• Aucun résultat trouvé

EXTENDED DEPTH PROFILING WITH THE IAP

N/A
N/A
Protected

Academic year: 2021

Partager "EXTENDED DEPTH PROFILING WITH THE IAP"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225703

https://hal.archives-ouvertes.fr/jpa-00225703

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXTENDED DEPTH PROFILING WITH THE IAP

S. Walck, T. Buyuklimanli, J. Hren

To cite this version:

S. Walck, T. Buyuklimanli, J. Hren. EXTENDED DEPTH PROFILING WITH THE IAP. Journal

de Physique Colloques, 1986, 47 (C2), pp.C2-451-C2-458. �10.1051/jphyscol:1986269�. �jpa-00225703�

(2)

EXTENDED DEPTH PROFILING WITH THE IAP

S.D. WALCK, T. BWUKLIMANLI and J.J. HREN

Department of Materials Science and Engineering. U n i v e r s i t y Of F l o r i d a , G a i n e s v i l l e , F1 32611, U.S.A.

A b s t r a c t - Depth p r o f i l i n g w i t h t h e FIM/IAP can be e x t r e m e l y accurate i f

-.p

done i n c o n j u n c t i o n w i t h r i n g c o l l a p s e counting. However, under UHV c o n d i t i o n s depth s c a l e s are n o t e a s i l y assigned, e s p e c i a l l y i f depths o f 0.1 um o r more are required, such as those needed f o r range determinations i n

i o n i m p l a n t a t i o n studies. We describe a method u s i n g t h e IAP s i g n a l from t h e m a t r i x , and t i p parameters measured by FIM and transmission e l e c t r o n mi c r o s c o p y (TEM).

Ni specimens were dc f i e l d evaporated t o 6 kV. Both FIM and TEM images were recorded b e f o r e and a f t e r t h e I A P d a t a was c o l l e c t e d . The image was

observed d u r i n g a n a l y s i s and t h e p u l s e number recorded when a r i n g c o l l apsed. Each spectrum was s i g n a l -averaged t o minimize storage. The p u l s e number i s c o r r e l a t e d w i t h t h e s p e c t r a l data. The c u m u l a t i v e Ni s i g n a l versus t h e r i n g number was then generated.

INTRODUCTION

A1 though i t i s n o t w i d e l y recognized o u t s i d e t h e FIM community, t h e atom probe and imaging atom probe a r e superb f o r compositional depth p r o f i l i n g . With an imaging gas present, depth r e s o l u t i o n s o f one atomic p l a n e a r e expected. O f course, t h e l a t e r a l r e s o l u t i o n i s a1 so excel l e n t , b u t t h e r e remain t h e r e s t r i c t i o n s o f specimen geometry (j.e., p o i n t e d e m i t t e r s , o r i e n t a t i o n f i x e d , t o t a l v01 ume smal l, etc.).

U n f o r t u n a t e l y , these c a p a b i l i t i e s a r e n o t so e a s i l y a t t a i n e d i f an imaging gas cannot be used, f o r example, when t h e species monitored o r t h e m a t r i x has a low e v a p o r a t i o n f i e 1 d.

F i e l d e v a p o r a t i o n r a t e s v a r y s t r o n g l y w i t h as t h e dc v o l t a g e and/or the p u l s e h e i g h t change, f u r t h e r exacerbating attempts t o m o n i t o r t h e c h a r a c t e r i s t i c a l l y s t r o n g s i g n a l s as r i n g s c o l lapse. When l a r g e depths a r e needed t o a t t a i n u s e f u l p r o f i l e s (100 nm), t h e requirement f o r a l t e r n a t i v e means t o m o n i t o r depths i s even more obvious. The a l t e r n a t i v e method described here r e l i e s upon t h e geometry o f f i e l d e m i t t e r s observed b y TEM, t h e b a s i c p r i n c i p l e s o f FIM, and a s t r a i g h t f o r w a r d c a l i b r a t i o n procedure.

SPECIMEN GEOMETRY

The t i p geometry assumed i s a c o n i c a l shank w i t h a s p h e r i c a l cap which j o i n s t h e shank t a n g e n t i a l l y . I n o u r IAP o n l y a s m a l l p o r t i o n o f t h e specimen i s imaged because t h e t i p t o screen d i s t a n c e i s approx. 15 cm. The subtended v i e w i n g h a l f - a n g l e i

S

about 20 degrees. With t h i s model, t h e r a d i u s o f c u r v a t u r e R i s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986269

(3)

JOURNAL DE PHYSIQUE

R = ( h + l o ) s i n

U

/ ( l - s i n u )

where 1, i s t h e d i s t a n c e f r o m t h e i n i t i a l s u r f a c e t o t h e apex o f t h e cone,

U

i s t h e shank h a l f - a n g l e and h i s t h e d i s t a n c e probed f r o m t h e i n i t i a l s u r f a c e t o t h e f i n a l surface. F i g u r e 1 i s a montage o f an e v a p o r a t i o n sequence o f a N i specimen

p e r f o r m e d w i t h t h e " f i e 1 d - e f f e c t " (FIMITEM) h01 d e r [l 1. T h i s f i g u r e i l l u s t r a t e s t h e v a l i d i t y o f t h e g e o m e t r i c model and t h e c o n s i d e r a b l e d e p t h t o w h i c h t h e FIM/IAP i s c a p a b l e o f p r o b i n g . The computed r a d i i a t t h e v a r i o u s v o l t a g e s a r e a1 1 v e r y c l o s e t o t h e a c t u a l r a d i i e x c e p t f o r one, t h e r a d i u s drawn a t t h e i n d i c a t e d v o l t a g e o f 3 kV. T h i s r a d i u s was measured f r o m t h e m i c r o g r a p h and drawn a t t h e d i s t a n c e g i v e n b y e q u a t i o n ( 1 ) . When i t was drawn b y t h e computer, i t d i d n o t match t h e

l o c a t i o n i n t h e montage. A f t e r examining t h e montage more c a r e f u l ly, i t was found t h a t one micrograph, t a k e n a t 2.9 kV was m i s s i n g and t h a t t h e o f f s e t between t h e s u r f a c e drawn and t h e one i n t h e montage i s a p p r o x i m a t e l y t h e d i s p l a c e m e n t due t o t h i s e r r o r . T h i s suggests a p r e c i s i o n o f b e t t e r t h a n 1 0 nm.

THE PROBED VOLUME

The e f f i c i e n c y and g a i n o f t h e Chevron p l a t e s used as t h e IAP d e t e c t o r a r e c o n s t a n t o v e r t h e e n e r g y r a n g e employed h e r e [2]. I f a1 l th e atoms w i t h i n t h e d e t e c t e d a r e a s t r i k e t h e d e t e c t o r and t h e d e t e c t o r e f f i c i e n c y i s c o n s t a n t , t h e i n t e g r a t e d s i g n a l s h o u l d b e p r o p o r t i o n a l t o t h e number o f atoms c o n t a i n e d w i t h i n t h e probed volume.

I n t u r n , t h e number o f atoms i s s i m p l y r e l a t e d t o t h e volume probed b y t h e specimen d e n s i t y . T h i s i n t e g r a t e d s i g n a l i s easy t o measure, s i n c e i t i s j u s t t h e

c u m u l a t i v e m a t r i x s i g n a l f r o m t h e s p e c t r a c o l l e c t e d . Furthermore, t h e accumulated s p e c t r a approximate an i n t e g r a t i o n v e r y c l o s e l y because o f t h e smal 1 i n c r e m e n t s i n v o l v e d . The one assumption i s t h a t t h e c o n c e n t r a t i o n o f t h e e l e m e n t used f o r t h e a c c u m u l a t i o n process ( t h e m a t r i x ) i s c o n s t a n t and p r o p o r t i o n a l t o t h e probed volume. T h i s may n o t b e v a l i d , f o r example i n t h e case o f i o n i m p l a n t a t i o n o f m a s s i v e i o n s o r i n t h e presence o f p r e c i p i t a t e s . The p r o b l e m i n l a r g e

c o n c e n t r a t i o n s o f d e p t h p r o f i l i n g u s i n g t h e model j u s t d e s c r i b e d i s reduced t o f i n d i n g t h e f u n c t i o n a l dependence o f t h e volume w i t h d e p t h and g e o m e t r i c a l parameters o f t h e specimen and t h e n t o comparing t h e s e w i t h a c a l i b r a t i o n

e x p e r i m e n t i n w h i c h t h e r i n g s a r e c o u n t e d and t h e c u m u l a t i v e s i g n a l i s f o u n d f r o m t h e s p e c t r a .

VOLUME CALCULATION

The v o l u m e o f i n t e r e s t , F i g u r e 2, i s t h e shaded r e g i o n bounded b y t h e two s p h e r i c a l caps r e p r e s e n t i n g t h e i n i t i a l and f i n a l s u r f a c e s , and t h e s i d e s o f t h e cone

r e p r e s e n t i n g t h e l i m i t o f t h e a r e a o f t h e e m i t t e r s u r f a c e p r o j e c t e d o n t o t h e d e t e c t o r . The bases o f t h e s p h e r i c a l caps a r e i n d i c a t e d b y d o t t e d l i n e s . T h i s volume can be seen t o be:

where V i s t h e volume o f t h e f r u s t r u m o f t h e cone bounded t o p and b o t t o m by t h e d o t t e d f i n e s , V 2 i s t h e s p h e r i c a l cap o f r a d i u s R , and V 3 i s t h e s p h e r i c a l cap o f r a d i u s R. The v a l u e h i s e q u a l t o t h e number o f pqanes e v a p o r a t e d normal t o t h e e m i t t e r ' s a x i s , ( N dhkl). These v01 umes can be expressed r e s p e c t i v e l y as:

Vl = 6 3 [K: s i n 2 B + K: ( l - c o s 8 ) s i n z 8 ] [ h 3 + 3 h Z l o + 3 h l o Z ] (3a)

(4)

the i n i t i a l s u r f a c e t o apex o f t h e cone made by extending t h e s i d e s o f t h e e m i t t e r t o t h e i r p o i n t o f convergence, 1 ,. The system parameters t o be determined a r e t h e d e t e c t o r v i e w i n g h a l f - a n g l e , 6 , and t h e p r o p o r t i p n a l i t y c o n s t a n t between t h e volume and t h e accumulated s i g n a l . This constant, KD, i s comprised o f s e v e r a l

d i s t i n g u i s h a b l e constants: t h e e m i t t e r density, t h e e f f i c i e n c y o f t h e detector, t h e g a i n o f t h e detector, t h e g a i n o f t h e a m p l i f i e r and o t h e r system constants.

F o r t h e depth evaporated i n an IAP experimefit t h e v i e w i n g h a l f - a n g l e , 6, i s assumed constant and i s a reasonable approximatidn, s i n c e t h e image i s n e a r l y a

stereographic p r o j e c t i o n o f t h e surface, o f t h e t i p o n t o the screen. Since the p r o j e c t i o n p o i n t i s n e a r l y t h e same r e g a r d l e s s o f t i p radius, t h e a n g u l a r p o s i t i o n s between p o l e s o f the c r y s t a l p1 anes i s approximate1 y constant. (e.g., t h e

p r o j e c t i o n p o i n t w i t h v a r y w i t h depth by about .l um, whereas t h e p r o j e c t i o n d i s t a n c e t o t h e screen i s o f the o r d e r o f 0.1 m.) F o r o u r system, B i s 20".

DETERMINATION OF KD

K i s the p r o p o r t i o n a l i t y c o n s t a n t between t h e c u m u l a t i v e N i s i g n a l and

tRe volume (see equation 4). With t h e v a l u e o f KD and t h e geometric parameters o f an e m i t t e r , a depth s c a l e can be a s c r i b e d t o the c u m u l a t i v e N i s i g n a l d a t a by graphing a c a l c u l a t e d c u r v e versus t h e depth probed f o r t h a t e m i t t e r . The depth s c a l e i s g i v e n as the number o f r i n g s c o l lapsed; t h e t o t a l depth g i v e n as N d where dhkl i s t h e d-spacing o f the s e t o f planes used f o r t h e determination o ? ~ $ , and N i s t h e t o t a l number o f p l a n e s evaporated. Supplementary d a t a from t h e TEM 1s r e q u i r e d t o determine geometric parameters o f t h e specimen, and t o check t h e depth s c a l e i n t h e r i n g - c o u n t i n g experiment. I t i s r e l a t i v e l y easy t o f i n d KD by c o l l e c t i n g data w i t h an imaging gas present, n o t i n g t h e number o f r i n g s c o l lapsed, adding the s i g n a l s o f a1 l t h e spectra, s u b s t i t u t i n g t h i s v a l u e i n t o t h e

r e l a t i o n s h i p and s o l v i n g f o r KD. However, the r i n g - c o u n t i n g c o n t r o l experiment which w i 1 1 be described a l s o checks t h e v a l i d i t y o f t h e model used f o r t h e volume

probed by t h e use o f a c u r v e matching procedure. The s e l e c t i o n c r i t e r i a f o r specimens used f o r imp1 a n t a t i o n and subsequent a n a l y s i s i s i m p o r t a n t as we1 l and w i l l be discussed be1 ow.

EXPERIMENTAL PROCEDURE

The number o f steps i n v o l v e d i n g e t t i n g t h e d a t a i n f i n a l form i s r a t h e r large, b u t i s straighforward. F i g u r e 3 i s a f l o w c h a r t o f t h e procedure i n f i n d i n g KD, t h e experimental curve, and t h e c a l c u l a t e d curve. The l a t t e r wi 1 1 be used t o e s t a b l i s h a depth p r o f i l e which does n o t use t h e imaging gas. The o n l y d i f f e r e n c e i n t h e f l o w c h a r t f o r an a c t u a l depth p r o f i l e experiment i s t h a t t h i s experimental c u r v e and KD w i l l n o t be an o u t p u t o f t h e program. The reason, o f course, i s t h a t t h e r i n g counting i s n o t performed and t h e "pul senum" i n f o r m a t i o n i n t h e f l o w c h a r t i s n o t c o l l e c t e d .

N i c k e l specimens a r e p o l i s h e d w i t h a t a p e r a n g l e as sharp as p o s s i b l e i n o r d e r f o r them t o f i r s t image we1 l below 5.5 kV. The reason f o r t h i s i s t h a t t h e specimen i s f i e l d evaporated up t o a v o l t a g e o f 6.0 kV, a t which v o l t a g e t h e s e l e c t i o n

c r i t e r i o n f o r a t i p i s t h a t t h e p o r t i o n o f t h e specimen imaged i s l arger than t h e d e t e c t o r area.

A f t e r t h e specimen i s evaporated t o 6 kV i n t h e FIM, i t i s t r a n s f e r r e d t o t h e TEM f o r imaging. The p o s i t i o n o f the s t a i n l e s s s t e e l specimen mount i s noted because the specimen w i l l be re-imaged again under approximately t h e same "2-beam" imaging conditions. The micrograph obtained w i l l be used t o determine a, and 1,. The specimen must have a smooth, s t r a i g h t shank and the s u r f a c e must meet t h e shank t a n g e n t i a1 l y .

A f t e r TEM imaging, t h e specimen i s t r a n s f e r r e d back t o t h e FIM/IAP where t h e

v o l t a g e i s r a i s e d t o t h e imaging v o l t a g e again. FIM micrographs are recorded o v e r

(5)

JOURNAL DE PHYSIQUE

t h e complete imagable area o f t h e t i p i n o r d e r t o determine t h e c r y s t a l l ographic o r i e n t a t i o n and radius. The specimen i s then o r i e n t e d toward t h e d e t e c t o r w i t h t h e ( 1 1 1 ) p o l e i n t h e c e n t e r o f t h e creen ( f o r Ni). The imaging gas pressure i s lowered t o approx.mately 5 f

X

10-% T o r r and t h e Chevron g a i n i s increased t o maximum (approximately 1 0 . The dc v o l t a g e i s lowered i n a n t i c i p a t i o n o f u s i n g a 2 kV pu l se which remains c o n s t a n t throughout t h e experiment.

The d i g i t i z e r i s now prepared f o r c o l l e c t i n g s p e c t r a and t h e p u l s e counter i s r e s e t t o zero. The number o f waveforms averaged p e r spectrum i

S

s e l e c t e d a t t h i

S

time.

The l a t t e r s h o u l d n o t be t o o smal l since: 1 ) the number o f s p e c t r a s t o r e d may be t o o l arge f o r t h e a v a i l a b l e memory and 2) t h e time t o s t o r e a spectrum can i n t e r f e r e w i t h t h e a c t o f c o l l e c t i o n o f a subsequent waveform. For o u r system, a v e r a g i n g e i g h t t r a c e s g i v e s a good balance between storage requirements, background averaging, and t h e assumption t h a t t h e r e s u l t o f each p u l s e w i t h i n a spectrum i s a p p r o x i m a t e l y t h e same. The r i n g - c o u n t experiment i s s t a r t e d and automatic l o o p i n g o f t h e d a t a a c q u i s i t i o n and storage s e c t i o n s o f t h e program occurs. When a r i n g c o l l a p s e i s seen a t t h e screen, t h e p u l s e number i s noted.

The v01 tage may be increased manual l y o r by program c o n t r o l . The experiment i

S

continued u n t i l a predetermined number o f r i n g s have c o l lapsed. I t i s i n f o r m a t i v e t o n o t e t h e amount o f data which would be c o l l e c t e d t o t h i s p o i n t . For a t y p i c a l experiment, 650 (1 1 1 ) r i n g s o f a N i specimen, 3366 s p e c t r a were c o l l e c t e d , r e q u i r i n g 26,920 pulses. The t i m e r e q u i r e d t o perform t h e experiment was l o n g e r t h a n seven hours. A t t h e end o f t h i s experiment, t h e specimen i s re-imaged i n t h e FIM mode and t r a n s f e r r e d t o t h e TEM. TEM imgaging i s done as c l o s e t o t h e i n i t i a l c o n d i t i o n s as p o s s i b l e . I t i

S

i m p e r a t i v e t h a t when specimens a r e imaged a t d i f f e r e n t times f o r comparison t h a t t h e TEM be s e t up i n as i d e n t i c a l a mode o f o p e r a t i o n as p o s s i b l e . T h i s assures t h a t t h e two images have been taken w i t h t h e same m a g n i f i c a t i o n , hence t h e d i s t a n c e probed can be a c c u r a t e l y determined between t h e two micrographs. (Of course, t h e a b s o l u t e v a l u e o f TEM m a g n i f i c a t i o n must be separately, c a l i b r a t e d . ) FIM and TEM n.icrographs o f t h e i n i t i a l and f i n a l s t a t e s o f an e m i t t e r a r e shown i n F i g u r e 4.

A f t e r t h e s p e c t r a a r e c o l l ected, t h e p u l se numbers corresponding t o r i n g c o l l apses a r e e n t e r e d i n t o t h e computer. The N i s i g n a l

S

must a1 so be found. A general r o u t i n e f o r " p i c k i n g - o f f " up t o e i g h t mass peaks from t h e s t o r e d s p e c t r a on t h e f i l e manager ( T e k t r o n i x 4909) i

S

employed. A t i m e window f o r each peak must be d e f i n e d u s i n g t h e marker s e c t i o n o f the program. The program then c a l c u l a t e s t h e t i m e o f f l i g h t f o r t h e mass peak and a l s o s h i f t s t h i s window w i t h r e s p e c t t o t h e p r e v i o u s p o s i t i o n o f t h e peak. These peak v a l u e s a r e then s t o r e d on a f i l e . A f t e r t h e N i peak v a l u e s a r e s t o r e d i n t h e f i l e manager, t h e y a r e summed w i t h r e s p e c t t o t h e p u l s e numbers recorded d u r i n g t h e r i n g c o u n t i n g experiment. These v a l u e s a r e accumulated u s i n g another program which c r e a t e s a f i l e i n t o which t h e accumulated Ni s i g n a l a r r a y w i l l be put. The program works i n t h e f o l l o w i n g manner. I t reads t h e f i r s t p u l s e number from t h e storage f i l e and d i v i d e s t h i s number by t h e v a l u e used i n c o l l e c t i n g t h e spectra. The r e s u l t i n g i n t e g e r i s t h e spectrum number i n which t h a t r i n g c o l l a p s e d . The N i peak v a l u e s a r e t h e n summed t o t h i s p o i n t . The f r a c t i o n a l p a r t o f t h e r e s u l t g i v e s t h e mu1 t i p 1 i e r f o r t h e N i peak t o be added t o t h e accumulated value. The r e s u l t i s then s t o r e d as t h e f i r s t v a l u e i n t h e accumulation f i l e . The n e x t pu7 se number i s r e a d and t h e process repeated, the v a l u e a t each r i n g c o l l a p s e being p u t i n t o the accumulation f i l e . The index o f t h e p o s i t i o n o f each c u m u l a t i v e N i v a l u e corresponds t o t h e r i n g c o l lapse number. T h i s i s t h e experimental d a t a which i s used t o graph t h e c u r v e which i s p r o p o r t i o n a l t o the volume c u r v e g i v e n by equation (4). F i g u r e 5 shows the range o f v a l u e s f o r the Ni s i g n a l s used t o generate the experimental c u r v e i n F i g u r e 6. I t can be seen t h a t i t i s m o n o t o n i c a l l y i n c r e a s i n g and smooth. This c u r v e i s i n s e n s i t i v e t o the f l u c t u a t i o n s i n t h e o r i g i n a l data. (This i s an important p r e r e q u i s i t e f o r f i n d i n g a method f o r assigning a depth scale.) DETERMINATION OF GEOMETRIC PARAMETERS

To f i t t h e experimental c u r v e i n F i g u r e 6, the parameters a and 1, must be

(6)

t h e shank. A "least-squares" s t r a i g h t l i n e i s found f o r each s i d e and t h e

i n t e r s e c t i o n o f t h e two l i n e s g i v e s t h e apex o f t h e cone. The shank h a l f - a n g l e i s s i m p l y h a l f o f the angle between these two l i n e s . A p o i n t a l o n g the l i n e o f the e m i t t e r and a t the surface i s a l s o d i g i t i z e d . The d i s t a n c e between t h i s c e n t e r p o i n t and t h e apex o f the cone g i v e s t h e v a l u e 1 T h i s program can a l s o be used t o f i n d the d i s t a n c e evaporated. The same proce&re i s used on t h e micrograph b e f o r e e v a p o r a t i o n and a f t e r . The d i f f e r e n c e i n the o u t p u t of the two l. v a l u e s i s the d i s t a n c e evaporated.

CALCULATED CURVE

The procedure f o r e s t a b l i s h i n g the depth s c a l e f o r an imp1 anted t i p i s s t r a i g h t f o r w a r d . The geometric parameters are measured w i t h t h e TEM and the c u m u l a t i v e c u r v e versus r i n g count i s generated. The steps i n t h i s procedure would be e s s e n t i a l l y t h e same as those a t t a i n e d i n the f l o w . c h a r t o f F i g u r e 3, except t h a t t h e i m p l a n t a t i o n occurs j u s t p r i o r t o a n a l y z i n g i n the IAP. O f course, no r i n g c o u n t i n g i s performed. The i n d i c e s o f the c a l c u l a t e d c u r v e a r r a y g i v e t h e depth a t t h a t p o i n t i n Nhkl u n i t s (h/dhkl). For the p r o f i l e d t i p , an a r r a y o f cumulated v a l u e s are found. The i n d i c e s o f t h i s a r r a y are the s p e c t r a number taken d u r i n g the p r o f i l e . The depth a t each spectra i s obtained by f i n d i n g the

corresponding r i n g count from the c a l c u l a t e d c u r v e f o r each c u m u l a t i v e Ni value.

REFERENCES

[ l J Walck, S. D. and Hren, J. J., Mat. Res. Soc. Symp., 2, Boston, MA, 325-30 (1984).

[2] Wiza, J. L., Instrum. and Meth., 162, 587-601 (1979).

ACKNOWLEDGEMENT

The authors would l i k e t o thank the Major A n a l y t i c a l I n s t r u m e n t a t i o n Center (MAIC)

a t t h e U n i v e r s i t y o f F l o r i d a f o r t e c h n i c a l assistance. This work was funded by

OOE, c o n t r a c t #DE-FG05-84ER45172. Thanks are a l s o due t o t h e U n i v e r s i t y o f F l o r i d a

Col l ege o f Engineering Center o f Excellence.

(7)

C2-4.56

JOURNAL DE PHYSIQUE

APPLIED VOLTAGES C k V )

F i g u r e 1. Montage o f TEM micrographs f i e l d evaporated i n s i t u TEM i n the FIM/TEM

"Fie1 d - E f f e c t " h01 der. A1 so shown f o r c o m p a ~ s ~ s a computer- generated sequence u s i n g the model f o r t h e tCp geometry discussed i n t e x t .

F i g u r e 2. Representation o f t h e volume probed by t h e FIM/IAP i n an e m i t t e r . The

v a l u e h i s t h e d i s t a n c e probed, B i s t h e d e t e c t o r subtended ha1 f-angle,

R. i s the i n i t i a l r a d i u s o f curvature, and R i s the r a d i u s a t h.

(8)

F i g u r e 3. Flow c h a r t o f t h e procedures i n v o l v e d w i t h f i n d i n g t h e p r o p o r t i o n a l i t y c o n s t a n t o f t h e c u m u l a t i v e m a t r i x s i g n a l as a f u n c t i o n o f depth. The

l a r g e s o l i d arrow i n d i c a t e s t r a n s f e r o f t h e specimen between instruments. The s m a l l e r arrows i n d i c a t e t h e f l o w o f data i n the i n d i c a t e d form.

F i g u r e 4. TEM and FIM micrographs b e f o r e and a f t e r r i n g count experiment.

2) I m a g e & R e c o r d

3) S e l e c t S p e c i m e n ? C o r r e c t O r ? e n t a t i o n ?

v

T E M

I m a g e F o r '0,'

M e e t s S e l e c t i o n c r i t e r i a ? 2) S e l e c t S a m p l e ?

F I M t I A P ( b e f o r e )

1 ) I m a g e R e c o r d FI"/IAP 2 ) S e t u p IAP I n T O F M o d e R e i m a g e F114 31 R u n , C o l l e c t , & S t o r e Data

- S p e c t r a

R i n g N u m b e r

(9)

JOURNAL DE PHYSIQUE

SPECTRA NUMBER Cx1@8>

F i g u r e 5. N i peak v a l u e s f o r t h e s p e c t r a which generated t h e c u r v e i n F i g u r e 6.

288 . . .

1SB-

108-

L

EXPERMEWAL

148- CALCULATED - - - - -

- -

z 128-

2 -

188-

48 -

-

C111> RING CMaJT CxlBQ)

F i g u r e 6. Cumulative N i s i g n a l versus N i ( 1 1 1 ) r i n g count f o r two specimens. Both

c u r v e s were us t o f i n d two v a l u e s o f K These were averaged t o g i v e :

Kg = 5.28 x 10- Y' . Using t h i s value, t h e &o c a l c u l a t e d c u r v e s were

found and compared t o t h e o r i g i n a l data.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to