• Aucun résultat trouvé

La validation de méthode d’analyses comme outil d’évaluation de la fiabilité des résultats de recherche

N/A
N/A
Protected

Academic year: 2021

Partager "La validation de méthode d’analyses comme outil d’évaluation de la fiabilité des résultats de recherche"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02800279

https://hal.inrae.fr/hal-02800279

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

La validation de méthode d’analyses comme outil d’évaluation de la fiabilité des résultats de recherche

Elodie Ollivier, Anne Jaulin, Virginie Grondin, Amelie Trouve, Nathalie Cheviron

To cite this version:

Elodie Ollivier, Anne Jaulin, Virginie Grondin, Amelie Trouve, Nathalie Cheviron. La validation de méthode d’analyses comme outil d’évaluation de la fiabilité des résultats de recherche. Les 14èmes Journées de la Mesure et de la Métrologie, Oct 2016, La Chaussée-St-Victor, France. 2016. �hal- 02800279�

(2)

THE VALIDATION OF ANALYTICAL METHODS AS AN EVALUATION TOOL OF RESEARCH RESULTS RELIABILITY

Ollivier Elodie, Jaulin Anne, Grondin Virginie, Trouvé Amélie, Cheviron Nathalie

Context

UMR ECOSYS INRA, AgroParisTech, Université Paris-Saclay, plateforme Biochem-Env, 78026, Versailles, FRANCE

Conclusions

Validation of analytical methods by the accuracy profile approach

Results

The platform Biochem-Env:

Was created in 2012 by INRA (French National Institute for Agricultural Research) with the support of the ANR program “Investissements d’avenir” as a service of the infrastructure ANAEE-France, For the biochemical characterization of natural environments (soils and sediments) and associated macrofauna in research projects,

By developing and validating methods in order to provide traceable analytical data with high level of confidence.

For intra-laboratory validation of quantitative analytical methods, the INRA’s Quality Guidelines for research and experimental units (2013) recommends “the accuracy profile” method according to the NF V03-110:2010 standard.

Could we use a same internally developed method to quantify proteins in various biological models ?

Material and methods

The validation of this analytical method helped us to:

- Determine the performance of the method

- Improve the steps for sample preparation and analysis - Assess the matrix effect

- Pointed out the importance of an experimented analyst

Analytical method for protein quantification in 4 biological models was validated with a good accuracy considering scientific specification and needs.

Accuracy profile approach:

- Global statistical combination of trueness and precision and pragmatic

- Simple graphic interpretation, allowing a clear and easy comparison between method performance and intended use and, a rapid decision

- No limit in the choice of the calibration model => large scope range

- Methods with very low variability can be validated (not rejected by a H0) - Diagnostic tool, matrix effect taken into account

- Risks and guarantees managed for both end-users and laboratories - Estimation of measurement uncertainty

Purpose:

To provide guarantees on analytical results, for the analyst and the end-user

To demonstrate analytical method fitting with the scientific objectives

To allow laboratory recognition

To improve analysts working practices

Benefits of the accuracy profile approach:

An overall statistical method combining trueness and precision A standardized approach : NF V03-110:2010

A simple and graphic interpretation for a rapid decision The determination of the scope of the method

The determination of quantification limits An estimation of measurement uncertainty

Protein determination method by the Bicinchoninic acid (Ref. QPBCA-1KT, QuantiPro BCA Assay Kit, Sigma-Aldrich)

Aporrectodea icterica (earthworm) Poecilus cupreus (beetle)

Gammarus pulex (gammarid) Alopecosa pulverulenta (spider)

Validation method according to the « accuracy profile » approach (NF V03- 110:2010 standard):

Selection of validation samples:

- Spiked reference material: Bovine Serum Albumine - 7 levels (0.5 ; 1 ; 2 ; 5 ; 10 ; 20 ; 30 mg.mL-1)

- 3 replicates (repeatability)

- 6 days of analysis (intermediate precision) - 2 analysts (intermediate precision)

Calibration (indirect quantitative analysis):

- 6 levels (0 ; 2 ; 4 ; 8 ; 16 ; 20 ; 30 ; 40 mg.mL-1) - Regression model : polynomial

x x x x xm x x x x x

xv

Trueness (method) Precision

(method)

Accuracy (result)

x : measures

xm : mean value of measurements xv : true value

Definition of the needs

Optimisation of the method Scientific approach

Choice of the method

Research question

Program analysis Performances

Interpretation

Characterisation of the method

Routine analysis Quality control

Results

Validation of analytical method

Estimation of measurement uncertainty

Question : Is this quantitative analytical method fit for purpose in terms of trueness and precision ?

λ-acceptability limits fixed at ±10%

Conclusion :

Data are obtained with internal reference material (spiking):

True and precise method between 0,4 et 2,4 mg/L (scope of the method)

Low limit of quantification (LQ) = 0,4 mg/L

The method fits to the scientific needs for a direct application with a measurement uncertainty estimated at maximum 5% in the field of the validated method.

 In the most critical conditions of the scope of the method (low LQ), for each future sample, the method will provide results with the required accuracy. In the wider field of application, the likelihood of obtaining non

acceptable results is very low.

β-expectation tolerance limits fixed at ±80%

4 biological models

Biological model effect Matrix effect

Analyst effect

Performance of the method

Limit of Quantification LQ:

2,7 mg/mL

Scope of the method:

2,7 to 30 mg/mL

Measurement uncertainty range (U95%) : 10 to 30%

Fixed criteria:

β= ±80% (expectation tolerance limits)

λ= ±20% (acceptability limits)

1 analyst 2 analysts

Decision on the fitness for

purpose

- Adapt λ-acceptability values according to the concentration range

- Extend the method to other biological models and biomarkers (Lipid, glycogen…)

Biochem-Env

Perspectives :

Correction factor application

Références

Documents relatifs

For example, I have done occasional paid consulting contracts for government agencies (e.g., Genome Canada and Health Canada), have received modest honoraria for

These biochemical markers revealed a low genetic diversity (mean heterozygosity) over the screened area. The low level of diversity observed for the allozymes on a large

The activities of the Artery Business Committee are clearly focused on these areas yet ABC restricts its activities to those aspects of the depression of the

fasse oublier la place tout à fait centrale qu’occupe l’éthique dans sa pensée 9. Or, ce point revêt une importance particulière pour nos développements ultérieurs. Si

Au vu des résultats de notre revue de littérature, les effets de l’ELT des particules fines et de la pollution liée au trafic routier sur l’incidence des MCV (indicateur global),

D’après les données disponibles au 3 janvier 2021, 2,9 millions de salariés sont couverts au moins un jour du mois de janvier 2021 par une demande d’autorisation préalable

This paper examines an ongoing study into the experimental characterization of individual fibers (in terms of airflow resistivity, open porosity, tortuosity,

Even though the four probes used have different character- istics in terms of array geometry and frequency response, the experimental results support the conclusions, suggesting