o n s of e l e c t r o n s produced by t h e d i f f e r e n t p r o c e s s e s a r e simultaneously ob- served. R e l a t i v e i n t e n s i t i e s may be e a s i l y o b t a i n e d from t h e energy s p e c t r a .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985117

(3)

Cl-164 J O U R N A L DE PHYSIQUE

I. THE EXPERIMENT

Fig.1 shows a schematic view of t h e experimental a p p a r a t u s . The atomic medium con- s i s t s i n an e f f u s i v e atomic beam of Na, Ba o r L i , which i s e x c i t e d a t r i g h t a n g l e by a l a s e r beam, a t t h e source volume of a c y l i n d r i c a l m i r r o r a n a l y z e r (CMA). The e l e c - t r o n s which a r e produced, d i f f u s e out of t h e i n t e r a c t i o n volume and t h e ones which e n t e r t h e CMA a r e energy-analyzed. The r e s o l u t i o n of t h e CPiA i s A E l E a 0 . 9 %. The e l e c t r o n s may b e a c c e l e r a t e d on t h e i r t r a j e c t o r i e s by a c c e l e r a t i n g g r i d s i n s t a l l e d around t h e i n t e r a c t i o n volume.

TOROlOLL YOWOCIROYATISED

A.C.O.

Fig.l

-

Experimental apparatus. The l a s e r ( h e r e c.w, o r pulsed l a s e r ) e x c i t e d t h e atomic e f f u s i v e beam a t t h e s o u r c e volume of a c y l i n d r i c a l m i r r o r a n a l y z e r (CEIA).

Monochromatized synchrotron r a d i a t i o n coming from ACO s t o r a g e r i n g was a l s o i n t h e i n t e r a c t i o n r e g i o n .

In t h e c a s e of Na which w i l l be d i s c u s s e d f i r s t , two l a s e r s o u r c e s have been succes- s i v e l y used t o e x c i t e t h e e f f u s i v e beam.

i ) a c.w, s i n g l e mode, r i n g dye l a s e r ( a s shown i n Fig.1) was locked t o t h e 3s 2 s 1 / 2 (F=2)+ 3p 2 ~ 3 / 2 ( F V = 3 ) t r a n s i t i o n i n an a u x i l i a r y Na bean. For t y p i c a l i n t e n s i t i e s of a few ~ / c m 2 , up t o 30% of t h e a t o n s were pumped i n t h e e x c i t e d s t a t e . i i ) a pulsed e x c i t a t i o n was a l s o used, tuned t o t h e 3 s 2 ~ 1 / 2 + 3 p 2 ~ 1 / 2 o r 312 t r a n - s i t i o n s . Long p u l s e s ( Z ~ z z l P S ) of i n t e n s i t y up t o 1 0 6 W cm-2 s a t u r a t e d t h e 3s-3p t r a n s i t i o n .

In t h e c a s e of Ba we only used c.w s i n g l e node e x c i t a t i o n of t h e 6s2'so + 6s 6p1p

t r a n s i t i o n . 1

The experimentswere a s s o c i a t e d w i t h t h e s t u d i e s of p h o t o i o n i z a t i o n of atoms /16,17/

i n t h e ground s t a t e o r i n l a s e r - e x c i t e d s t a t e s , by synchrotron r a d i a t i o n . Synchro- t r o n r a d i a t i o n does n o t p l a y d i r e c t l y a p h y s i c a l r o l e i n t h e study of c o l l i s i o n a l i o n i z a t i o n , but i t h a s been used a s an i d e a l probe of t h e mixed eround-excited s t a - t e s medium, t h a t i s f o r c a l i b r a t i o n purpose : From t h e known energy p o s i t i o n s of e l e c t r o n s produced by p h o t o i o n i z a t i o n p r o c e s s e s ( i n n e r - s h e l l and o u t e r - s h e l l ) , and from t h e i n t e n s i t i e s of t h e corresponding peaks, one o b t a i n s , f o r each spectrum, r e s p e c t i v e l y , i ) t h e a b s o l u t e e n e r g i e s of t h e e l e c t r o n s i i ) t h e a b s o l u t e d e n s i t i e s of atoms i n t h e ground s t a t e and i n l a s e r - e x c i t e d s t a t e s . For example, i n t h e spec- trum i n Fig.2, one photon energy is used t o produce p h o t o i o n i z a t i o n i n t h e 2p s h e l l of Na atom i n t h e ground s t a t e (peak a t 25 eV k i n e t i c energy) and i n t h e 2p s h e l l of l a s e r - e x c i t e d Na(3p) (hatched peak a t 23 eV). An o t h e r photon energy i s used t o e x c i t e Na(3p) i n a core-excited, a u t o i o n i z i n g s t a t e 2p5 3 s 3p 2 ~ 5 / 2 , which decays by i o n i z a t i o n (hatched peak a t 28 eV). The d e n s i t i e s i n t h e ground s t a t e , n 3 s , a n d i n t h e l a s e r - e x c i t e d s t a t e , n3p, a r e p r o p o r t i o n a l t o t h e a r e a s under t h e peaks r e s p e c t i - vely r e f e r r e d t o i n Fig.2.

(4)

ELECTRON KINETIC ENERGY (eV1

( a ) (b)

Fig.2 - E l e c t r o n energy spectrum from Na vapor simultaneously l a s e r - e x c i t e d t o t h e 3 ~ 2 ~ 3 / 2 s t a t e and i r r a d i a t e d with monochromatized ACO synchrotron r a d i a t i o n . High energy e l e c t r o n s (Fig.Za) (22-32 eV) come from 2p s u b s h e l l p h o t o i o n i z a t i o n (PE) of Na(3s) (GS) o r Na(3p) (ES) atoms by 62.8 eV photons and from a u t o i o n i z a t i o n of a doubly-excited s t a t e 3s3p produced by r e s o n a n t a b s o r p t i o n of 31.4 eV photons by Na(3p) atoms. Low energy e l e c t r o n s (2-8 eV, F i g . 2b) cone from a s s o c i a t i v e i o n i z a t i o n

(AI) and Penning i o n i z a t i o n (PI) and a r e heated i n p s u p e r e l a s t i c c o l l i s i o n s (SEC).

S p e c t r a i n F i g . 1 , 2, 3 a r e n o t c o r r e c t e d f o r t h e t r a n s m i s s i o n of t h e a p p a r a t u s . 11. EXPERIIIENTAL RESULT S.

1 1 . 1 . - Sodium vapor and C.W. e x c i t a t i o n .

Fig.3 shows a spectrum o b t a i n e d i n Na vapor i n t h e energy range (0, 2.5 eV) w i t h use of a c c e l e r a t i n g g r i d s . Fig.2a) shows a complementary spectrum i n t h e energy range (2, 6.5 eV) o b t a i n e d d i r e c t l y w i t h t h e CMA. In t h e l a t t e r , t h e c o n t a c t poten- t i a l VC which appears on t h e w a l l s of t h e i n t e r a c t i o n chanber r e p e l l e d t h e e l e c t r o n s of k i n e t i c energy E ( 2. eV. Those two s p e c t r a g i v e an overview of t h e observed s t r u c t u r e s and chareacterize t h e mechanisms ft r t h e i r production. We a t t r i b u t e s t r u c - t u r e s l a b e l l e d ( a ) + p primes t o e l e c t r o n s produced by a s s o c i a t i v e i o n i z a t i o n (AI) of two Na(3p) atoms :

Na(3p) + Na(3p) + W

-

~ a i (v) + e (E,) ( 1 )

(where W i s t h e r e l a t i v e k i n e t i c energy of t h e c o l l i d i n g atoms), and subsequently h e a t e d by p s u p e r e l a s t i c c o l l i s i o n s w i t h Na(3p) atoms, each of which b o o s t s t h e i r k i n e t i c energy by 2.1 eV. We determined k i n e t i c e n e r g i e s of 0.0(1) eV, 2.1 ( 1 ) eV, 4.2 (1 ) eV and 6.3 (1 ) eV f o r t h e e l e c t r o n s observed, r e s p e c t i v e l y , i n peaks a ,a' ,at' anda"'. Thclt means t h a t t h e y a r e r a t h e r produced i n an energy-resonant c o l l i s i o n . I f t h a t i s c o r r e c t (what cannot be d e f i n i t e l y proven from our r e s u l t s because of t h e u n c e r t a i n t y E, l a r g e b e f o r e W), and f o r W = 50 - 65 neV, t h e c o l l i s i o n (1) w i l l p r e f e r e n t i a l l y produce Na$ i n v i b r a t i o n a l l e v e l s v c l o s e t o v = 7 113, 19/.TRie e j e c t e d e l e c t r o n s a r e d i s t r i b u t e d e x p e r i m e n t a l l y w i t h i n S E e % 0.05 eV, which cor- responds t o a few v i b r a t i o n a l spacings.

Peaks b, c , d , e i n F i g . 3 a r e a t t r i b u t e d t o Penning i o n i z a t i o n (PI) of ~ a ( n C ) , res- p e c t i v e l y , n t = 3d, 4p, 5 s , 4 d , i n c o l l i s i o n s w i t h Na(3p) atoms :

~ a ( n 4 ) + ~ a ( 3 ~ ) - ~ a + + Na(3s) + e (2.1

-

EnC) (2) where E i s t h e binding energy of t h e n 4 e l e c t r o n . Fig.4 shows on a l a r g e r s c a l e t h e s t r u c t u r e s produced by P I nC + p SEC ( s e e a l s o Fig.2.a) ) , b e s t r e s o l v e d a f t e r 1 SEC. The s t a t e s 118 = 5 s , 4d/4f a r e mainly produced through energy pooling c o l l i - s i o n s 121, 22/ of two Na(3p) atoms. S t a t e s 4p and 3d a r e r a t h e r populated by r a d i a -

(5)

JOURNAL DE PHYSIQUE

ASSOCIATIVE IONIZATION Z

3 OF TWO 3P STATES

0 U

\

+ l SEC

2.10~

,/.l

PiNNlNC IONIZATION

E OF nP STATES

ELECTRON ENERGY ( e V )

F i g . 3 - E l e c t r o n e n e r g y spectrum produced by c o l l i s i o n a l i o n i z a t i o n p r o c e s s e s i n l a s e r - e x c i t e d Na v a p o r It was o b t a i n e d w i t h a 2 . 5 V acce- l e r a t i n g p o t e n t i a l on e x t r a c t i o n g r i d s . S t r u c t u r e s l a b e l l e d a + p primes a r e produced by A I of two Na(3p) atoms f o l l o w e d by p SEC.

S t r u c t u r e s produced by P I a r e l a b e ' r l e d b , c , d , e , f ( s e e t e x t ) .

Fig. 4 - (from Ref . / l 5 / ) e l e c t r o n e n e r g y s p e c t r a produced by Penning i o n i z a t i o n of Na(&) atoms f o l l o - wed by SEC i n l a s e r - e x c i t e d Na va- por. S p e c t r a a ) and b) were o b t a i - ned f o r oven t e m p e r a t u r e s of 520 K and 580 K , r e s p e c t i v e l y .

KINETIC ENERGY ( e V )

(6)

t i v e decay from above-mentioned n& s t a t e s . One can s e e on t h e s p e c t r a i n F i g . 4 t h a t t h e dominant c o n t r i b u t i o n t o Penning i o n i z a t i o n - c o n e s from t h e 4p and 5 s s t a t e s . I n a d d i t i o n , t h e r e l a t i v e c o n t r i b u t i o n of t h e 4d/4f s t a t e s seems t o depend on t h e tem- p e r a t u r e .

We c o n s i d e r now some t y p i c a l q u a n t i t a t i v e r e s u l t s t h a t we o b t a i n e d from t h e s p e c t r a i . e t h e v a r i a t i o n of t h e d i f f e r e n t s i g n a l s w i t h t h e e x c i t e d atoms d e n s i t y , t h e l a t - t e r being determined w i t h h e l p of t h e synchrotron r a d i a t i o n ( s e e § 11). We chose t o c o n c e n t r a t e on t h e a n a l y s i s of t h e e l e c t r o n s which have a k i n e t i c energy l a r g e r t h a n 3 eV, because i t occurs where t h e ClIA t r a n s m i s s i o n i s w e l l known. F i g . 5 shows a p l o t of t h e t o t a l counting r a t e N (AI + 2SEC) of t h e e l e c t r o m p r o d u c e d by A I and heated by 2 SEC, a s a f u n c t i o n of t h e a b s o l u t e n3p. It e x h i b i t s a c u b i c dependence w h i l e one would expect a t f i r s t a f o u r t h power dependence : f o u r Na(3p) a r e involved i n t o t h e s e q u e n t i a l p r o c e s s e s and d i f f u s i o n i s t h e main l o s s f o r e l e c t r o n s i n t h e medium.

To e x p l a i n t h i s cubic dependence, we have t o e n t e r a l i t t l e i n t o t h e k i n e t i c s , w i t h v e r y simple arguments. F i g . 6 r e c a l l s t h a t f o r i o n d e n s i t y of t h e o r d e r of 106 cm-3,

SLOPE 3

Excited volume

/

l

3P STATE 4ENSITY (cm-3)

F i g . 5 - The i n t e g r a t e d e l e c t r o n counting Fig.6 - Schematic r e p r e s e n t a t i o n of r a t e a t 4.2 eV (peak a") a s a f u n c t i o n t h e c o n t a c t p o t e n t i a l VC and of t h e of d e n s i t y ngp determined from i n n e r - plasma p o t e n t i a l V f o r t h e geometry s h e l l p h o t o i o n i z a t i o n . The d a t a were ob- of t h e experirnent.P~ccelerating g r i d s t a i n e d f o r an oven temperature To of were used t o compensate VC.

about 520K. ( m ) : experimental p o i n t s ; (---) : l e a s t square f i t .

a plasma p o t e n t i a l V (0.leV

-

0.8 eV) e x i s t s i n t h e e x c i t e d medium, whlch adds t o t h e c o n t a c t potentia! VC ( ~ eV), induced on t h e w a l l s of t h e i n t e r a c t i o n chamber. 2 Primary e l e c t r o n produced by A I ( E e S O . l eV) a r e t h e n trapped i n t o t h e i o n i z e d medium u n t i l 1 t h e y have gained 2.1 eV k i n e t i c energy i n one SEC t o d i f f u s e f r e e l y out of i t . Only a s m a l l f r a c t i o n which d r i f t s o u t of t h e i o n i z e d medium can be d e t e c - t e d a t t h e i r i n i t i a l energy. It i s now simple, from a r a t e e q u a t i o n a n a l y s i s 1151, t o s e e t h a t t h e d e n s i t y of e l e c t r o n s h e a t e d i n 1 SEC, n 1 , i s d i r e c t l y p r o p o r t i o n a l

t o t h e c r e a t i o n r a t e , 2

SAI, f o r t h e primary e l e c t r o n s . F% SAI =

qI <

vrel) n3p ,

n: v a r i e s a s - t h e s q u a r e and subsequent n i a s t h e t h i r d power of n3p, which 1 s e x p e r i m e n t a l l y observed.

When t h e c o n s i s t e n c y of t h e model i s achieved, one may o b t a i n t h e c o l l i s i o n r a t e f o r

(7)

Cl-168 JOURNAL DE PHYSIQUE

A I a t To = 520K, KAI = (3.5+ 1.5) x 10-I m3 S-' , and t h e c r o s s s e c t i o n

= ( 4 2) x 10-17 cm2, which compare reasonably w i t h p r e v i o u s l y measured v a l u e s 129; 23/. As a f u r t h e r r e s u l t of t h i s a n a l y s i s , we found t h e r a t i o Kp (5s)/KA1 of t h e r a t e c o e f f i c i e n t f o r P I of Na(5s) t o t h e A I r a t e c o e f f i c i e n t , K p I t5s)/KpI =

( 5 2 2) X 104 a t To = 520K. The c r o s s s e c t i o n

GI

(5s) = ( l . , .5)x10-12 cm2 has a r a t h e r h i g h v a l u e , s i m i l a r t o t h e ones which have been measured f o r P . 1 of e x c i t e d Rb atoms /10/.

We want now t o comment on some s p e c t r a o b t a i n e d a t low temperature T,< 520K, and which p r e s e n t s u r p r i s i n g c h a r a c t e r i s t i c f e a t u r e s . Fig.7 shows i n two of t h o s e spectra t h e double-peaked s t r u c t u r e which appeared around 2.1 eV (peaks a', a ' a t l a s e r power PL = 100 mW) and was reproduced around 4.2 eV (peaks g(",afi a t 100 and 500 mW)

.

KINETIC ENERGY ( e V )

Fig.7 - E l e c t r o n energy s p e c t r a o b t a i n e d i n Na a t To(520K f o r two l a s e r powers PL. Peak a ' i s s h i f t e d t o lower v a l u e s of t h e k i n e t i c energy because of t h e i n c r e a - s i n g Vp. Both t h e r e l a t i v e i n t e n s i t i e s and energy s p l i t t i n g of t h e double-peaked s t r u c t u r e or" and a" a r e observed t o be independent of PL.

One observe by comparing t h e two s p e c t r a t h a t peaks produced a t an energy Eek 2.5eV by P I and A I + pSEC i n c r e a s e d w i t h i n c r e a s i n g P=, and t h a t p l a s n a p o t e n t i a l Vp s i - multaneously i n c r e a s e d t h e minimum pass k i n e t i c energy w i t h consequent d e c r e a s e of peaks ' and a ' . However, we have measured t h a t both t h e r e l a t i v e i n t e n s i t i e s and t h e energy s e p a r a t i o n d ~ ( o ( " , a") of t h e peaks o(" and a" were independent of PL and t h e r e f o r e of n3p and of t h e plasma p o t e n t i a l Vp. We have checked t h a t , i n our expe- r l m e n t , d i r e c t o r r e f l e c t e d l a s e r r a d i a t i o n do n o t produce low energy e l e c t r o n s by p h o t o i o n i z a t i o n of Na l a y e r s d e p o s i t e d on s u r f a c e s . Resonant f l u o r e s c e n c e r a d i a t i o n seems t o have a t o o weak i n t e n s i t y t o i o n i z e t h e Na l a y e r s . I f e l e c t r o n s a r e never- t h e l e s s produced on s u r f a c e s with a n e a r z e r o energy, they would be t r a p p e d by t h e c o n t a c t p o t e n t i a l VC and would c r o s s s e v e r a l times t h e e x c i t e d volume ( s e e F i g b ) i n which t h e y could b e heated by 1 o r 2 SEC. A f t e r one SEC, t h e i r k i n e t i c energy would be l a r g e r t h a n 2.1 eV; t h a t mean; t h a t t h e e l e c t r o n s produced by A I would have a t l e a s t an energy P E (g(', a ' ) = O . 13 (2) eV. I f produced on s u r f a c e s with t h e energy of peak c(', t h e y would d i f f u s e o u t of t h e i n t e r a c t i o n chamber and would not be observed a f t e r one SEC (peak a"). I n e l a s t i c c o o l i n n of t h e e l e c t r o n s of 2.1 eV

(8)

i n c o l l i s i o n s w i t h t h e dimers i s very u n l i k e l y t o produce t h e observed l a r g e popu- l a t i o n of 2 eV e l e c t r o n s because t h e f r a c t i o n a l d e n s i t y of t h e dimers i s l e s s t h a n 1 % ( t h e c h a r a c t e r i s t i c time f o r t h i s p r o c e s s would be e q u a l t o t h e e l e c t r o n d i f - f u s i o n time f o r a c r o s s s e c t i o n b . = 1 0 - l 0

-

10-9 cm2)SIt i s a l s o u n l i k e l y t h a t inho- mogeneous d i f f u s i o n e f f e c t s occur s i n c e t h e y would have depended on t h e plasma po- t e n t i a l .

F i n a l l y we t e n t a t i v e l y propose two h y p o t h e s i s u n t i l 1 we have a d e f i n i t e e x p l a n a t i o n of t h e observed s t r u c t u r e . A f i r s t h y p o t h e s i s f o r t h e o r i g i n of p e a k & ' a t 2.0 eV i s t h a t e x c i t e d n e g a t i v e i o n s a r e produced i n t h e vapor 124, 25, 151. They w i l l decay w i t h i n very s h o r t t i m e s , and t h e e l e c t r o n can be detached w i t h an energy of about 2 eV. The e f f i c i e n c y of such a mechanism i s y e t n o t known.

An o t h e r h y p o t h e s i s i s t h a t t h e observed s t r u c t u r e s reproduce t h e energy d i s t r i b u - t i o n of t h e primary e l e c t r o n s ( w i t h i n t h e u n c e r t a i n t y of 0.1 eV on t h e a b s o l u t e e n e r g i e s ) , which w i l l be due t o m u l t i c h a n n e l c o l l i s i o n p r o c e s s i n a s s o c i a t i v e i o n i - z a t i o n . The c o l l i s i o n would p r e f e r e n t i a l l y produce t h e dimer i o n i n two s e p a r a t e d groups of v i b r a t i o n a l l e v e l s , t h e e l e c t r o n s being e j e c t e d i n two d i f f e r e n t narrow ranges of energy.

11.2. Sodium vapor and pulsed e x c i t a t i o n .

With t h e pulsed l a s e r s o u r c e I261 d e s c r i b e d i n §I, we obtained an o t h e r r e f e r e n c e s i g n a l by t u n i n g t h e l a s e r wavelength t o t h e two-photon pumping of t h e 5s s t a t e

( h =602.3 nm). The p h o t o i o n i z a t i o n c r o s s s e c t i o n f o r t h e 5s a t t h i s energy i s weak ( Q (5s) 0.05 Mb 1271) but t h e 5 s s t a t e decays t o t h e 4p s t a t e whlch i s e f f i - c i e K t l y photoionized (Q. (4p) = 4 Mb)

.

Fig.8b) shows t h e photoe'Pectron spectrum produced by t h p h o t o i o n i z a t i o n of ~ a ( 4 p ) a t 2 = 602.3 nm. Tuning t h e l a s e r t o t h e 3 s 2 ~ l 1 2 ~ 3 P 2P3/2 t r a n s i t i o n ( A -589 nm), we can a t t r i b u t e d i r e c t l y t h e observed peaks shown I n F i g . 8 a ) . The spectrum repro- duces t h e g e n e r a l p a t t e r n of t h e c.w e x c i t a t i o n c a s e . Peaks l a b e l l e d a+q primes a r e

ASSOCIATIVE

IONIZATION +l SEC

I

I

Fig.8

-

E l e c t r o n energy s p e c t r a o b t a i - ned i n Na vapor e x c i t e d w i t h a pulsed l a s e r source.

a ) l a s e r tuned t o t h e D2 l i n e . Peaks l a b e l l e d b , c , e , f , g a r e a t t r i b u t e d t o p h o t o i o n i z a t i o n of ~ a ( n 4 ) . Peak d i s produced by Penning i o n i z a t i o n of Na(5s).

b)

A

= 602 nm. One observes photoelec- t r o n s coming from p h o t o i o n i z a t i o n of t h e 4p s t a t e . The l a t t e r was populated from r a d i a t i v e decay of t h e two-photon pumped 5s s t a t e . T h i s peak was used a s an energy r e f e r e n c e .

KINETIC ENERGY ( e V )

(9)

Cl-170 JOURNAL DE PHYSIQUE

s t i l l a t t r i b u t e d t o e l e c t r o n s produced by A I ( l ) , and heated by q SEC

.

It i s n o t i - c e a b l e t h a t t h e i o n d e n s i t y i s high enough during t h e p u l s e t o induce a plasma po- t e n t i a l which t r a p s t h e p r l n a r y e l e c t r o n s f r o n A I ; t h e l a t t e r a r e then e f f i c i e n t l y heated i n SEC.

P h o t o i o n i z a t i o n of Ma(n ) produced peaks b ( 3 d ) , c(Lp), e ( 4 d ) , f ( 6 s ) . The peaks a r e observed i n t h e same p o s i t i o n than i n t h e c.w e x c i t a t i o n c a s e , t h e e l e c t r o n s being e j e c t e d w i t h t h e same energy Ee =%W- Q& than i n PI ( 2 ) . Peak d ( 5 s ) cannot be due t o p h o t o i o n i z a t i o n (Qp(5s) 4 bp (4p), b p ( 4 d ) .

.

.) and i s r a t h e r a t t r i b u t e d t o Penning i o n i z a t i o n of lJa(5.s). One can o b t a l n an o t h e r e s t i m a t e of t h e r a t e c o e f f i - c i e n t K p l ( 5 s ) , by comparing t h e r e l a t i v e i n t e n s i t i e s of i ) peak d(5s) and i i ) peaks b, c , e produced by p h o t o i o n i z a t i o n . This conparison l e a d s t o KpI(5s)= (3 f 1 . 5 ) ~ 1 0 - ~ cm3 s-l and r p I ( 5 s ) = ( 4 2 2 ) X 10-3 cn2 which i s i n r e a s o n a b l e agreement with t h e v a l u e s measured i n t h e c.w e x c i t a t i o n case.

11.3

-

Barium vapor and c.w e x c i t a t i o n

In t h i s experiment t h e c.w l a s e r was tuned t o t h e 6s2 + 6s6p t r a n s i t i o n 15, 141. Population of t h e 5d m e t a s t a b l e s t a t e i n c r e a s e d i n t h e e x c i t e d volume a s a f u n c t i o n of t h e l a s e r i n t e n s i t y ( o r l a s e r power PL). C o l l i s i o n a l quenching of t h e 5d 1D2 s t a t e populated i n t u r n t h e 5d 3D s t a t e . P h o t o i o n i z a t i o n produced by synchrotron r a d i a t i o n was used, a s i n t h e c a s e of Na, t o determine t h e a b s o l u t e den- s i t i e s i n t h e ground s t a t e and f o r high enough l a s e r i n t e n s i t y , i n t h e 5d I D 2 and 3~ m e t a s t a b l e s t a t e s 1281. Up t o 5CZ of t h e atoms could be t r a n s f e r e d i n t h e 5 d s t a t e s However, no measurable l i n e i n t h e p h o t o e l e c t r o n s p e c t r a could have been a t t r i b u t e d t o p h o t o i o n i z a t i o n of Ba(6p ' p 1 ) . That means i n p a r t i c u l a r , t h a t f o r h i g h l a s e r i n t e n s i t y , t h e d e n s i t y i n t h e 6s6p lP1 s t a t e was much s m a l l e r t h a n i n t h e n e t a s t a b l e s t a t e s .

The s p e c t r a p r e s e n t e d i n Fig.9 i l l u s t r a t e t h e r o l e of s u p e r e l a s t i c c o l l i s i o n s b e t - ween e l e c t r o n s and atoms i n t h e d i f f e r e n t e x c i t e d s t a t e s . Spectrum a ) was o b t a i n e d a t low l a s e r i n t e n s i t y f o r which a dominant p o p u l a t i o n i n t h e 6p s t a t e i s expected.

KINETIC ENERGY ( e V )

F i g . 9

-

E l e c t r o n energy s p e c t r a i n t h e range 2-6 eV obtained i n Ba vapor f o r two l a s e r powers PL.

a ) . E l e c t r o n s of k i n e t i c energy Eel a r e h e a t e d i n SEC with Ba (6p I P , ) .

b)Populationof t h e 5d 'D and 3~

s t a t e s i s dominant o v e r popula- t i o n of pp I P , , e l e c t r o n s of energy E$ make 1 o r 2 SEC w i t h Ba (5d 3 ~ ) o r Ba (5d ID) ( s e e t e x t ) .

(10)

E l e c t r o n s ( ~ r o b a b l ~ produced by Penning i o n i z a t i o ? o f h i g h l y e x c i t e d atoms w i t h Ba ( 6 p ) ) a r e observed a f t e r 1 SEC ( a t t h e energy E: ) arid 2SEC (peak 3 i n F i g . 9 a ) w i t h Ba(6p) :

Spectrum b) was o b t a i n e d a t an h i g h e r i n t e n s i t y f o r a dominant p o p u l a t i o n i n t h e 5d s t a t e s ID and 3D. It shows t h a t from a p o p u l a t i o n of e l e c t r o n s of e n e r g i e s around E$, a r e now o b s e r v e e l e c t r o n s of t h e e n e r g i e s E, = EJ + p E (5d 3 ~ ) + qE (5d 111) where t h e p a i r s ( p , q) p , q = 0 , 1 , 2 c o r r e s p o n d , r e s p e c t i v e l y , t o peaks 1 , 2 , 1 . 1 , 1.2 o r 2 . 1 , and 2.2. These e l e c t r o n s a r e t h e n h e a t e d i n t h e s u p e r e l a s t i c p r o c e s s (4) :

We n o t i c e on F i g . 9b t h a t t h e energy

~t

+ E (6p I P ) i s q u i t e c l o s e t o

~g

+ 2E ( 5 d 3 ~ ) and t h a t p r o c e s s (3) can superimpose t o (4) i n t h e spectrum. 1 I n c o n c l u s i o n , we have i l l u s t r a t e d t h e t y p e of i n f o r m a t i o n s which a r e a c c e s s i b l e w i t h u s e of e l e c t r o n s p e c t r o s c o p y , i n t h e s t u d y of i o n i z a t i o n i n l a s e r - e x c i t e d m e t a l l i c v a p o r s . I n t h e c a s e of Na, we have i d e n t i f i e d t h e i o n i z a t i o n p r o c e s s e s and g i v e n c l e a r e v i d e n c e t h a t e l e c t r o n - a t o m s u p e r e l a s t i c c o l l i s i o n s t a k e p l a c e i n t h e e x c i t e d v a p o r . It was a l s o p o s s i b l e t o o b t a i n c r o s s s e c t i o n s f o r t h e d i f f e r e n t mechanisms from two t y p e s of d a t a (c.w and p u l s e d e x c i t a t i o n s ) . S i m i l a r r e s u l t s a r e , a t l e a s t q u a l i t a t i v e l y , o b t a i n e d i n Ba. We t h i n k f i n a l l y t h a t e l e c t r o n spec- t r o s c o p y h a s t o p l a y an i n c r e a s i n g r o l e i n t h e s t u d y of l a s e r - e x c i t e d and i o n i z e d m e t a l l i c v a p o r s .

Re£ e r e n c e s

a ) S e r v i c e de Physique d e s Atomes e t d e s S u r f a c e s , CENISACLAY.

b) L a b o r a t o i r e d e S p e c t r o s c o p i e Atomique e t I o n i q u e and LURE, ORSAY.

c ) N a t i o n a l Bureau o f S t a n d a r d s , WASHINGTON DC.

d ) L a b o r a t o i r e Aim6 C o t t o n , C.N.R. S. , ORSAY.

e ) P h y s i c s Department, S t a @ U n i v e r s i t y of New York, STONY BROOK.

/ l / LUCATORTO T.B. and MC ILRATH T . J . , Phys. Rev. L e t t .

2

(1976) 428.

/ 2 / STAC_EWICZ T . , Opt. Commun.

2

(1 980) 239.

131 CARRE B . , ROUSSEL F . , BREGER P. and SPIESS G . , J . Phys. B: A t . Mol. Phys.

14

(1981) 4289.

/ 4 j SKlNNER C. H. , J. Phys. B. : A t . Ilol. Phys

.

13 (1 980) 55.

/ 5 / JAKREISS L. and HUBER M.C.E., Phys. I?ev.A (1983) 3382.

/ 6 / MEASURES R.M., J. Appl. Phys.

45

(1 977) 2 6 x .

171 BEAHIAN G. H. and LEVENTHAL. J. J . , Phys. Rev. L e t t .

41

(1 978) 1227.

/ 8 / DE J O N G A. and VAN DER VALK F . , J. Phys. B: A t . Nol.Phys.

12

(1 979) L561.

191 LE GOUET J. L., PICQUE J . L., GNILLEUMIEI? F. , BIZAU J . M . , DHEZ P., KOCH P.M. and EDEREK D.L., Phys. Rev. L e t t .

49

(1952) 600.

/lO/CHERET M - , BARBIER L., LINDINGER W. and DELOCHE R . , J. Phys. B

11

(1982) 3463.

/ l l IALLEGRINI M., ALZETTA G.

,

KOPYSTYNSXA A . , M O 1 L. and ORRIOLS G . , Opt. Comm.

19

(1976) $6.

/12/WEINER J. and POLAK-DINGELS P . , J. Chem. Phys.

2

(1981) 508.

/13/LORENZEN J . , HOTOP H . , RUF f1.W. and MORGNER H . , Z. P h y s i k A

-

Atoms and N u c l e i 29i (1930) 19.

/ l LI/=NEBERG H. , NEUKAMMER J. , PIAJENSKI U. and S C H ~ N H E N S E G. , Phys

.

Rev. L e t t

.E

(1933) 1546.

/ I ~ / C A R R E B . , BIZAU J . M . , DHEZ P . , EDERER D.L. , GERARD P., KELLER J . C. , KOCH P.M., LE GOUET J . L . , PICQUE J. L., SPIESS G . , and WUILLEUMIER F . , s u b m i t t e d

t o O p t i c s Comnunication.

/ l 6/WITILLEUIIIEI? F. , J. Physique

43

(1 982) C2-347.

/17/BIZAU J.N., WUILLEUMIER F . , DHEZ P. , EDEREIi D . L. , P I C Q U ~ J. L., LE GOUET J. L.

and KOCH P.M. i n " l a s e r t e c h n i c s f o r UV s p e c t r o s c o p y " ed. T.J. MC I l r a t h and R.J. Freeman, AIP P r o c . S e r i e s

30

(1982) New York 331-343.

(11)

Cl-172 JOURNAL DE PHYSIQUE

1 1 8 1 LEUTWYLER S . , HOFtfAN M., HARRI H.P. a n d SCWPIAKhR E . , Chem. P h y s . L e t t .

77

(1981) 257.

/ l 9 1 KIRBY-DOCKEN K. , CERJAN C. J. a n d DALGARNO A., Chem. P h y s . L e t t .

40

( 1 97 6)

205.

1 2 0 1 ALLEGRINI B I C C E I P . a n d 1,101 L. , P h y s . R e v . A . 28 (1 983) 1338.

121 1 HUENNEKENS J. a n d GALLAGHER A., P h y s

.

X e v . A

27

(-83) 771

.

1 2 2 1 HUENNEKENS J. a n d GALLAGEEX A., P h y s . R e v . A (1 983) 1276.

I 2 3 1 BONANNO R.

,

BOULPiER J. a n d WEINER J . , P h y s . R e v . A 28 (1 983) 604.

I 2 4 1 NORCROSS D.W., P h y s . R e v . L e t t .

32

(1974) 192.

/ 2 5 / ANDRICK D . , EYG PI., HOFMANN If., J. P h y s . B

1

(1972) L15.

1 2 6 1 CARRE B., ROUSSEL F . BREGER P . S P I E S S G . , J . P h y s . B: A t . P I o l . P h y s .

14

(1981) 427 1.

/ 2 7 / AYMAR M., J. P h y ? . B: A t . 1101. P h y s .

11

(1958) 1413.

1 2 8 1 BIZAU J . M . , CARRE B., DHEZ P . , EDERER P . L. , GERARD P . , KELLER J. C. , KOCH P.M. ,

L E GOUET J. L. , PICQUE J. L. , WENDIN G. a n d WUILLEUMIER F. , X I 1 1 ICPEAC , B e r l i n (1 983) 27.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to