• Aucun résultat trouvé

THE STRUCTURE OF AMORPHOUS Ni-Zr ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "THE STRUCTURE OF AMORPHOUS Ni-Zr ALLOYS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225168

https://hal.archives-ouvertes.fr/jpa-00225168

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THE STRUCTURE OF AMORPHOUS Ni-Zr ALLOYS

A. Lee, S. Jost, Ch. Wagner, L. Tanner

To cite this version:

(2)

THE STRUCTURE OF AMORPI-IOUS Ni-Zr ALLOYS

A.E. L e e , S. J o s t , Ch.N.J. W a g n e r a n d L . E . ~ a n n e r *

Materials Science and Engineering Department, University o f C a l i f o r n i a , Los Angeles, CA. 90024, U.S.A.

*Lawrence Livermore National Laboratory, U n i v e r s i t y of California, Livermore, CA. 94551, U.S.A.

Resume: L e s s t r u c t u r e s des alliages Ni-Zr avec 55, 6 0 , 65 e t 7 0 at% Zr, e t avec d e s additions mineures de Co e t F e ont 6tB determinges en employ- ant l a technique de l'angle 28 variable pour l e s rayons X e t de l a longuelrr d'onde variable pour l e s neutrons. Les facteurs p a r t i e l s de s t r u c t u r e s (fonc- tions partielles d'interference) Iik(Q) e t Sn-,(Q) ont et6 reevalut5s, e t l e u r s transformations de Fourier indiquent qu'il y a peu de voisins NiNi dans l'alliage amorphe Ni35Zr65.

Abstract: The s t r u c t u r e s of amorphous N i - Z r alloys with 55, 6 0 , 6 5 and 7 0 a t % Z r , and s m a l l additions of Co and Fe, have been determined employ- ing the variable 28 x-ray and the variable wavelength neutron techniques. The partial s t r u c t u r e factors (partial interference functions) Ii,(Q) and -.. Snc(Q) have been reevaluated and their Fourier transforms indicate that there a r e few NiNi neighbors in the amorphous Ni3SZr65 alloy.

INTRODUCTION

The s t r u c t u r e of multi-component, non-crystalline m a t e r i a l s i s s t i l l not well understood. The problem l i e s in the diffuse nature of the scattering patterns which p e r m i t us t o determine only a weighted average of the partial atomic distribution functions [i]. The weight factors in t h i s average depend on the scattering of the individual components in the non-crystalline materials. They can be changed by using different radiation probes (e.g. x-rays and neutrons), and by isomorphous and isotopic substitution of one o r both alloying elements in binary systems.

The total, coherently scattered intensity p e r atom Ia(Q) can be expressed in t e r m s of the atomic p a i r partial s t r u c t u r e factors Iik(Q) o r the number-concentration s t r u c t u r e factors Sn-c(Q) a s a function of the length of the diffraction vector Q, i.e.

where

X

i s the wavelength, m i s the m a s s of the neutron, h i s Planck's constant, L i s the total path traveled by the neutrons in the t i m e t. F o r binary alloys, we can write:

Ia(Q) = <f2>+(~ifi)2[Iii(Q)-~l+(~~fz)2~Iz~(Q)-~l+2~ifi~~f~[Ii~(Q)-~l (2)

where fi(Q) and c i a r e the coherent scattering amplitude and atomic concentration, respectively, of element i, <f> = 2 c . f . (Q),

<F>

= Eci[fi(Q)I2 and Af

=

fl(Q)-f2(Q).

1 1

It can be readily shown that the factors Iik(Q) and Sn-c(Q) a r e related [i]. The total s t r u c t u r e factors I(Q) and S(Q) a r e defined a s follows:

(3)

C8-182 JOURNAL DE PHYSIQUE

The Fourier transforms of Q[I(Q)-I] and Q[S(Q)-I] yield the total, reduced atomic distribution functions GI(r) and GS(r), respectively. It can be readily shown that the total correlation function T ( r ) i s given by:

T(r) = <f(0)>2GI(r)+4~rpo<f(0)>2 = <[f

(0)12>GS(r)+4~rpo<f(0)>2

(7) where po i s the average atomic density of the amorphous alloy. T ( r ) is related to the partial correlation functions Tik(r), i.e.,

T ( r ) = ZZcifi (0)ckfk (0)Tik (r)

pik(r) i s the partial atomic distribution function which represents the number of klatoms per unit volume a t the distance r from an i-type atom, and Gik(r) is the Fourier transform of the partial structure factor Iik (Q) :

11. - EXPERIMENTAL TECHNIQUES.

The amorphous alloys of Ni-Zr with 55, 6 0 , 65, and 7 0 at% Z r , and 5 and 1 8 at% Co o r 5 at%

Fe,

were produced by the melt-spinning process. The x-ray specimens were prepared by mounting several small ribbons next t o each other over the open- ing in All sample holders. The neutron samples consisted of about 5 of ribbons f o r

f

each composition. The ribbons were wound in such a way a s to pro uce cylindrical specimens, 6 0 mm in height and 5 mm in diameter. The x-ray measurements were carried out with the variable 28 technique using Ag-Ka radiation and a Si solid s t a t e detector. The neutron measurements were performed on the pulsed spallation source a t Argonne National Laboratory, using the variable

X

technique.

I11

.-

RESULTS AND DISCUSSION.

The total structure factors I(Q) [equation (4)] of the ( N i - C ~ - F e ) ~ z r ~ - ~ glasses, measured with x-rays, a r e shown in Fig. 1, and the correspondin total correlation functions T(r)/<f(O)>' [equation (6)] a r e presented in Fig. 2. T

a

e equivalent neu- tron data a r e shown in Fig. 3. Although the structure factors I(Q) a r e rather s i m i - l a r f o r the concentration range studied, the corresponding correlation function T ( r ) clearly show the effect of the different Z r concentrations. The f i r s t peak in T ( r ) is

split into two maxima, one positioned a t ri=2.69 A, and the other a t r2=3.15

8.

eak changes in height with varyin Z r content in the s a m e way a s the

weight factor [ ~ ~ ~ f ~ ~ ( 0 ) ] ~ / < f ( 8 ) > ~ do [ s e e equations (6) and (811.

Thus, i t is reasonable to assume that the peak a t r2=3.lS A is due to the Z r - Z r f i r s t neighbors in the metallic glass [2].

Substitution of Co (up to 2 5 at%) o r F e (5 at%) f o r Ni did not change the x-ray scat- tering patterns of the Ni35Zr65 glasses. The x-ray total I(Q) shown in Fig. i is the composite curve of the data taken with specimens containing 5 and 18 at% Co and

(4)

measured with x-rays. alloys.

(5)

C8-184 JOURNAL DE PHYSIQUE

The neutron measurements on the Ni35Zr6S were recently repeated a t Argonne National Laboratory, and showed a lower background than the previous data [3,4]. Therefore, i t was felt that a reevaluation of the partial structure factors would be desirable. We used the x-ray data of the Ni35Zr65 and Ni35Zr35Hf30 alloys and the neutron data of the Ni35Zr65 and Ni17C018Zr65 alloys in the recalculation. The atomic p a i r partial structure factors Ill(Q), 122(Q) and I12(Q) a r e shown in Fig. 4. These data a r e in very good agreement with those published previously [4], but their weighted sum [equation (4)] produced a much better f i t with the total struc- ture factor I(Q), measured with neutrons.

Fig.5 Partial pair correlation Fig. 6 Atomic pair correlation functions Tik(r) of amor- functions Ti (r) = xckTik (r) phous Ni35Zr65. of amorphous Ni35Zr65. The partial atomic pair correlation functions T l l ( r ) , T2Z(r) and T l z ( r ) a r e shown in Fig. 5, and the corresponding p a i r coorrelation functions T, (r) = c,Tll (r)+c2T12(r) and T2(r) = ~ ~ T ~ ~ ( r ) - t c ~ T ~ ~ ( r ) a r e presented i n Fig. 6. It is c l e a r from this figure that the distribution of atoms about a Ni atom is quite different from atomic dis- tribution about a Zr atom. The individual partial coordination numbers Nik, were

.. .

evaluated from the a r e a under the f i r s t peak in r T i k ( r ) , centered a t The fol- lowing values were obtained: (r 1)NiNi=2.66A, (rl)NiZr=2.69A, (r1)ZrZr=3.15a,

NNiNi=2.3, NNiZr=7.9, and NZrZr=9. 1. It is possible to calculate the partial coordination numbers Nil=Nii+N. from these data, i.e., N l = 10.2 and N2= 13.4.

12

These numbers a r e in reasonable agreement with those calculated directly from Fig. 6.

In o r d e r to s e e the effect of chemical ordering in this amorphous alloy, the chemi- cal short-range order (CSRO) parameter a , was calculated using the relation [5]:

a1 = 1 - N12/(c2Nw) (1 1)

(6)

ft%ors Sn-,(Q), which a r e shown i n Figs. 8 and 7 , respectively.

If we define the number-concentration coordination numbers Nn-c(r) a s a function of the upper l i m i t of integration of the correlation functions rTn-c(r), we can define the CSRO parameter al(r) a s follows:

aib-1 = Ncc(r)/Nw(r)

=

1 -

N12(r)/{~2[~~NI(r)+c~N2(r)l}

(13) The values of the coordination numbers Nik(r) a r e given In Table 1 a s a function of the upper l i m i t of integration r, together with the CSRO parameter a, (r). Table 1. Partial coordiation numbers N i k (r) and CSRO parameter a i (r) in Ni35Zr65

--. r

(a)

3.0 3.2 3.4 3.6 3.8 4.0 N-NiNi (r) 2 . 2 2.3 2.2 2.2 2 . 3 2.8 N-NiZr (r) 4.9 5.6 6.7 7.7 8 . 6 9 . 2 N - Z r Z r t r ) 2.1 5 . 0 7.5 8 . 7 9 . 1 9.1 ai(r) -0.20 -0.09 -0.07 -0.09 -0.1 1 -0.1 1 Fig -I 0 2 4 6 8 10 Q in 2' 7 Number-concentration structure factors Sn-,(Q) of Ni35ZrS5. 0 2 4 8 10 r in A Fig. 8 Number-concentration functions Tik(r) of Ni35Zr65. ACKNOWLEDGEMENT.

The research leading to this paper was supported by the grant DMR 8 3 - 1 0 0 2 5 from the National Science Foundation. The neutron diffraction experiments were carried out a t the IPNS of the Argonne National Laboratory.

REFERENCES.

1. C.N.J. Wagner, Amorphous Metallic Alloys, ed. F.E. Luborsky, Butterworth, London ( 1 9 8 3 ) p.58

2. C.N.J. Wagner and D. Lee, J. de Physique 4 1 , C8-242, 1 9 8 0

3. D. Lee, A.E. Lee, C.N.J. Wagner, L.E. Tanner and A.K. Soper, J. Physique 4 3 , C9-19, 1 9 8 2

4. A.E. Lee, G. Etherington 8 C.N. Wagner, J.Non-Cryst. Sol. 6 1 8 6 2 , 3 4 9 , 1 9 8 4

5. C.N.J. Wagner, Proc. 5 t h Int. Conf. Rapidly Quenched Metals, eds. S. Steeb and

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to