• Aucun résultat trouvé

g-HARTREE AB-INITIO CALCULATION OF ATOMIC IONIZATION ENERGY

N/A
N/A
Protected

Academic year: 2021

Partager "g-HARTREE AB-INITIO CALCULATION OF ATOMIC IONIZATION ENERGY"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00227404

https://hal.archives-ouvertes.fr/jpa-00227404

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

g-HARTREE AB-INITIO CALCULATION OF ATOMIC IONIZATION ENERGY

M. Ohno

To cite this version:

M. Ohno. g-HARTREE AB-INITIO CALCULATION OF ATOMIC IONIZATION ENERGY. Journal

de Physique Colloques, 1987, 48 (C9), pp.C9-509-C9-512. �10.1051/jphyscol:1987983�. �jpa-00227404�

(2)

Colloque C9, supplement au n012, Tome 48, 1987

g-HARTREE AB-INITIO CALCULATION OF ATOMIC IONIZATION ENERGY

Physikalisches Institut der Universitdt Bonn, Nussallee 12, 1)-5300 Bonn 1 , F.R.G.

La me'thode g-Hartree e s t appl iqude au c a l c u l d ' e'nergi2s d ' e x c i t a t i o n atomiques. Cette methode e s t comparge en d 6 t a i l avec c e l l e de Hartree-Fock

The g-Hartree method i s a p p l i e d f o r t h e a b - i n i t i o c a l c u l a t i o n o f atomic e x c i t a t i o n energy. A d e t a i l e d -comparison t o t h e Hartree-Fock scheme i s made.

D u r i n g t h e l a s t decade, t h e a b - i n i t i o c a l c u l a t i o n s o f i o n i z a t i o n energies ( p o t e n t i a l s ) by many-body formalism have a t t r a c t e d much i n t e r e s t . I n c o n t r a s t t o C I ( c o n f i g u r a t i o n i n t e r a c t i o n ) and MCSCF(mu1ticonfiguration s e l f - c o n s i s t e n t f i e l d ) methods by which one o b t a i n s t h e i o n i z a t i o n energy as a d i f f e r e n c e i n t o t a l energies. t h e i o n i z a t i o n energy can be obtained d i r e c t l y by many-body formalism. The r e s u l t s a r e o f t e n more accurate than those obtained by c o n v e n t i o n a l methods. T h i s i s mainly because o f a more balanced treatment o f b o t h i n i t i a l and f i n a l s t a t e s .

Recently t h e new systematic scheme f o r t h e a b - i n i t i o c a l c u l a t i o n o f the e x c i t a t i o n energy was proposed w i t h i n t h e framework o f t h e g-Hartree mean f i e l d method [ I ] . The g-Hartreetg-H) method i s a mean f i e l d method which was d e r i v e d e x a c t l y from t h e f u l l r e l a t i v i s t i c QED a c t i o n by u s i n g t h e f u n c t i o n a l method and expanding t h e grand canonical p a r t i t i o n f u n c t i o n around t h e s t a t i o n a r y p o i n t which i s g i v e n by t h e s o l u t i o n o f t h e g-H e q u a t i o n [ 2 ] . The method was extended so t h a t t h e e l e c t r o n energy l e v e l i n t h e mean f i e 1 d . i . e . t h e eigenvalues o f t h e g-H e q u a t i o n a r e equal t o t h e t h e o r e t i c a l l y exact i o n i z a t i o n e n e r g i e s [ l ] .

S t a r t i n g w i t h t h e M$llzr-PlessetIMP) p a r t i t i o n i n g o f t h e g-H Hamiltonian and u s i n g t h e Rayleigh-Schrodinger(RS1 p e r t u r b a t i o n theory, one o b t a i n s t h e g-H expansion o f t h e e x c i t a t i o n energy and optimizes so t h a t the c o r r e l a t i o n and r e l a x a t i o n terms v a n i s h and t h e eigenvalue becomes equal t o t h e i o n i z a t i o n energy. The numerical r e s u l t s by t h e g-H method g i v e s a good agreement w i t h t h e experimental i o n i z a t i o n energies [ 1 , 3 , 4 ] .

By t h e Hartree-Fock(HF) RS 2nd order p e r t u r b a t i o n t h e o r y , t h e i o n i z a t i o n energy o f a s i n g l e c o r e h o l e X i s given by [5,6]

The second t e r m i n eq. ( 1 ) i s a leading term i n

~ ~ ~ A s c F

c a l c u l a t i o n f o r t h e i o n i z a t i o n energy which i s obtained as t h e d i f f e r e n c e between t h e a p p r o p r i a t e HF t o t a l e n e r g i e s f o r t h e N and N-1 e l e c t r o n states. The l a s t two terms d e s c r i b e t h e ground-state c o r r e l a t i o n and t h e hole-hopping(dominate1y d i p o l e ) r e l a x a t i o n [ 7 1 . The i o n i z a t i o n energy can be w e l l approximated by eq. ( 2 ) by i n c l u d i n g t h e h i g h e r o r d e r c o r r e c t i o n s w i t h i n the SCF model.

I n t h e case o f g-H method one i n t r o d u c e s t h e g-H p o t e n t i a l as a c e n t r a l f i e l d p o t e n t i a l and o b t a i n s t h e f o l l o w i n g diagrammatic expansions.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987983

(3)

C9-5 10 JOURNAL DE PHYSIQUE

Here t h e c r o s s i n g i s t h e propagator o f t h e h o l e which i s created by t h e i n i t i a l c o r e h o l e e x c i t a t i o n . The s o l i d and d o t t e d l i n e s correspond t o t h e e l e c t r o n propagators f o r t h e N and N-1 e l e c t r o n configurations.The l a s t two diagrams a r e same as l a s t two HF terms i n e q . ( l ) . I n the g-H method one determines g such t h a t c o n t r i b u t i o n s o f t h e c o r r e l a t i o n and r e l a x a t i o n vanish;

The f i r s t s i x terms a r e t h e l e a d i n g terms i n theASCF c a l c u l a t i o n s . Then these terms can be w e l l approximated by theASCF r e s u l t .

E:-'

(ASCF,

3.) = E-w,

)

-

~ ~ ( f v - 1 ~

$&I

( 5 )

Here ~ f . 4 ~ . g , ) and E (N-1,g,)

ta

are the t o t a l energies o f t h e n e u t r a l N and i o n i c N-1 e l e c t r o n s t a t e s r e s p e c t i v e l y . This k i n d o f approximation w i l l become necessary when t h e number o f e l e c t r o n s increase and m u l t i p l e e x c i t a t i o n energy has t o be evaluated. However, note t h a t i n c o n t r a s t t o t h e HFdSCF energy, t h e g-HASCF energy obtained f o r t h e g-value which i s determined by eq. ( 4 ) has no p h y s i c a l relevance. I n order t o make a comparison w i t h t h e HF SCF energy, one may has t o consider onlyASCF terms and optimizes so t h a t these terms vanish. We leave a numerical i n v e s t i g a t i o n t o t h e f u t u r e .

I n t h e case o f u n r e s t r i c t e d HF t h e

A

SCF energy can be w e l l approximated by

E:~(&S~F) g ( E ~ + E*I)

( 6 1

Here exand a r e t h e eigenvalues of t h e HF equation f o r t h e N and N-1 e l e c t r o n s Hamiltonian. However, i n the case o f g-H method i n s t e a d o f eq. ( 6 ) t h e f o l l o w i n g r e l a t i o n holds.

E ~.(ASCF, 9.)

2

(EL Q + &:(p.))-jh ( 2 9 9

< X X U X ~ ~ ( I I n t h e case o f HF scheme, the4SCF energy may be approximated q u i t e w e l l by s o l v i n g an equation o f HF type w i t h some h a l f - i n t e g e r occupation numbers;

so c a l l e d t r a n s i t i o n operator(T0) method[8]. However, i n t h e case o f t h e g-H method because o f no cancelations o f the s e l f - i n t e r a c t i o n terms, TO method does n o t p r o v i d e any good agreement w i t h the g - H d S c ~ energy.

W i t h i n t h e sudden approximation, t h e Koopmans energy i s r e l a t e d t o a weighted average energy f o r s i n g l y and m u l t i p l y e x c i t e d s t a t e s i n t h e photoelectron spectrum[9]. W i t h i n t h e HFSCF model t h e f o l l o w i n g r e l a t i o n i s obtained.

Here E ; i s t h e energy f o r t h e e x c i t e d s t a t e s .

n)ri

i s t h e o r b i t a l s of t h e N-1 e l e c t r o n Hamiltonian and i s t h e frozen N-1 o r b i t a l s o f t h e N e l e c t r o n Hamiltonian. I n t h e case o P g - ~ method one can optimize so t h a t t h e g-HASCF energy i s equal t o t h e main i o n i c s t a t e i o n i z a t i o n energy Eo.

(4)

and r e l a x a t i o n terms beyond t h e d SCF p i c t u r e vanish. A numerical study f o r t h e I s l e v e l o f Ne(Z=lO) shows t h a t t h e eigenvalue o f t h e g-H equation obtained f o r such a g does n o t give any good estimate o f t h e average i o n i z a t i o n energy. T h i s i s because t h e g-value determined f o r the main i o n i c (relaxed) s t a t e d i f f e r e s from those f o r t h e e x c i t e d s t a t e s l i k e normal and conjugate shake up s t a t e s .

L e t us consider t h e i o n i z a t i o n energy of t h e double h o l e X and Y. By the HFRS 2nd order p e r t u r b a t i o n theory one obtains t h e f o l l o w i n g expression.

E :

; = EX + ZJ + A?+ A: + A?<+ A> - F?% Y,Y)

Here deSeand

d

R a r e t h e ground s t a t e c o r r e l a t i o n and r e l a x a t i o n

terms f o r a s i n g l e h o l e and ~ ' ( x , y ) i s t h e bare hole-hole Coulomb r e p u l s i o n i n t e r a c t i o n . I n t h e case o f g-H method one obtains the f o l l o w i n g expression.

E

; ; = Er + A s + El + A* + ( 1 - 2 ~ ) { ~ * @

4- z { g Z m - 3 r r - 0 ) Q-8 -:,(+-0) ;db-o

For t h e sake o f s i m p l i c i t y we denote t h e f i r s t 13 diagrams i n equation ( 3 ) f o r a s i n g l e c o r e h o l e energy by

A .

Here t h e double l i n e w i t h t h e c r o s s i n g i s a h o l e propagator f o r t h e h o l e Y . The s o l i d and d o t t e d l i n e s correspond t o t h e e l e c t r o n propagators f o r t h e N and N-2 e l e c t r o n configurations.0ne determines t h e g-value so t h a t t h e c o r r e l a t i o n and screening terms vanish and t h e double h o l e energy i s a l i n e a r sum o f the h o l e energy o f a s i n g l e hole. Approximating t h e terms which correspond t o t h e leading terms i n the g-HdSCF c a l c u l a t i o n s by t h e g-HASCF r e s u l t we o b t a i n

(5)

C9-5 12 JOURNAL DE PHYSIQUE

As i n t h e case o f a s i n g l e h o l e energy t h e A S C F energy obtained does n o t have any p h y s i c a l relevance.

The Auger energy can be obtained by c a l c u l a t i n g t h e i n i t i a l and f i n a l h o l e e n e r g i e s s e p a r a t e l y by eqs. ( 3 ) and ( 1 1 ) . The o t h e r way i s t o o b t a i n

t h e Auger energy u s i n g eqs. ( 3 ) and (11) and o p t i m i z i n g so t h a t t h e Auger energy f o r t h e Auger process i"-, j4 kv+ e 4 ( ~ u g e r ) i s g i v e n by

Here

e

a r e t h e eigenvalues o f t h e g-H equation o f t h e N - e l e c t r o n system.

Note t h a t because o f one-step optimazation o f t h e Auger energy, t h e eigenvalue o f t h e i n i t a l s i n g l e h o l e and a l i n e a r sum o f t h e eigenvalues o f t h e f i n a l double h o l e a r e n o t any more equal t o t h e corresponding i o n i z a t i o n energy.

So f a r t h e i o n i z a t i o n processes a r e discussed o n l y from a v i e w p o i n t o f t h e e x c i t a t i o n energy. However,the p h y s i c a l p r o p e r t y which i s more d i f f i c u l t t o c a l c u l a t e a c c u r a t e l y i s a l i f e t i m e o f a h o l e created i n atomic l i k e systems.

The l i f e t i m e o f a h o l e ( h o l e s ) i s governed by b o t h r e a l decay processes l i k e Auger .Caster-Kronig and corresponding f l u c t u a t i o n s [see r e f . 10 f o r a r e v i e w o f t h e s u b j e c t and r e f e r e n c e s ] .

I n b o t h HF and g-H expansion f o r t h e i o n i z a t i o n energy, t h e r e l a x a t i o n term [ l a s t t e r m ) a l s o p r o v i d e s t h e ( n o n - r a d i a t i v e ) decay r a t e . I n t h e case o f HFRS 2nd o r d e r p e r t u r b a t i o n t h e o r y , the l i f e t i m e can n o t be w e l l approximated.

The l i f e t i m e can be o f t e n two o r t h r e e times overestimated o r underestimated.

I n t h e case o f t h e g-H method t h e g-value i s determined so t h a t t h e r e a l p a r t o f t h e f l u c t u a t i o n terms vanish. I t would be i n t e r e s t i n g t o see whether t h e imaginary p a r t o f t h e f l u c t u a t i o n terms ( r e l a x a t i o n terms) c a l c u l a t e d f o r t h e g-value which i s o b t a i n e d by eqs(3) and ( 4 ) w i l l provide a reasonable e s t i m a t e o f t h e l i f e t i m e ( n o n - r a d i a t i v e p a r t o f t h e l i f e t i m e 1 .

F u r t h e r d e t a i l e d account o f t h e s u b j e c t s i n c l u d i n g t h e m u l t i p l e h o l e e x c i t a t i o n s and shake up w i l l be g i v e n i n a forthcoming paper.

Acknowledgement T h i s work i s supported by Deutsche Forschung Gemeinschaft.

References.

[ I ] K.Oietz,M.Ohno and G.Weymans: J.Phys.B19.2995( 1986) [ 2 ] K.Dietz.O.Lechtenfeld and G.Weymans: J . Phys.B15.4301(1982) [ 3 ] M.Ohno:Z.Phys.D6.13(1987)

[ 4 ] M.Ohno:Phys.Rev.A35.3350, (1987)

[ 5 ] L.Hedin and A.Johanson:J.Phys.B2,1336(1969)

[ 6 ] B.T. Pickup and 0.Goscinski : Molec. Phys.26,1013(1973) [ 7 ] G.Wendin and M.Ohno: Phys.Scr.14,148(1976)

[ 8 ] 0.Goscinski ,B. .Pickup and G.Purvis: Chem.Phys.Lett.22,167(1973) [91 R.Manne and T.

1

berg: Chem.Phys.Lett. 7,282(1970)

[ l o ] M.Ohno and G.Wendin: Phys. Rev A31,2318( 1985

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to