• Aucun résultat trouvé

MONOTONIC AND THERMOMECHANICAL TESTING OF P/M NiTi

N/A
N/A
Protected

Academic year: 2021

Partager "MONOTONIC AND THERMOMECHANICAL TESTING OF P/M NiTi"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00222154

https://hal.archives-ouvertes.fr/jpa-00222154

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MONOTONIC AND THERMOMECHANICAL TESTING OF P/M NiTi

W. Johnson, J. Domingue, S. Reichman, F. Sczerzenie

To cite this version:

W. Johnson, J. Domingue, S. Reichman, F. Sczerzenie. MONOTONIC AND THERMOMECHAN- ICAL TESTING OF P/M NiTi. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-291-C4-296.

�10.1051/jphyscol:1982440�. �jpa-00222154�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, suppidment au n o 12, Tome 43, de'cembre 1982 page C4-291

MONOTONIC AND THERMOMECHANICAL TEST1 NG OF P/M N i T i

W.A. J o h n s o n , J . A . D o m i n g u e , S.H. R e i c h m a n a n d F . E . S c z e r z e n i e Special Metals Co~.poration, New Hartford, N . Y . , U.S.A.

( A c c e p t e d 9 A u g u s t 1982)

A b s t r a c t

-

P/M N i T i f o r t h e t e s t program was manufactured b y t h e S p e c i a l M e t a l s powder m e t a l l u r g y process and c o n v e r t e d t o w i r e b y h o t swaging and w i r e drawing. The mechanical t e s t program was undertaken i n o r d e r t o inves- t i g a t e t h e performance o f N i T i b o t h f o r s c i e n t i f i c reasons and f o r b e t t e r u n d e r s t a n d i n g o f m a t e r i a l performance as i t s p e c i f i c a l l y p e r t a i n s t o shape memory e f f e c t (SME) d e v i c e s . Two t y p e s o f m e c h a n i c a l t e s t s , m o n o t o n i c d e f o r m a t i o n l r e c o v e r y and thermomechanical c y c l i c d e f o r m a t ion, were used t o c h a r a c t e r i z e performance. As a n t i c i p a t e d , monotonic mechanical p r o p e r t i e s were e q u i v a l e n t t o cast/wrought p r o p e r t i e s . I n d i v i d u a l N i T i w i r e specimens were deformed i n an i n c r e m e n t a l s e r i e s up t o 30 p e r c e n t t o t a l e n g i n e e r i n g s t r a i n . These p r e s t r a i n e d specimens f o l l o w e d t h r e e e x p e r i m e n t a l t h e r m a l c y c l e s w h i c h m o n i t o r e d d e f l e c t i o n , l o a d , and e n e r g y d u r i n g t h e s h a p e r e c o v e r y - h e a t i n g c y c l e . The aforementioned t h r e e t e c h n i q u e s were used t o p r o v i d e a more complete u n d e r s t a n d i n g o f t h e shape r e c o v e r y response. Each measurement t e c h n i q u e demonstrated a maximum i n t h e r e c o v e r y r e s u l t i n g f r o m an 8 t o 1 2 p e r c e n t t o t a l i n p u t s t r a i n . Monotonic r e s u l t s i n d i c a t e t h a t t h e maximum r e c o v e r y s t r a i n i s a measure o f SME c a p a c i t y t o p r o v i d e a s i n g l e o u t p u t o f d e f l e c t i o n ( o r f o r c e ) , which a r e p o t e n t i a l l y u s e f u l d a t a f o r SME d e v i c e s p e r f o r m i n g m o n o t o n i c a l l y . Thermomechanical t e s t i n g was conducted u s i n g a s e r v o - h y d r a u l i c t e s t machine i n c o n j u n c t i o n w i t h a c o n t r o l l e d tem- p e r a t u r e e n v i r o n m e n t a l chamber i n an a t t e m p t t o s i m u l a t e a c y c l i c SME d e v i c e . A f t e r d e f o r m a t i o n t o a predetermined s t r a i n , s t r o k e p o s i t i o n was h e l d con- s t a n t as t h e specimen was t h e r m a l l y c y c l e d above Af and t h e r e s u l t i n g l o a d was m o n i t o r e d ( s t r a i n c o n t r o l ) . T h i s t e s t mode r e s u l t e d i n permanent damage and l o s s o f SME w i t h each thermomechanical c y c l e , m a n i f e s t e d as a decrease i n l o a d and a v a i l a b l e work d e l i v e r e d b y t h e specimen. I n l o a d c o n t r o l , t h e specimen was deformed t o a predetermined s t r a i n , t h e l o a d reduced, and main- t a i n e d a t a p p r o x i m a t e l y z e r o d u r i n g t h e t h e r m a l c y c l e above Af. T h i s l o a d c o n t r o l t e c h n i q u e proved t o b e much l e s s damaging t o t h e specimen. Load c o n t r o l t e s t i n g was c l e a r l y t h e s u p e r i o r t e c h n i q u e f o r e v a l u a t i n g p e r f o r - mance o f c y c l i c SME d e v i c e s .

I n t r o d u c t i o n

-

Work has been underway a t S p e c i a l M e t a l s C o r p o r a t i o n t o understand t h e mechanical/metallurgical performance o f powder m e t a l l u r g i c a l (P/M) N i T i . S i n g l e t h e r m a l c y c l e monotonic t e s t i n g demonstrates t h e e f f e c t of s t r e s s and s t r a i n on t h e t r a n s f o r m a t i o n temperature, f o r c e l d e f l e c t i o n , and e n e r g y o f t h e phase t r a n s f o r m a - t i o n . P r e s t r a i n i n c r e a s e s t h e t r a n s f o r m a t i o n temperature; e x c e s s i v e p r e s t r a i n a t t e n u a t e s t h e r e a c t i o n . P r o p e r t i e s degrade w i t h a s i n g l e p r e s t r a i n and t h e r m a l c y c l e . S t r a i n and l o a d c o n t r o l thermomechan i c a l c y c l i n g t e s t s a r e compared.

EXPERIMENTAL PROCEDURES

Method o f Manufacture

-

N i T i f o r t h e t e s t p r o g r a was manufactured b y a powder m e t a l 1 u r g i c a l process developed a t S p e c i a l M e t a l s Y l . 2 ) P r e a l l o y e d Vacuum induc- t i o n M e l t e d (VIM) and Vacuum Arc Remelted (VAR) N i T i i n g o t s were VIM r e m e l t e d and d i s i n t e g r a t e d u s i n g a h i g h p r e s s u r e argon stream. R e s u l t i n g powder always remained i n an i n e r t environment. Powder was screened t o -60 mesh; loaded i n t o s t a i n l e s s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982440

(3)

C4-292 JOURNAL DE PHYSIQUE

s t e e l cans and h o t i s o s t a t i c a l l y pressed (HIP'ed) i n t o b i l l e t s , which were t y p i c a l l y 13 mm diameter and 600 mm long. B i l l e t s were converted t o w i r e .

Mechanical Testing

-

Mechanical t e s t i n g was conducted on a MTS servo-hydraulic ma- chine. Three types o f t e s t s c h a r a c t e r i z e d N i T i response t o s t r e s s and s t r a i n : 1) monotonic/isothermal, 2) monotonic p l u s s i n g l e thermal cycle, and 3) thermo- mechanical c y l ing. An environmental temperature chamber was used f o r a l l t e s t i n g . A t y p i c a l p r o d u c t i o n heat was selected.

Monotonic Testing

-

Specimens were t e n s i l e t e s t e d t o f a i l u r e i n an isothermal envi- ronment above (140°C) and below (-23°C) t h e zero s t r a i n Af and Mf, r e s p e c t i v e l y . Monotonic Testing w i t h S i n g l e Thermal Cycle

-

Specimens were cooled below t h e Mf temperature and subsequently deformed i n an incremental s e r i e s up t o 30 percent p r e s t r a i n . Specimens f o l l o w e d t h e same thermal path t o a u s t e n i t e w h i l e d e f l e c t i o n , load, and energy were monitored independently d u r i n g t h e h e a t i n g c y c l e . Trans- format i o n energy o f t h e specimens was measured w i t h t h e d i f f e r e n t i a l scanning c a l o r i m e t e r (DSC) module of t h e DuPont 990 Thermal Analyzer.

Thermomechanical C y c l i c Testing

-

T h i s was conducted t o s i m u l a t e t h e performance o f a SME device. I n i t i a l l y specimens were cooled below Mf and p r e s t r a i n e d :

S t r a i n Control

-

Grips were c o n t r o l l e d a t t h e f i x e d p o s i t i o n and t h e specimen t h e r m a l l y cycled above Af. This c y c l e was repeated t e n times, load monitored, and subsequently t h e area under t h e load-temperature curve measured.

Load Control Cycling

-

Specimen load was reduced t o zero and t h e specimen t h e r - maJly cycled above Af. G r i p motion was monitored as a f u n c t i o n o f temperature.

RESULTS AND DISCUSSION

Monotonic, Isothermal Testing

-

T e n s i l e curves f o r b o t h t h e m a r t e n s i t i c and a s t e n i t i c phases are approximately e q u i v a l e n t f o r PIM and castlwrought N i T i

.Y3i

A u s t e n i t e and m a r t e n s i t e s t a r t and f i n i s h temperatures, AS, Af and Ms, Mf, respec- t i v e l y i n t h e unstressed c o n d i t i o n are shown i n Table I.

Monotonic Testing w i t h S i n g l e Thermal Cycle

-

Specimens p r e s t r a i n e d t o 2, 4, 6, 8,

z n e e r i n g s t r a i n are c u t from t h e gage sec-

t i o n , then t e s t e d b y DSC t o measure t r a n s f o r m a t i o n temperature and energy (Table I ) . I n F i g u r e 1 As increases most d r a m a t i c a l l y between 4 and 6 percent p r e s t r a i n . As increases from 57°C i n t h e unstrained c o n d i t i o n t o 113°C f o r 30 percent pre- s t r a i n . Ms temperature increases a t a slower r a t e .

F i g u r e 2 shows endothermic-austenit i c r e a c t i o n energies constant up t o 4 per- cent p r e s t r a i n . Reaction energy reaches a maximum a t 8 percent. Above 8 percent t h e energy dramat i c a l l y decreases.

TABLE I

1 I I

React i o n Energy

" C

I I

c a l l g r

I

%

I

Pre-

I

As

I

Af

I

MS

1

Mf

I I

A

I

s t r a i n

I I I I

37

1

27

1 1 I I

5.14

1

5.14

1 I

0 5 7 69

1

12

1

2 1

59

1

77

1

39 1 2 0

1 1

5.13 1 6 . 1 9

1

18

1

4 [ 59 [ 75 ( 3 9 1 1 7

1 1

5.29 1 5 . 4 3

1

16

1

6

1

8 1

1

89 1 4 2

1

3

1 1

5.39 1 6 . 1 6

1

8

1

8

1

87

1

96 1 4 3

1

4

1 1

5.68 1 4 . 8 3

1

9

1

10

1

93

1

98 1 4 2

1

8

1 1

5.39 1 5 . 0 1

1

5

1

15 1 1 0 2

1

108 1 4 4 [ 15

1 1

4.85

1

3.40

1

6

1

20 1 1 0 6

1

115 1 4 4 1 1 6

1 1

4.24 1 2 . 7 7

I

9

1

25 1 1 1 1 1 1 2 1 [ 45 1 1 5

1 1

3.46 1 3 . 6 1

1

10

1

30

1

113

1

133

1

53

1

13

I1

2.08

1

1.94

1

20

1

(4)

-

a

I

- -

I

I I I

I I

0 5 10 15 20 25 30

Total Prestrain, %

FIGURE 1. Onset o f A u s t e n i t e Reaction as a Function o f T o t a l P r e s t r a i n .

Austenite Reaction Energy, cal/g

6

0

0 5 10 15 20 25 30

Total Prestrain, %

FIGURE 2. A u s t e n i t i c Reaction Energy as a Function o f T o t a l P r e s t r a i n .

(5)

JOURNAL DE PHYSIQUE

The maximum i n t h e a u s t e n i t i c e n e r g y a p p r o x i m a t e l y c o i n c i d e s w i t h t h e end o f t h e h o r i z o n t a l r e g i o n o f a n a i v e m a r t e n s i t e t e n s i l e c u r v e and t h e onset o f non- r e c o v e r a b l e p l a s t i c s t r a i n . A moderate amount o f p l a s t i c s t r a i n i n c r e a s e s t h e r e c o v e r a b l e t r a n s f o r m a t i o n energy. A c o n t r o l l e d amount o f d i s l o c a t i o n m o t i o n and d e f e c t d e b r i s w i l l a s s i s t s h e a r i n g and u n s h e a r i n g o f t h e m a r t e n s i t e , a l l o w i n g more energy s t o r a g e . Excessive s t r a i n impedes i t . S p e c i f i c s t r a i n and t h e r m a l c y c l i n g c l e a r s t h e m a t r i x o f d i s l o c a t i o n d e b r i s , and d e p o s i t s o r induces d i s l o c a t i o n n e t - work f o r m a t i o n a t m a r t e n s i t e - m a r t e n s i t e i n t e r f a c e s , p r o v i d i n g an easy t r a n s f o r m a - t i o n r e g i o n w i t h d i s t i n c t v o l u m e t r i c l i m i t s . D i s l o c a t i o n t a n g l e s p r o v i d e d i s t i n c t i n t e r f a c i a l demarcation between m a r t e n s i t e p l a t s b e x e r t i n g back s t r e s s e s on t h e l a t t i c e and t h u s i n f l u e n c i n g t h e t r a n s f ~ r m a t i o n . ~ ~ - ~ f

T a b l e I shows A TA - A versus p r e s t r a i n f o r t h e same specimens. The t r a n s - f o r m a t i o n t e m p e r a t u r e r 8 n g l reaches a minimum o f 5°C a t 1 0 p e r c e n t p r e s t r a i n , t h e n i n c r e a s e s t o 20°C a t 30 p e r c e n t . A u s t e n i t i c r e a c t i o n e n e r g y decreases o v e r t h e same 1 0 t o 30 p e r c e n t p r e s t r a i n range. C o n t r o l l e d i n p u t s t r a i n a l l o w s t h e e n t i r e t r a n s - f o r m a t i o n t o o c c u r o v e r a v e r y narrow t e m p e r a t u r e range, t h u s a s s i s t i n g i t s comple- t i o n . Excessive p l a s t i c f l o w decreases r e a c t i o n energy and broadens t r a n s f o r m a t i o n temperature range. Narrower t r a n s f o r m a t i o n t e m p e r a t u r e range imp1 i e s f a v o r a b l e d i s l o c a t i o n t a n g l e s , a l l o w i n g e a s i e r u n s h e a r i n g o f p r e f e r r e d m a r t e n s i t e v a r i a n t s . E v e n t u a l l y t h e d i s l o c a t i o n t a n g l e s a t t e n u a t e t h e r e a c t i o n . Thermal e n e r g y must i n c r e a s e t o induce t r a n s f o r m a t i o n ; AS increases, and f i n a l 1 y t h e r e a c t i o n tempera- t u r e range i n c r e a s e s .

S t r a i n C o n t r o l T e s t i n g w i t h S i n g l e Thermal C y c l e

-

A f t e r p r e s t r a i n i n g and upon h e a t i n g , t h e specimen c o n t r a c t s . L o n g i t u d i n a l c o n t r a c t i o n i s n o t p e r m i t t e d due t o f i x e d g r i p p o s i t i o n . The specimen t r a n s m i t s f o r c e t o t h e t e n s i l e machine and does work upon i t s e l f , r e s u l t i n g i n t r a n s f o r m a t i o n a l p l a s t i c damage and d e g r a d a t i o n o f SME. F i g u r e 3 shows t h a t r e c o v e r e d s t r e s s i n c r e a s e s w i t h t o t a l p r e s t r a i n up t o 8 percent; above which i t decreases.

Recovery Stress

Ksi MPa

Total Prestrain, % FIGURE 3. Recovery S t r e s s vs. T o t a l

P r e s t r a i n

Recovered Strain, %

0 5 10 15 20 25 30 Total Prestrain, %

FIGURE 4. Recovered S t r a i n vs. T o t a l P r e s t r a i n .

Load C o n t r o l T e s t i n g w i t h S i n g l e Thermal Cycle

-

F i g u r e 4 shows t h a t l o w p r e s t r a i n s r e s u l t i n m i l d l y e f f e c t i v e r e c o v e r y . Recovered s t r a i n i n c r e a s e s t o 5.6 p e r c e n t a t 15 p e r c e n t p r e s t r a i n , above which p l a s t i c d e f o r m a t i o n a t t e n u a t e s SME and r e c o v e r a b l e s t r a i n . Recovered s t r a i n decreases r a p i d l y above 20 p e r c e n t p r e s t r a i n . R e s u l t s

(6)

f o r n a i v e w i r e i n d i c a t e t h a t maximum r e c o v e r e d s t r a i n r e q u i r e s l a r g e p r e s t r a i n s . O v e r s t r a i n i n g may b e u s e f u l f o r d e v i c e s r e q u i r i n g a s i n g l e shape r e c o v e r y response.

Very l a r g e p r e s t r a i n s (15 p e r c e n t ) s h o u l d be avoided i n c y c l i c d e v i c e s .

Thermomechanical C y c l i c S t r a i n C o n t r o l T e s t i n g

-

P l a s t i c damage i s a n t i c i p a t e d f o r t h i s t e s t mode, an e x t r a p o l a t i o n of t h e s i n g l e c y c l e t e s t . Two specimens a r e t e s t e d u s i n g a c y c l i c 4 and 8 p e r c e n t t o t a l p r e s t r a i n . Areas under t h e f o r c e - t e m p e r a t u r e curves a r e p l o t t e d vs. c y c l e s i n F i g u r e 5 . While t h e specimen i s n o t a l l o w e d t o c o n t r a c t l o n g i t u d i n a l l y , i t c o n t r a c t s r a d i a l 1 y making t h e f o r c e - t e m p e r a t u r e c u r v e e q u i v a l e n t t o a f o r c e d e f l e c t i o n , o r work c u r v e . Both p r e s t r a i n s show a p p r o x i m a t e l y e x p o n e n t i a l decay o f t h e a r e a under t h e F-T c u r v e .

Force-Temperature Pound-OC

1 2 0

r

Newton-OC 8% Strain

A

4% Strain

0 2 4 6 8 1 0

Cycles

FIGURE 5 . Degradation o f U s e f u l Work w i t h Repeated Thermal Cycl i n g Load C o n t r o l Thermomechanical Cycl i n g

T o t a l i n p u t s t r a i n i s chosen a t f o u r p e r c e n t , c o i n c i d i n g w i t h t h e s t r a i n c o n t r o l t e s t y e t a v o i d i n g e x c e s s i v e nonrecoverable p l a s t i c damage. For a c o m p l e t e l y n a i v e specimen, a t o t a l i n p u t s t r a i n o f 4 p e r c e n t ( 3 . 6 p e r c e n t p l a s t i c ) r e s u l t s i n r e c o v e r a b l e s t r a i n o f o n l y 2.2 p e r c e n t on t h e f i r s t c y c l e . A d d i t i o n a l thermomechan-

i c a l c y c l e s i n c r e a s e r e c o v e r a b l e s t r a i n , which a s y m p t o t i c a l l y approaches t o t a l i n p u t s t r a i n . F i g u r e 6 shows t h e r a t i o o f r e c o v e r e d s t r a i n t o t o t a l s t r a i n vs.

t h e r m a l c y c l e s . A b r e a k - i n p e r i o d f o r t h e w i r e i s a n t i c i p a t e d ( s a t u r a t i o n o f r e c o v e r y s t r a i n , as a f u n c t i o n o f c y c l e s ) . I t i s f o r t u i t o u s t h a t s a t u r a t i o n occurs a t t h e t o t a l i n p u t s t r a i n . S a t u r a t i o n ( c r i t i c a l c y c l i c h i s t o r y ) s h o u l d c o i n c i d e w i t h t h e i n p u t p l a s t i c s t r a i n . The f o r t u i t o u s n a t u r e o f t h e d a t a r e s u l t s f r o m t h e f a c t t h a t s t r a i n r e c o v e r y i s confounded b y t h e r m a l expansion, e l a s t i c and a n e l a s t i c r e c o v e r y , two-way SME, and t r a n s f o r m a t i o n a l r a t c h e t i n g . F u t u r e l o a d c o n t r o l t e s t -

i n g w i l l s e p a r a t e t h e SME f r o m o t h e r t y p e s o f d e f o r m a t i o n .

N* i s d e f i n e d as t h e c r i t i c a l c y c l i c h i s t o r y t o o b t a i n complete SME r e c o v e r y . The e n g i n e e r now has a p r a c t i c a l d e s i g n t o o l t o d e t e r m i n e t h e number of c y c l e s f o r component b r e a k - i n . C r i t i c a l c y c l i c h i s t o r y t o g e n e r a t e complete break- i n w i l l be a s t r o n g f u n c t i o n o f m e t a l w o r k i n g and m e t a l l u r g i c a l parameters. Metal working h i s t o r y w i l l m a n i f e s t i t s e l f as r e s i d u a l s t r e s s e s and c r y s t a l t e x t u r e . M e t a l l u r - g i c a l parameters w i l l a l t e r performance due t o g r a i n s i z e and geometry v a r i a t i o n s , powder p a r t i c l e s i z e , second phase p a r t i c l e s , e t c . Hence i t i s i m p o r t a n t t o d e t e r - mine c r i t i c a l c y c l i c h i s t o r y under s i m u l a t e d component o p e r a t i n g c o n d i t i o n s .

(7)

JOURNAL DE PHYSIQUE

Strain Recovery

i

Strain Inout

Total Input Strain =

4%

N*= Critical Cyclic History to Generate Full SME Recovery

I

I I I I

I

I

1

0 2 4 6 8

A,

10 12

Cycles

FIGURE 6 . C r i t i c a l C y c l i c H i s t o r y f o r SME Recovery.

CONCLUSIONS

Monotonic I s o t h e r m a l T e s t i n g

T e n s i l e p r o p e r t i e s o f P/M N i T i are e q u i v a l e n t t o cast/wrought p r o p e r t i e s Monotonic T e s t i n g w i t h a S i n g l e Thermal Cycle

As temperature increases w i t h i n c r e a s i n g i n p u t s t r a i n .

A u s t e n i t i c r e a c t i o n energy passes through a maximum b e f o r e decreasing r a p i d l y w i t h i n c r e a s i n g i n p u t s t r a i n .

ATA -A

,

t h e a b i l i t y t o s t a r t and complete t h e a u s t e n i t i c r e a c t i o n , r a p i d l y d e d e a f e s , t h e n r a p i d l y increases w i t h p r e s t r a i n .

C o n t r o l l e d p r e s t r a i n i s b e n e f i c i a l t o s t r e s s and s t r a i n recovery; excessive p r e s t r a i n r e s u l t s i n l o s s o f SME.

Therrnomechanical C y c l i n g - S t r a i n C o n t r o l

R e p e t i t i v e c y c l i n g r e s u l t s i n t h e l o s s o f SME and c o n c e i v a b l y c a t a s t r o p h i c component f a i l u r e . T h i s mode o f o p e r a t i o n i s ill s u i t e d f o r h i g h c y c l e devices.

Thermomechanical C y c l i n g

-

Load C o n t r o l

Test mode r e s u l t s i n improved shape r e c o v e r y .

N* i s conceived f o r a unique thermomechanical h i s t o r y .

Use o f N* f o r mechanical design r e q u i r e s t e s t i n g based upon r e a l d e v i c e o p e r a t i n g c o n d i t i o n s o r an a c c u r a t e t h e o r e t i c a l model.

ACKNOWLEDGEMENTS: The authors wish t o express thanks t o T. D r e s s e l f o r h i s thermo- mechanical t e s t i n g experiments, and t o T. L. Rowlands, S. L. P r a t t and R. W. M a r t i n . REFERENCES

1. Johnson W.A., Domingue J.A., and Reichrnan S.H. ( i n p r e s s ) (1982).

2. Podob M.T., Johnson W.A., and Reichman S.H., Proc. N i t i n o l Heat Engine Conf., MP 79-441, S i l v e r Spring, MD (1978).

3. Jackson C.M., e t a l . , N i t i n o l - T h e A l l o y w i t h a Memory, NASA-SP 5110 (1972).

4. P e r k i n s J., e t a l . , Shape Mem. E f f e c t s i n A l l o y s , Proc. I n t . Symp. on Shape Mem. E f f e c t s and Appl., Plenum Press, NY (1975) 273.

5 . B a l l A., e t al., Proc. I n t . Conf. S t r . Met. and A l l o y s , Trans. Jap. I n s t . Met. - 9 Supp (1968) 291.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to