• Aucun résultat trouvé

Node Overlap Removal for 1D Graph Layout: Proof of Theorem 1

N/A
N/A
Protected

Academic year: 2021

Partager "Node Overlap Removal for 1D Graph Layout: Proof of Theorem 1"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: lirmm-01521385

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01521385v2

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Node Overlap Removal for 1D Graph Layout: Proof of Theorem 1

Samiha Fadloun, Pascal Poncelet, Julien Rabatel, Mathieu Roche, Arnaud Sallaberry

To cite this version:

Samiha Fadloun, Pascal Poncelet, Julien Rabatel, Mathieu Roche, Arnaud Sallaberry. Node Overlap Removal for 1D Graph Layout: Proof of Theorem 1. [Research Report] LIRMM (UM, CNRS). 2017.

�lirmm-01521385v2�

(2)

Node Overlap Removal for 1D Graph Layout:

Proof of Theorem 1

Samiha Fadloun 1 , Pascal Poncelet 1 , Julien Rabatel 1 , Mathieu Roche 2 , and Arnaud Sallaberry 3

1

LIRMM, Universit´ e de Montpellier, France firstname.lastname@lirmm.fr,

2

Cirad Montpellier, UMR TETIS, France mathieu.roche@cirad.fr

3

LIRMM, Universit´ e Paul Val´ ery Montpellier, France arnaud.sallaberry@lirmm.fr

Introduction

In this report, we give the complete proof of the theorem 1 of the paper [1]. This theorem states that the method described in the paper meets 4 requirements.

The proof is given for each of these requirements.

Requirement 1 (Optimally using the segment length)

Let us define the nodes v 1 and v |V | such that v 1 = σ −1 (1) and v |V | = σ −1 (|V |).

f (v 1 ) = p 0 (v 1 ) − s(v 1 )

2 +

σ(v

1

)

X

i=1

s(σ −1 (i)) (1)

= 0 − s(v 1 )

2 + s(v 1 ) (2)

= s(v 1 )

2 (3)

f (v |V | ) = p 0 (v |V | ) − s(v |V | )

2 +

σ(v

|V|

)

X

i=1

s(σ −1 (i)) (4)

= l − X

v∈V

s(v) − s(v |V | )

2 + X

v∈V

s(v) (5)

= l − s(v |V | )

2 (6)

We therefore obtain the required values for the first and last node positions.

u

t

(3)

Requirement 2 (No overlapping)

We first develop the definition of f(v) as follows, given that (u, v) ∈ V 2 and σ(u) < σ(v):

f (v) = p 0 (v) − s(v)

2 +

σ(v)

X

i=1

s(σ −1 (i)) (7)

= p 0 (u) + p 0 (v) − p 0 (u) − s(v)

2 +

σ(v)

X

i=1

s(σ −1 (i)) (8)

We isolate from P σ(v)

i=1 s(σ −1 (i)) the nodes ordered until u through the σ ordering function:

f (v) = p 0 (u) + p 0 (v) − p 0 (u) − s(v) 2 +

σ(u)

X

i=1

s(σ −1 (i)) +

σ(v)

X

i=σ(u)+1

s(σ −1 (i))

(9)

By adding s(u) 2s(u) 2 to the right term of the equation, we identify the definition of f (u) and rewrite f (v) w.r.t. f (u):

f (v) =

p 0 (u) − s(u)

2 +

σ(u)

X

i=1

s(σ −1 (i))

+ p 0 (v) − p 0 (u) − s(v)

2 +

σ(v)

X

i=σ(u)+1

s(σ −1 (i)) + s(u) 2

(10)

= f (u) + p 0 (v) − p 0 (u) − s(v)

2 +

σ(v)

X

i=σ(u)+1

s(σ −1 (i)) + s(u)

2 (11)

We extract from P σ(v)

i=σ(u)+1 s(σ −1 (i)) the size of v, thus obtaining an expression of f (v) as a sum of positive terms, provided that p 0 (v) − p 0 (u) is known to be positive.

f (v) = f (u) + p 0 (v) − p 0 (u) + s(v)

2 +

σ(v)−1

X

i=σ(u)+1

s(σ −1 (i)) + s(u)

2 (12)

which is equivalent to:

f (v) − f (u) = p 0 (v) − p 0 (u) + s(v)

2 +

σ(v)−1

X

i=σ(u)+1

s(σ −1 (i)) + s(u)

2 (13)

2

(4)

For two nodes (u, v) ∈ V 2 such that σ(u) < σ(v), p 0 (v) − p 0 (u) ≥ 0. Moreover, the sum of node sizes P σ(v)

i=1 s(σ −1 (i)) is positive. As a result:

f (v) − f (u) ≥ s(u) 2 + s(v)

2 (14)

and by extension:

∀(u, v) ∈ V 2 , |f (v) − f (u)| ≥ s(u)/2 + s(v)/2. (15) u t

Requirement 3 (Preserving initial ordering)

From the proof of Requirement 2, we know that for two nodes (u, v) ∈ V 2 such that σ(u) < σ(v), f (v) −f (u) ≥ s(u)/2 + s(v)/2. Since s(u)/2 + s(v)/2 is strictly positive, so is f(v) − f(u). Hence, ∀(u, v) ∈ V 2 , σ(u) < σ(v) ⇒ f (u) < f(v). u t

Requirement 4 (Preserving relative distances)

Lemma 1. The distance between two consecutive nodes u and v in the final layout is equal to the difference p 0 (v) − p 0 (u). More formally, given two nodes (u, v) ∈ V 2 ,

σ(u) + 1 = σ(v) ⇒ f (v) − s(v)

2 − (f (u) + s(u)

2 ) = p 0 (v) − p 0 (u)

Proof. Let us denote D as f (v) − s(v) 2 − (f (u) + s(u) 2 ). We further develop D by applying the definition of f (v):

D = p 0 (v) − s(v)

2 +

σ(v)

X

i=1

s(σ −1 (i)) − s(v)

2 − (f (u) + s(u)

2 ) (16)

= p 0 (v) − s(v) +

σ(v)

X

i=1

s(σ −1 (i)) − (f (u) + s(u)

2 ) (17)

Then by applying the definition of f (u) = p 0 (u) − s(u) 2 +

σ(u)

P

i=1

s(σ −1 (i):

D = p 0 (v) − s(v) +

σ(v)

X

i=1

s(σ −1 (i)) − p 0 (u) −

σ(u)

X

i=1

s(σ −1 (i)) (18)

(5)

As σ(v) = σ(u) + 1, P σ(v)

i=1 s(σ −1 (i)) − P σ(u)

i=1 s(σ −1 (i)) = s(v), the previous equation can be simplified to proove Lemma 1:

f (v) − s(v)

2 − (f (u) + s(u)

2 ) = p 0 (v) − s(v) − p 0 (u) + s(v) (19)

= p 0 (v) − p 0 (u) (20)

By applying Lemma 1, we need to prove that:

p(v) − p(u) ≥ p(v 0 ) − p(u 0 ) ⇒ p 0 (v) − p 0 (u) ≥ p 0 (v 0 ) − p 0 (u 0 ) We first develop p 0 (v) − p 0 (u) by applying the definition of p:

p 0 (v) − p 0 (u) = p(v) − p min

p max − p min × C − p(u) − p min

p max − p min × C (21) where C = (l − P

x∈V s(x)), and C ≥ 0. Then:

p 0 (v) − p 0 (u) = C

p(v) − p(u) p max − p min

(22)

= C

p max − p min

× (p(v) − p(u)) (23)

Since C 0 = p C

max

−p

min

is positive, we obtain that:

p(v) − p(u) ≥ p(v 0 ) − p(u 0 ) ⇒ C 0 (p(v) − p(u)) ≥ C 0 (p(v 0 ) − p(u 0 )) p(v) − p(u) ≥ p(v 0 ) − p(u 0 ) ⇒ p 0 (v) − p 0 (u) ≥ p 0 (v 0 ) − p 0 (u 0 )

u t

References

1. S. Fadloun, P. Poncelet, J. Rabatel, M. Roche, and A. Sallaberry. Node Overlap Removal for 1D Graph Layout. Proceedings of the 21st International Conference Information Visualisation (IV’17), pp. 224-229, 2017.

4

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to