• Aucun résultat trouvé

LASER-INDUCED TRANSIENT GRATINGS : THE METHOD AND ITS APPLICATIONS

N/A
N/A
Protected

Academic year: 2021

Partager "LASER-INDUCED TRANSIENT GRATINGS : THE METHOD AND ITS APPLICATIONS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00227102

https://hal.archives-ouvertes.fr/jpa-00227102

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LASER-INDUCED TRANSIENT GRATINGS : THE METHOD AND ITS APPLICATIONS

R. Casalegno

To cite this version:

R. Casalegno. LASER-INDUCED TRANSIENT GRATINGS : THE METHOD AND ITS APPLICA- TIONS. Journal de Physique Colloques, 1987, 48 (C7), pp.C7-405-C7-408. �10.1051/jphyscol:1987797�.

�jpa-00227102�

(2)

JOURNAL DE PHYSIQIJE

Colloque C7, suppl6ment

au

n012, Tome

48,

decembre 1987

LASER-INDUCED TRANSIENT GRATINGS : THE METHOD AND ITS APPLICATIONS

R . CASALEGNO

Zaboratoire de Spectrombtrie Physique associb au CNRS,

Universite Scientifique, Technologique et Mbdical de Grenoble, B P 87, F-38402 Saint-Martin-d'Hclres Cedex, France

Abstract

-

Transient g r a t i n g techniques are shown t o bc a very w e l l adapted method t o f o l l o w t h e response o f a m a t e r i a l t o s h o r t laser. e x c i t a t i o n pulses. Besides i t s enhanced s e n s i t i v i t y t h i s technique i s s u i t e d f o r t h e study o f processes r e q u i r i n g a s p a t i a l l y modulated e x c i t a t i o n o f t h e medium. The choice o f experimental condi- t i o n s h ' i l l s e l e c t t h e response mechanisms and generate d i f f e r e n t types o f g r a t i n g s . Each type w i l l be i l l u s t r a t e d by an example.

INTRODUCTION

The development o f t h e t r a n s i e n t g r a t i n g techniquefollowed t h e c a p a b i l i t i e s o f laser sources : s h o r t e r pulses g i v e t h e p o s s i b i l i t y t o record f a s t e r t r a n s i e n t s o f a sys- tem. The g r a t i n g i s produced by c r o s s i n g two laser beams i n t h e material under in- v e s t i g a t i o n : t h e i r interference r e a l i s e s a s p a t i a l l y modulated i n t e n s i t y (and/or p o l a r i z a t i o n ) d i s t r i b u t i o n and t h e c o u p l i n g o f t h c l i g h t f i e l d w i t h t h e medium crea- t e s i n t u r n a s p a t i a l modulation o f t h e o p t i c a l p r o p e r t i e s o f t h e medium, i.e. a g r a t i n g . The system then e x h i b i t s a t r a n s i e n t behaviour and r e l a x e s w i t h one o r more c h a r a c t e r i s t i c times.

A

t h i r d laser (probe) beam i s d i f f r a c t e d on t h e g r a t i n g and t h e temporal e v o l u t i o n o f t h e s

i

yna

I

y i ves i nformat ions on t h e r e l a x a t i o n t ime(s)

.

The

me char^ i

sms

i

nvol vcd in, t h c g r a t i n g formation and decay can be selected by a pro- per choice o f experimental c o n d i t i o n s . As t h e f i e l d o f a p p l i c a t i o n s i s very wide and has already been i n t e n s i v e l y explored / I / , we s h a l l o u t l i n e here some s p e c i f i c features o f t h e method. We

w i l l

not consider t h e f o l l o w i n g s i t u a t i o n s more e a s i l y

i n t c r p r e t c d w i t h i n other

theoretical

frames : i ) zero o r near zero t i m delay bet- ween pump and probe pu

I

ses and i

i

) two pump pu

l

ses o f d i f f e r e n t frequency ( m v i ng g r a t

i

ngs

/ 2 / ) ,

s

i

t u a t ions more o f t e n and conven

i

ent

l

y analyzed by four-wave m

i

x i ng,

i i

i

) t

i

me delay between t h e two pump pu

l

ses more o f t e n def

i

ned as photon echoes.

BASIC PRINCIPLES

The ~ o m e t r y used f o r t h c production o f a g r a t i n g i s shown i n F i g . 1 . Two laser beams w i t h wave vectors

k

1and . k2, obtained by s p l i t t i n g a s i n g l e beam, i n t e r s e c t a t an angle 9 and create an ~ n t e r f e r e n c e p a t t e r n .

.-d,

Fiq. I Gratinq qeometry

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987797

(3)

JOURNAL DE PHYSIQUE

The g r a t i n g wave-vector q i s such t h a t

kl-k

= + q and t h e spat

i

a

l

p e r i o d

A

= 2n/q

i s r e l a t e d t o t h e e x c i t a t i o n

l i

ght waveleng&

'in

t h e m a t e r i a l ie by

A

= A / ( 2 s i n

e /

2).

The response o f t h e mater

i

a

l

i s expressed by a m o d i f i c a t i o n o f t h e c o k

l

ex r e - f r a c t

i

ve index = n +

i

k . An and

A K

w

i l l

be t h e modulation depths o f t h e r e f r a c t i ve

index n and o f t h e absorption constant

K.

A K = 0 defines a pure phase g r a t i n g and An = 0 a pure absorbing g r a t i n g .

The d e t e c t i o n o f t h e g r a t i n g i s performed by d i f f r a c t i n g a t h i r d laser beam. 'Wen t h e temporal e v o l u t i o n i s not t o o r a p i d , f a s t d e t e c t o r s can be used t o d i r e c t l y time resolve t h e signal generated by a continuous o r quasi-continuous beam. When higher t i m e r e s o l u t i o n i s r e q u i r e d a sampling method i s used : t h e g r a t i n g i s probed by a retarded t h i r d laser pulse, t h e delay o f which w i t h respect t o t h e punp pulses i s convenient

l

y r e a l

i

zed by means o f an o p t i c a l delay

l i

ne

/3/.

The geometr ica

l

arran- gement must take i n t o account t h e thickness d o f t h e g r a t i n g : f o r a t h i n g r a t i n g which roughly s a t i s f i e s t h e c o n d i t i o n Ad

<<

A ' , several d i f f r a c t i o n orders are ob- served whereas f o r a t h i c k g r a t i n g only one d i f f r a c t e d wave-vector

k

respects t h e Bragg c o n d i t i o n

kd

=

kl - k

+

k

where

k

i s t h e probe wave-vector . d ~ i g .

1

shows a p o s s i b l e geometry f o r a

t&i&

& a t ing wyth a probe pulse o f wavelength longer than t h e pump one. General d i f f r a c t i o n t h e o r i e s u s i n g a plane-wave approximation g i v e t h e f u l l expressions o f t h e d i f f r a c t i o n e f f i c i e n c y rl i n both t h e cases o f t h i n and t h i c k g r a t i n g s

/1,4/.

The c o n d i t i o n s o f v a l i d i t y o f t h i s approximation a r e F u l f i I I c d i f t h e laser beams are not t o o much focused and

i f

t h e medium i s o n l y s l i g h t l y absor- bing. I n t h e

l i m i t

where t h e v a r i a t i o n s o f t h e complex index o f r e f r a c t i o n are very small, i.e. when 2rrlAE;ild/~ <<

1,

a c o n d i t i o n which i s almost always v e r i f i e d , both t h e d i f f r a c t i o n e f f iciencyPfor a t h i c k g r a t i n g i n t h e Bragg c o n d i t i o n and t h e inten- s

i

t y d i f f r a c t e d

i

n t h e

f i

r s t order

f

rom a

t h

i n g r a t i n g are p r o p o r t

i

ona

l

t o

I AKI .

The l a s t step c o n s i s t s i n r e l a t i n g A; t o t h e parameters o f t h e system which o f course has t o be done f o r each case studied.

ADVANTAGES

OF THE METHOD

As t h i s technique i s experimentally more demanding than f o r example a punp-probe scheme,

i t

i s necessary t o emphasize i t s main advantages. F i r s t , as t h e d i f f r a c t e d signal i s emitted i n a d i r e c t i o n w e l l 'separated from t h e t r a n s m i t t e d pump and probe beams (see Fig.

I ) ,

t h e signal i s co

l l

ected against zero background g i v i n g a good s e n s i t i v i t y . Second, t h e s p a t i a l l y p e r i o d i c arrangement o f t h e d i f f r a c t i n g sources r e a l

i

ses c o n s t r u c t

i

ve add

i

t i on o f t h e d

i f

f r a c t e d s i gna

l i

n se

l

ected

d i

r e c t ions ( f o r - ced s c a t t e r i n g )

,

w i t h a correspond

i

ng enhanced i n t e n s i t y and i ncreased s i g n a l

.

Third, t h e s p a t i a l modulation o f t h e e x c i t a t i o n i s c e r t a i n l y t h e most s p e c i f i c fea- t u r e o f t h e technique, which o f f e r s i t s best a p p l i c a t i o n s when t h i s s p a t i a l modula- t i o n i s r e q u i r e d i n order t o f o l l o w e x c i t a t i o n m o b i l i t y f o r example.

So,

t r a n s p o r t phenomena

w i l l

f i n d t h e r e a p a r t i c u l a r l y w e l l s u i t e d method.

THE DIFFERENT TYPES OF GRATINGS

The mechanisms involved i n a g r a t i n g formation deperrd, o f course, upon t h e pump f i g h t p r o p e r t i e s . The choice o f t h e e x c i t a t i o n wavelength allows t o s e l e c t resonant, s t r o n g i n t e r a c t i o n s leading t o t h e creation, f o r example, o f an e l e c t r o n i c o r vibra- t i ona

l

ekc

i

t e d s t a t e g r a t

i

ng wh

i

ch may decay towards i ntermed

i

a t e e x c i t e d s t a t e s forming thereby a secondary g r a t i n g . With a proper choice o f t h e probe wavelength

i t

i s p o s s i b l e t o f o l l o w t h e r i s e and decay o f t h e intermediate e x c i t e d s t a t e s . F i n a l l y

i t w i l l

o n l y remain a heat d e p o s i t i o n i n t h e f r i n g e p a t t e r n g i v i n g r i s e t o a temperature g r a t i n g . Then t h e heat

w i l l

d i f f u s e acccmpanied by d e n s i t y v a r i a t i o n s . M e n t h e exc

i

t a t ion beams are b.oth po

l

a r

i

zed perpendi cu

l

a r t o t h e p

I

ane o f

i

nc

i

dence t h e

light

i n t e n s i t y i s modulated b u t i t s p o l a r i z a t i o n remains p a r a l l e l t o t h e i n c i - dent ones. This s i t u a t i o n i s reverse when one o f t h e two p o l a r i z a t i o n s i s s e t i n t h e plane o f incidence : t h i s gives no i n t e n s i t y modulation b u t a s p a t i a l l y p e r i o d i c r o - t a t i o n o f t h e p o l a r i z a t i o n . T h i s geometry may be i n t e r e s t i n g f o r d i c h o j c media and more g e n e r a l l y f o r an a n i s o t r o p i c p r o p e r t y study (see f i r s t example).

(4)

The pulse d u r a t i o n t i s a fundamental parameter f o r two reasons. The f i r s t i s t h a t r e

l

axat ion processesPof character i s t

i

c t

i

me shorter than t are n o t obta

i

nab

l

e as t h e i r decay w

i l l

f o

l

low t h e exc

i

t a t ion pu

l

se tenpora

l

enve?ope. The second, more s p e c i f i c , concerns t h e e x c i t a t i o n o f an o s c i l l a t o r y response o f t h e system. A good example i s given by t h e impulsive generation o f hypersound waves o f wavelength

A

which i s p o s s i b l e

i f

t i s s u f f i c i e n t l y s h o r t (see t h i r d example).

F i n a l

l

y as t h e types

OF

g r a t i n g s appear t o be as numerous as t h e physical mchani sms c r e a t i n g them,

i t

seems t o be j u d i c i o u s t o introduce a c l a s s i f i c a t i o n according t o t h e i r wave-vector q which i s a s p e c i f i c parameter o f t h e method. Sq, we

w i l l

separa- t e q-independent g r a t i n g s f o r which t h e g r a t i n g spacing i s not a r e l e v a n t parameter o f t h e temporal evolution, from q-dependent ones where on t h e c o n t r a r y t h e value given t o

A

by t h e experimental geometry i s fundamental. I n t h i s second category, a f u r t h e r d i s t i n c t i o n can be made between o s c i l l a t o r y and n o n - o s c i l l a t o r y behaviors, as described below.

1 . q-independent g r a t i n g behavior

I f

t h e e x c i t a t i ~ n s d e c a ~ a t t h e

lace

they have been created t h e time e v o l u t i o n of

-

t h e signal i s independent o f q and t h e increased

C O N V E N ~ s e n s i t i v i t y o f t h e method t o measure v a r i o u s exci- ~ ~ ~ ~ ~ ~ t e d s t a t e l i f e times o r r e l a x a t i o n times i s used.

As an example ( a f t e r Ref.

/5/)

Fig.

2a

shows t h e s

i

gna

l

d

i

f f r a c t e d by a dye sol u t ion (9-ami noacr

i -

dine i n e t h y l ene-g

l

yco I ) when t h e e x c i t a t i o n

l i

ght pulses have t h e same p o l a r i z a t i o n , t h e probe l i g h t being p o l a r i z e d p a r a l l e l o r perpendicular t o t h e pump l i g h t .

I n Fig.

2b,

t h e two e x c i t a t i o n pulses have crossed (b) p o l a r i z a t i o n s . The dye molecules w i t h a t r a n s i t i o n CROSSEO moment paral l e l t o t h e e x c i t a t i o n f i e l d are prefe- r = 7 7 0 p s e c r e n c i a l l y excited. These g r a t i n g s read out by a

p o l a r i z e d

light

pulse are seen t o decay w i t h a time simply r e l a t e d t o t h e o r i e n t a t i o n a l c o r r e l a t i o n t i - 2 me T and e x c i t e d s i n g l e t l i f e - t i m e r e x .

o r

I f

2.

q-dependent, n o n - o s c i l l a t o r y g r a t i n g behavior 0

-0.2 0 0.4 0.8 1.2 1.6 I n t h i s case, t h e decay time o f t h e g r a t i n g de- TIME ( n s e c l pends upon t h e f r i n g e spacing

.

This occurs when Fig.

2

t h e r e i s a m i g r a t i o n o f t h e e x c i t a t i o n s from a

r e g i o n o f high d e n s i t y ( b r i g h t f r i n g e s ) t o a r e - g i on o f lower density (dark f r i n g e s )

.

The technique has been app

l i

ed t o heat d

i

f f u - sion, mass d i f f u s i o n , c a r r i e r d i f f u s i o n i n semiconductors, charge and energy t r a n s - f e r

. . .

Fig.

3,

a f t e r Ref.

/6./, i l

l u s t r a t e s such an appl i c a t i o n f o r s i n g l e t e x c i t o n t r a n s p o r t i n anthracene s i n g l e c r y s t a l s .

A

one- dimensional d i F f u s i o n equation f o r t h e density o f e x c i t a t i o n s w i t h l i f e - t i m e r and d i f f u s i o n constant

D

leads t o a g r a t i n g decay t i m e T

Y eas

i l

y r e l a t e d t o T and

D

by l/r, = 1 / ~ D q 2 .

I 3.

q-dependent, o s c i l l a t o r y g r a t i n g behavior 4 .

0 1 J

0 2 4 6 8 1 0 The present case i s a very p a r t i c u l a r one as it e2 1 10' v=rot.~s, concerns t h e formation o f hypersound waves o f

f i x e d wavelength equal t o t h e g r a t i n g spacing

A

Fig.

3 ,

i.e. determined by t h e angle 8 . The mechanism

invoked i n t h i s case i s e i t h e r

stimulated

B r i l - l o u i n s c a t e r i n g o r thermal expansion f o l l o w i n g

7-

I 8 cm2,sec Fig.

3

shows a p l o t o f K = 2/rG versus @ 2 ( q U =

k

~f e << 1)

g i v i n g r and

D.

P

(5)

JOURNAL D E PHYSIQUE

a f a s t heat deposition i n the f r i n g e s o f an absorbing sample 17 1 . The pro- pagation produces an o s c i l l a t i o n o f the density and thereby o f the index o f r e f r a c t i o n . The second mechanism g i ves a much h i gher d i f f r a c t ion e f -

-'0°$

f i c i e n c y o f the form

;

n =

A ( l - exp(-at) cos 2nt/TI2 where

a

i s the acoustic attenuation and T the acoustic period. q ( t ) g i - ves a and T i .e. v the speed o f sourld. The method has been used f o r

300 350 /empero/ure K 3

the study o f acoustic properties o f

a polymer material undergoir~g a glass-rubber t r a n s i t i o n as shown i n Fig. 4 Fi?. 4. /8/. S i m i l a r l y , impulsive

s t ~ m u l a t e d B r i l l o u i n s c a t t e r i n g has been used f o r t.he w n e r a t i o n o f transvcrse,,acoustic waves and applied t o investiga- t i o n s of' s t r u c t u r a l phase t r a n s i t i o n i n KDYP /9/.

This r a p i d survey o f t h c t r a n s i e n t g r a t i n g techniques shows t h a t i t i s very s e n s i t i - ve f o r the de$ection

of

small v a r i a t i o n s o f the o p t i c a l properties o f a material ( 1 ~ 7 1

=

10- ~ s e a s ~ l ~ dctcct.able), w i t h a w i d e f i e l d o f application. Moreover i t becomes very well adapted when a spat.ial m o b i l i t y o f t h e irlduced modification o f t h e medium i s expected

R e f

crcnccs

1. H.J. Eichler, P. Giinter, D.W. l'ohl - Laser-induced Dynamic Gratings, Springer Ser. Opt. Sc., Vol. 50 (Springer, Rerl i n Heidelberg 1986).

l EEE J. - QE 22 ( 1986) Spec i d l Issue on Transient Gratings.

2. A.E. Siegmann- Appl. Phys. L e t t . 30 (1977) 21 T. Yajima, Opt.. Comm. 14 (1975) 378.

3. D.W. Phi l l ion, D.J. Kuizcrlya, A.E. Siagnann - Appl . Phys. L e t t . 27 (1975) 85 4. H. Ko9clnik - B e l l Syst. Tech. J. 48 (1969) 2W9

5. A.R. Myers, R.M. Hochstrasscr - IEEE J. QE 22 (1086) 1482

6. T.S. Hose, H. Highini, M.1). Fayer - Chem. Phys. L e t t . 106 (1984) 13

7. R.J.D. M i l l e r , R. Casalcgno, K.A. Nelson, M.D. Fayer - Chem. Phys. 72 (1982) 371 8. R. Casa Icgrlo, M. Pierre, f o I lowing paper

9. M. Robinson Fdrrar, L.P. Chcng, Y .X. Yar~, X.A. Nelson - IEEE J. QE 22 (1986) 1453.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to