• Aucun résultat trouvé

HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651)

N/A
N/A
Protected

Academic year: 2021

Partager "HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651)"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00226599

https://hal.archives-ouvertes.fr/jpa-00226599

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651)

F. Binsfeld, M. Habashi, J. Galland, J. Fidelle, D. Miannay, P. Rofidal

To cite this version:

F. Binsfeld, M. Habashi, J. Galland, J. Fidelle, D. Miannay, et al.. HYDROGEN EMBRITTLEMENT

IN Al-Li-Cu-Mg ALLOYS (8090-T651). Journal de Physique Colloques, 1987, 48 (C3), pp.C3-587-

C3-596. �10.1051/jphyscol:1987368�. �jpa-00226599�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, suppl6ment au n09, Tome 48, septembre 1987

HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651)

F. BINSFELD, M. HABASHI, J. GALLAND, J.P. FIDELLE*, D. MIANNAY*

and P. ROFIDAL*

Ecole Centrale des Arts et Manufactures, F-92295 Ch.Eitenay-Malabry Cedex, France

* C E A , B.P. 511, F-75752 Paris Cedex 15, France

ABSTRACT

This paper describes the hydrogen embrittlement (HE) o f an A1-Li a l l o y aged a t 190°C and with d i f f e r e n t durations o f ageing (10, 15, 20 and 30 hr).

Two techniques were employed t o measure HE : a) cathodic p o l a r i z a t i o n i n a molten s a l t s bath with -3 VIAg on t e n s i l e specimens ; b ) gaseous hydrogenation on disks. Hydrogen charging was achieved a t 190°C. The r e s u l t s show t h a t HE i s important when the a1 1 oy i s i n the over-aged condition.

INTRODUCTION

A1-Li a l l o y s have gathered strong i n t e r e s t especially i n t h e a i r c r a f t industry. Compared t o conventional high-strengh a1 umini um a1 loys o f the 2000 or 7000 series, i t i s known t h a t A1-Li a l l o y s o f f e r a 10% increase i n Young's modulus along w i t h a 10% decrease i n s p e c i f i c weight, thus making them rather competitive t o new non-metal 1 i c materi a1 s 1 i ke carbon f i b r e reinforced '

composi tes. Moreover, t h e i r mechanical properties are equivalent t o those o f conventional high-strength A1

.

a1 loys.

I n t h e binary Al-Li a l l o y system, t h e 6

'

(A13Li) p a r t i c l e s which p r e c i p i t a t e throughout t h e matrix are responsible f o r strengthening. I n the A1-Li-Cu-Mg a l l o y s apart from the

6

I , semi coherent, S t (AlzCuMg) and TI

(A12CuLi) phases p r e c i p i t a t e during a r t i f i c i a l ageing treatment. 6

'

i s a metastable phase' which forms as spherical p a r t i c l e s which remain coherent w i t h the matrix ( 1 ). During p l a s t i c deformation, these p a r t i c l e s may be cut by moving dislocations such t h a t f u r t h e r deformation along the same s l i p plane i s favoured ; s l i p becomes coplanar (2, 3) and leads t o poor toughness and ducti 1 i ty. The s l i p cop1 anari t y gives ri se t o stress concentrations a t g r a i n boundaries i nduci ng intergranul ar f a i 1 ures (4). The growth r a t e o f

6

depends

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987368

(3)

JOURNAL DE PHYSIQUE

o n vacancy c o n c e n t r a t i o n which i n t u r n i s a f f e c t e d by high s o l u t i o n t r e a t m e n t t e m p e r a t u r e f o l 1 owed by c o l d

water

quenched (5

1.

The s t r e n g t h enhancement d u r i n g room t e m p e r a t u r e a g e i n g a p p e a r s

t o

be due

t o

t h e p r e c i p i t a t i o n o f

6 '

phase. Subsequent a r t i f i c i a l a g e i n g g i v e s r i s e

t o a

g r a i n boundary REZ, ( P r e c i p i t a t i o n F r e e Zone) i n d i c a t i n g t h a t $ p r e c i p i t a t i o n i s dependent upon t h e p r e s e n c e o f e x c e s s v a c a n c i e s (5). The P.F.Z. grows according

t o

t 1 / 3 1 aw, where t i s t h e ageing time a t a given ageing t e m p e r a t u r e ( 6 ) . Attempts t o improve t o u g h n e s s o f A1-Li a 1 l o y s have been -based on t h e change i n g r a i n s t r u c t u r e t o i n f l u e n c e t h e f r a c t u r e process. A d d i t i o n o f manganese i s known a s a g r a i n - r e f i n e r b u t a s an improvement

t o

g r o s s i n t e r g r a n u l a r f a i l u r e (7).

Zirconium a d d i t i o n of l e s s t h a n 0.2% forms

p '

(A13Zr) p r e c i p i t a t i o n which g i v e s r i s e

to

g r a i n--ref i nement, i n h i b i t i o n o f r e c r y s t a l 1 i s a t i o n and d e c r e a s i n g s h e a r e d

6 '

p a r t i c l e s by t h e moving d i s l o c a t i o n s (8). However, zirconium g i v e s h i g h l y t e x t u r e d s t r u c t u r e s ( 5 ) i n A1-Li a l l o y s .

The Cu and Mg p r e c i p i t a t e heterogeneous1 y d u r i n g a r t i f i c i a l ageing

as

S ' (A1 2CuMg) and TI (A1 2CuLi )

.

The n u c l e a t i o n

sites

o f t h e s e p r e c i p i t a t e s a r e d i s l o c a t i o n s formed d u r i n g quenching, d i s l o c a t i o n s i n t r o d u c e d d u r i n g s t r e t c h i n g and low-angle s u b g r a i n boundaries. Grain boundary p r e c i p i t a t i o n o f

6

(AlLi ) and complex A1-CU-Mg phases occur d u r i n g a r t i f i c i a l ageing ( 9 ) . a s t r e t c h b e f o r e a r t i f i c i a l a g e i n g i n c r e a s e s t h e r a t e of ageing and t h e n i n c r e a s e s t h e y i e l d s t r e n g t h and t h e u l t i m a t e t e n s i l e s t r e n g t h b u t r e d u c e s t h e e l o n g a t i o n

t o

f r a c t u r e . For each chemical composition of A1-Li a l l o y , t h e r e i s

a

s p e c i f i c ageing h e a t t r e a t m e n t c o n d i t i o n (peak aged c o n d i t i o n ) a t which t h e mechanical p r o p e r t i e s a r e optimum. In t h e under-aged c o n d i t i o n , t h e deformation i s l o c a l i z e d w i t h i n s l i p bands w h i l e a t t h e peak c o n d i t i o n t h e deformation i s homogeneous and due

t o

t h e i n c r e a s e d volume f r a c t i o n o f S 1 t h r o u g h o u t t h e matrix. In t h e overaged c o n d i t i o n , t h e p r e c i p i t a t i o n o f 'S'

i s

a t once w i t h i n t h e m a t r i x and i n t h e sub-grain boundaries ( 9 ) .

On t h e o t h e r hand, conventional h i g h - s t r e n g t h aluminium a l l o y s such

as

A1-Zn-Mg, Al-Zn-Mg-Cu and A1-Mg s u f f e r a r e v e r s i b l e hydrogen e m b r i t t l e m e n t whereas A1-Cu and al-Cu-Mg a p p e a r

t o

be r e s i s t a n t

t o

hydrogen i n t r o d u c e d e i t h e r by c a t h o d i c c h a r g i n g o r by exposure

to

water c o n t a i n i n g environments (10).

To t h e b e s t o f

our

knowledge, A1 -Li-Mg-Cu-Zr (8090 a l l o y ) has not been s t u d i e d

so

f a r . In t h i s paper, hydrogen e m b r i t t l e m e n t of 8090

-

T651 was t h e n i n v e s t i g a t e d .

(4)

EXPERIMENTAL

The chemical composition and t h e t h i c k n e s s t of t h e a l l o y s s t u d i e d i n t h i s i n v e s t i g a t i o n a r e given i n t a b l e I .

T a b l e I : Chemical composition and t h i c k n e s s of t h e a l l o y s s t u d i e d ( w t % ) .

...

I

Li

I

Mg

I

Cu

I

Zr

I

S i

I

Ti

I

Fe I N a , p p m l t , m m l

1

2.7

1

1.1

1

1 . 3

1

0.09

1

0.02

1

0.02

1

0.02

1

3

1

0 . 8

1 1

2.9

1

1.1

1

1 . 3

1

0.09

1

0.02

1

0.02

1

0.02

1

3

1

1 . 6

1

The experimental m a t e r i a l was suppl i e d by CEGEDUR PECHINEY i n t h e form of 0.8 and 1.6

nun

r o l l e d p l a t e i n t h e s o l u t i o n t r e a t e d (535OC d u r i n g I h r and t h e n c o l d w a t e r quenched) and 3% s t r e t c h e d , c o n d i t i o n T-351. Hydrogen charging was achieved by two methods :

1 ) C a t h o d i c a l l y on t e n s i l e specimens having 1.6 m m t h i c k n e s s i n a molten s a l t s bath ( 1 1 ) a t 190°C d u r i n g 10, 15, 20 and 30 h r and a t d i f f e r e n t c a t h o d i c p o t e n t i a l s : -1 .5, -2.0, -2.5 and -3.0 V/Ag. A f t e r hydrogenation, o u t g a s i n g was a c h i e v e d , and QH was measured a t 520°C and 1000°C. Uncharged and hydrogen c a t h o d i c a l l y charged specimens

were

t e n s i l e t e s t e d a t room t e m p e r a t u r e , u s i n g a s t r a i n r a t e o f 2 . 7 . 1 0 - ~ s - ~ t o s t u d y t h e e f f e c t o f hydrogen c h a r g i n g on t e n s i l e p r o p e r t i e s . Reference specimens

were

t h o s e aged a t 1 90°C i n f u r n a c e d u r i n g 10, 15, 20 and 30 h r .

2 ) Gaseous hydrogen on d i s k s having 0 . 8

mm

t h i c k n e s s . The d e t a i l s of t h i s method

were

d e s c r i b e d elsewhere (12). The r e f e r e n c e g a z was helium. The f o l l owing procedures

were

achieved :

a ) i n c r e a s i n g t h e r a t e of hydrogen p r e s s u r e A P/ A t from 0.007 t o 188

-4

M%hi&&ternal hydrogen). The a l l o y was i n T651 c o n d i t i o n ;

b) thermal hydrogen o r helium charging on both s i d e s a t 1 90°C, d u r i n g 20 h r . Gas p r e s s u r e was 400 Pa ( i n t e r n a l hydrogen) ;

c ) c a t h o d i c a l l y hydrogen c h a r g i n g a t 190°C d u r i n g 2 0 h r and w i t h -3V/Ag ( i n t e r n a l hydrogen).

Tn

t h e two l a s t c o n d i t i o n s e i t h e r he1 ium ( b ) or/and hydrogen g a s ( c )

were

usedtochieve f a i l u r e .

All t h e f a i l u r e s

were

c a r r i e d o u t a t 20°C. F r a c t u r e s u r f a c e s

were

examined using a scanning e l e c t r o n microscope.

(5)

JOURNAL DE PHYSIQUE

EXPERIMENTAL RESULTS

1 ) C a t h o d i c a l l y hydrogen c h a r g i n g

F i g u r e 1 shows t h a t t h e outgased QH i s an i n c r e a s i n g f u n c t i o n

as

t h e a p p l i e d c a t h o d i c p o t e n t i a l l e v e l and t h e t i m e o f hydrogen c h a r g i n g a r e i n c r e a s e d whatever t h e o u t g a s i n g t e m p e r a t u r e i s 520°C o r i s 1 000°C. However, QH measured

a t

1000°C i s h i g h e r t h a n t h a t o b t a i n e d a t 520°C showing t h a t m o l e c u l a r hydrogen t r a p p i n g

occurs

and i n c r e a s e s with t h e s e v e r i t y o f hydrogen c h a r g i n g c o n d i t i o n . QH p r i o r

t o

hydrogen c h a r g i n g i s measured

a t

520°C t o be a b o u t 5 ppm f o r

t

= 1 . 6

m

and a b o u t 1 0 ppm f o r t = 0.8

nun,

and i s due

t o

quenching t h e a l l o y from 535°C i n c o l d water.

F i g u r e 2 shows t h e v a r i a t i o n of t h e y i e l d s t r e n g t h

Re

a s a f u n c t i o n o f hydrogen c h a r g i n g t i m e i n t h e molten s a l t s bath a t f r e e p o t e n t i a l and a t -3V/Ag, and a s a f u n c t i o n o f a g e i n g time when t h e ageing t r e a t m e n t i s achieved i n t h e f u r n a c e with o r w i t h o u t vacuum. The y i e l d s t r e n g t h

is

independent on t h e a g e i n g t i m e and on t h e c a t h o d i c p o t e n t i a l l e v e l and dxceeds t h o s e due

t o

a g e i n g h e a t t r e a t m e n t i n f u r n a c e d u r i n g v a r i o u s t i m e s ; t h e i r

Re

a c h i e v e s a maximum f o r 15 h r ageing.

Maximum t e n s i l e s t r e n g t h Rm v a r i a t i o n a s a f u n c t i o n of a g e i n g t i m e i s very s e n s i t i v e t o t h e ageing h e a t t r e a t m e n t c o n d i t i o n , f i g u r e 3 . However, Rm v a l u e s measured i n t h e molten s a l t s b a t h a r e higher t h a n t h a t o b t a i n e d when u s i n g t h e f u r n a c e t o a c h i e v e t h e ageing h e a t t r e a t m e n t . Independently o f t h e h e a t t r e a t m e n t c o n d i t i o n , t h e maximum

stress

Rm i s a l s o maximum f o r 1 5 h r ageing.

D u c t i l i t y l o s s

F

% due t o hydrogen c h a r g i n g i s a b o u t 20% f o r a g e i n g t i m e v a r y i n g f r o m l O t o 2 0 h r , f i g u r e 4 . % d r a s t i c a l l y i n c r e a s e s u p t o 75% f o r a 30 h r a g e i n g time.

2 ) Gaseous hydrogen c h a r g i n g

For a1 1

test

c o n d i t i o n s , t h e d i s k s c e n t r a l p a r t (under p r e s s u r e ) b r e a k s i n t o numerous 1 i t t l e p i e c e s , f i g u r e 5 , i n d i c a t i n g t h e m a t e r i a l b r i t t l e c o n d i t i o n .

we

have t o remember t h a t t h e r e t a i n e d QH p r i o r gaseous hydrogen c h a r g i n g was measured t o be a b o u t 1 0 ppm. P a r t l y f o r t h i s r e a s o n and c e r t a i n l y due

t o

t h e e f f e c t i v e n e s s o f s u r f a c e o x i d e s , no s i g n i f i c a n t e m b r i t t l i n g e f f e c t o f hydrogen could be evidenced, f i g u r e 6 .

(6)

DISCUSSION

The results show that we have introduced high concentrations of hydrogen in A1 -Li alloy by using the molten s a l t s b a t h technique a t the optimum ageing temperature. To the best of our knowledge, no attempt has been done t o measure the hydrogen diffusion coefficient DH in A1-Li alloys

a t

190°C. However, NAKASHIMA and coll. (13) have measured DH in binary A1-Li system as a function of Li percentage and of temperature. Their results show great scattering and DH i

s

estimated

as

about 1

o - ~

cm2. s-1 in the temperature range 1 80

t o

480°C, i ndependentl y of Li%. I n our conditions, hydrogen

may

diffuse

a t

a distance d from the surface of the metal equal t o about 85 t o 150

pm

for charging time vary'ing from 10 t o 30 h r respectively and according t o t h e relation : d 5

.

That i s t o say hydrogen may diffuse up t o or behind lithium depletion zone (14) ( S 100

pm),

which i s far beyond the oxide thickness (032

pm)

(14).

As mentionned above, S1 phase i s initiated on dislocations sites. Knowing that internal hydrogen promotes dislocations density (1 5, 1 6 ) , the probabil i ty of S' formation i s then more important in the presence of hydrogen than without hydrogen. Tensile stresses are increased when the A1 -Li a1 loy i s cathodical ly hydrogen charged. This increase does depend on hydrogen concentration, namely the polarisqtion time a t 190°C. Table I1 gives the percentage increase in t e n s i l e properties due

t o

hydrogen charging for two durations 15 and 30 h r . The reference alloy i s taken as t h a t heat treated in furnace under vacuum.

Table I I : Relative variation in the mechanical properties due to time of hydrogen charging (ageing time) a t -3.0 V/Ag.

...

I t, hr I

A Re%

I

A R ~ %

I

F%*

I

1----_--1__---_--_1---I--- I

1 1 5 1 6 1 5 1 2 3

1

\

30

1

115

1

19

1

75

1

The effect of internal hydrogen on the mechanical properties i s very important when the alloy i s in an overaged condition (190°C, 30 hr).klithout internal hydrogen and ageing heat treatment, the fai 1 ure surfaces show ductile rupture with f l a t surfaces containing s l i p lines, figure 7a. Figure 7b

shows

t h a t

when

the alloy i s aged heat treatment

a t

190°C during 30 hr in the

(7)

C3-592 JOURNAL DE PHYSIQUE

f u r n a c e under vacuum,

a

mixed r u p t u r e t y p e o c c u r s . Deep c r a c k s i n t h e s u b - g r a i n b o u n d a r i e s and many t e a r i n g s t h r o u g h o u t t h e m a t r i x a r e observed.

T h i s r e s u l t p o i n t s o u t t h a t c o a r s e d

6'

p a r t i c l e s ( 8 ) and S ' p h a s e w i t h i n t h e m a t r i x ( 9 ) and a l s o , S ' ( ~ 1 2CuMg) ( 9 ) , T2 ( A 1 2 C u ~ i ) ( 1 7) and A16(Fe, Cu) ( 1 8 ) p a r t i c l e s may b e p r e s e n t i n t h e sub-grain boundaries. With i n t e r n a l hydrogen and a t 500

pm

from t h e s u r f a c e , t h e r u p t u r e t y p e changes from i n t e r g r a n u l a r (10 h r ) t o mixed ( i n t e r

+

t r a n s c r i s t a l l i n e ) (1 5 and 2 0 h r ) and f i n a l l y becomes i n t e r g r a n u l a r ( 3 0 h r ) , f i g u r e 8. However, a t 100

pm

from t h e s u r f a c e , t h e f a i l u r e h a s an i n t e r g r a n u l a r f e a t u r e , i n d e p e n d e n t l y o f t i m e of ageing. The l a s t r e s u l t s prove t h a t hydrogen has d i f f u s e d and e m b r i t t l e d t h e metal a t a d i s t a n c e e q u a l t o o r g r e a t e r than 100

pm

from t h e m e t a l l i c s u r f a c e . The s u r f a c e o x i d e s i s t h e n overcome d u r i n g c a t h o d i c c h a r g i n g i n molten s a l t s b a t h . T h i s i s

not

t h e c a s e w h i l e gaseous hydrogen charging. However t h e r e s t r i c t e d number o f d i s k s l e f t a v a i l a b l e d i d n o t allow t h e n e c e s s a r y i n v e s t i g a t i o n o f t h e p r e s s u r e i n c r e a s e r a t e i n f l u e n c e . T h e r e f o r e , t h e s c a r c e

tests

on d i s k s hydrogen charged by t h i s t e c h n i q u e a r e i n c o n c l u s i v e b u t ought

t o

b e resumed

more

c o n s i s t e n t l y

,

e s p e c i a l 1 y w i t h t h i c k e r d i s k s .

CONCLUSION

I n t h i s work

we

have i n v e s t i g a t e d t h e hydrogen e r n b r i t t l e m e n t o f an A1-Li a1 l o y (8090). The r e s u l t s o b t a i n e d l e a d t o t h e f o l l o w i n g c o n c l u s i o n s :

1 ) Using t h e molten s a l t s b a t h t e c h n i q u e and c a t h o d i c a l l y hydrogen c h a r g e d t h e 8090

-

T351 a1 l o y a t t h e peak t e m p e r a t u r e (1 90°C). The outgased q u a n t i t y of hydrogen i s an i n c r e a s i n g f u n c t i o n

as

t h e t i m e of c h a r g i n g ( a g e i n g t i m e ) and c a t h o d i c p o t e n t i a l l e v e l i n c r e a s e . Molecular hydrogen t r a p p i n g i s p o i n t e d out.

2) Hydrogen may promote d i s l o c a t i o n s d e n s i t y which a r e t h e i n i t i a t i o n s i t e s o f S ' phase. T e n s i l e

stresses

and d u c t i l i t y l o s s a r e t h e n i n c r e a s e d . The e f f e c t of hydrogen i s i m p o r t a n t when t h e a l l o y i s i n t h e overaged c o n d i t i o n .

3 ) Hydrogen promotes a l s o i n t e r g r a n u l a r f a i l u r e , e s p e c i a l 1 y i n t h e overaged c o n d i t i o n . P r e c i p i t a t i o n o f S ' , T2 and A16(Fe, Cu) p a r t i c i e s i n t h e s u b - g r a i n b o u n d a r i e s may i n t e r a c t w i t h hydrogen atoms and t h e embri t t l e m e n t i

s

favoured.

REFERENCES

( 1 ) 5. NOBLE, G.E. THOMSON

-

Metal S c i . J. 5, 114, (1 971).

( 2 ) T.H. SANDERS, E.A. STARKE

-

Acta M e t a l l . 30, 927, (1982).

( 3 ) 8. NgBLE, S.J. HARRIS, K . DINSDALE

-

Metal S c i . J . 16, 425, (1982).

(8)

(4) T.H. SANDERS

-

Proc. 1 s t I n t . A1-Li Conf., p. 63, M e t a l l . Soc. AIME, (1981).

(5) H.M. FLOWER, P.J. GREGSON, C.N.J. TITE, A.K. MUKHOPADHYAY

-

P ~ o c . Al-A1 loys, t h e i r physical and mechanical p r o p e r t i e s

-

E d i t o r s E.A. STARKE J r and T.H. SANDERS J r , U n i v e r s i t y o f V i r g i n i a , C h a r l o t t e s v i l l e , USA, June (1986), p . 743.

( 6 ) I.M. LIFSHITZ, V.V. SLYOZOV

-

J. Phys. Chem. S o l i d s , 19, 35, (1961).

(7) K. DINSDALE, S.J. HARRIS, B. NOBLE

-

I b i d . 4, p. 101.

(8) P.J.E. BISCHLER, J.W. MARTIN

-

I b i d . 5, p. 963.

(9) S.J. HARRIS, B. NOBLE, K. DINSDALE, M. PRIDHAM

-

I b i d . 5, p. 755.

(10) G.M. SCAMANS - Proc. Hydrogen E f f e c t s i n Metals, e d i t e d by I.M. BERNSTEIN and A.W. THOMPSON, The M e t a l l . Soc. o f AIME, Carnegie-Mellon U n i v e r s i t y , PIH, PENNSYLVANIA (1980), p. 467.

( 1 1 ) A. ELKHOLY, J. GALLAND, P. AZOU, P. BASTIEN

-

C.R. Acad. Sci., 284, s 6 r i e C, (1977), p. 363.

(12) J.P. FIDELLE

-

"Hydrogen embrittlement t e s t i n g " ASTM STP 543, 31 (1974), p. 243.

(13) M. NAKASHIMA, M. SAEKI, Y. ARATONO, E. TACHIKAWA

-

Journal o f Nuclear M a t e r i a l s , 116, (1983), p. 141.

(14) F. DEEREVE, Ph. MEYER, N. THORNE

-

Pertes en 1 i t h i u m des a l l i a g e s A1-Li-X, Rapport i n t e r n e de PECHINEY, mars ( 1 986).

(15) J. EASTMAN, T. MATSUMOTO, N. NARITA, F. HEUBAUM, H.K. BIRNBAUM

-

Conf.

Proc. on "Hydrogen i n Metals" E d i t e d by I. M. BERNSTEIN, A.W. THOMPSON Carnegie

-

Me1 l o n U n i v e r s i t y , P i t t s b u r g h , Pennsylvania, U.S.A. (1980), p. 397.

(16) K.S. SHIN, C.G. PARK, M. MESH11

-

I b i d 15, p.209.

( I T ) F.S. LIN, S.B. CHAKRABORTTY, E.A. STARKE J r

-

Met. Trans. 13A (1982), p. 401.

(18) N.J. OWEN, D.J. FIELD, E.P. BUTLER

-

I b i d . 4, p. 1217.

(9)

JOURNAL DE PHYSIQUE

Figure 1 : V a r i a t i o n of Q 5 2 0 ' ~ and 1000

B

C desorded a t as a f u n c t i o n of c a t h o d i c p o t e n t i a l l e v e l and of hydrogen charging (ageing time) ; hydrogen charging temperature = 19O0C.

0 1151 (0lDITlOl DLIW sun ur* s I, 11w~cl + mna sun urn AT -1 114 (1W.O

.

N U T S "1- .IW 1I)O.O

0 ,mu([ "IT"ILY(IWC1

I , h r

F i g u r e 3 : V a r i a t i o n of maximum t r u e s t r e s s a s a f u n c t i o n of e i t h e r t h e hydrogen charging time ( w i t h and w i t h o u t c a t h o d i c p o l a r i z a t i o n ) o r a g e i n g time : peak temperature = 190°C.

t . h r

Figure 2 : V a r i a t i o n of y i e l d s t r e n g t h a s a f u n c t i o n of e i t h e r t h e hydrogen charging time (with and without c a t h o d i c p o l a r i z a t i o n ) o r ageing time ; peak temperature = 190°C.

Figure 4 : V a r i a t i o n of maximum s t r a i n a s a f u n c t i o n of e i t h e r t h e hydrogen charging time (with and without c a t h o d i c p o l a r i z a t i o n ) o r ageing time ; peak temperature = 190°C.

(10)

F i g u r e 5 : View of a d i s k f a i l u r e by i n c r e a s i n g hydrogen gas- 1 p r e s s u r e a t 0.1 MPa.min

.

1

F i g u r e 6 : Disk f a i l u r e p r e s s u r e of hydrogen o r helium gas v e r s u s t h e f a t e of i n c r e a s i n g of t h e g a s and of p r i o r i n t e r n a l hydrogen c h a r g i n g : i s t s e r i e s c o r r e s p o n d s t o n a t u r a l a g e i n g u n t i l 1985, 2nd s e r i e s c o r r e s p o n d s t o n a t u r a l a g e i n g u n t i l 1986.

F i g u r e 7a : S u r f a c e f a i l u r e b y t e n s i l e Figure 7b : Surface failure by tensile t e s t a t room t e m p e r a t u r e o f t e s t a t room t e m p e r a t u r e of 8090-~351 a l l o y . 8090 a l l o y aged a t 190°C

d u r i n g 30 h r .

(11)

JOURNAL DE PHYSIQUE H CHARGING T I M E ( - 3 V / A g , 1 9 0 ° C )

F i g u r e 8 : V a r i a t i o n of t h e t y p e of r u p t u r e i n 8090 a l l o y c a t h o d i c a l l y h y d r o g e n a t e d

(-3V/Ag) a s a f u n c t i o n of lo hr time of h y d r o g e n a t i o n

and t h e d e p t h from t h e specimen s u r f a c e ; peak t e m p e r a t u r e = 190°c.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Following the identification of the structural features of ternary or quaternary phases (T' or 8', TI, S' or S, T2) coprecipitating with 6'-A13Li, the specific

Constant strain and constant load tests characterized the investigated plate material in the LT-direction being not susceptible to stress corrosion cracking.. In

The major factor which tends to limit the toughness, SCC resistance, and tens- ile ductility in 8090 heavy section forgings appears to be the propensity for precip- itation of

This proof stress increment with increasing magnesium content is probably due to solid solution strengthening, the magnitude of which is similar to that observed when