• Aucun résultat trouvé

QUENCH ECHOES IN LENNARD-JONES AND RUBIDIUM FROZEN FLUIDS--TEMPERATURE DEPENDENCE OF THE ANHARMONIC BEHAVIOR

N/A
N/A
Protected

Academic year: 2021

Partager "QUENCH ECHOES IN LENNARD-JONES AND RUBIDIUM FROZEN FLUIDS--TEMPERATURE DEPENDENCE OF THE ANHARMONIC BEHAVIOR"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220527

https://hal.archives-ouvertes.fr/jpa-00220527

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

QUENCH ECHOES IN LENNARD-JONES AND

RUBIDIUM FROZEN FLUIDS–TEMPERATURE

DEPENDENCE OF THE ANHARMONIC BEHAVIOR

G. Grest, S. Nagel, A. Rahman

To cite this version:

G. Grest, S. Nagel, A. Rahman. QUENCH ECHOES IN LENNARD-JONES AND RUBIDIUM

FROZEN FLUIDS–TEMPERATURE DEPENDENCE OF THE ANHARMONIC BEHAVIOR.

Jour-nal de Physique Colloques, 1980, 41 (C8), pp.C8-293-C8-296.

�10.1051/jphyscol:1980874�.

(2)

JOURNAL DE PHYSIQUE CoZZoque C8, suppZ6ment au n08, Tome 41, aoCt 1980, page

~ 8 - 2 9 3

QUENCH ECHOES I N LENNARD-JONES AND RUBIDIUM FROZEN FLUIDS--TEMPERATURE DEPENDENCE OF THE ANHARMONIC BEHAVIOR

G.S. G r e s t , S.R. ~ a ~ e l * and A.

ahm man**

Department o f Physics, Purdue Univ., West L a f a y e t t e , Indiana 47907.

*

James Franck I n s t i t u t e and Department o f Physics, Univ. o f Chicago, Chicago, IZZinois 60637.

x* Argonne National Laboratomj, Argonne, I 2 Zinois 60439.

Abstract.

-

We have found a new echo phenomenon t h a t appears i n m o l e c u l a r dynamics s i m u l a t i o n s o f a s o l i d . The echo appears i n t h e behavior o f t h e temperature a f t e r t h e system recovers from two a b r u p t quenches. This e f f e c t can be e x p l a i n e d i n terms o f c l a s s i c a l normal mode a n a l y s i s o f t h e system. We have a p p l i e d these echo techniques t o t h e study o f close packed glasses w i t h Lennard-Jones and r u b i - dium i n t e r a t o m i c p o t e n t i a l s . We have been a b l e t o study t h e degree o f anharmonic behavior i n t h e system as a f u n c t i o n of temperature as t h e sample i s heated from t h e glass t o t h e l i q u i d s t a t e . We have a l s o s t u d i e d t h i s behavior when t h e a t t r a c t i v e and r e p u l s i v e t e r n s i n t h e Lennard-Jones poten- t i a l a r e varied.

I n a r e c e n t paper,' a new echo phenomenon was r e p o r t e d t h a t can be observed i n molecular dynamics s i m u l a t i o n s o f amorphous and c r y s t a l l i n e s o l i d s . The echo occurs when t h e temperature (which i s s i m p l y p r o p o r t i o n a l t o t h e t o t a l k i n e t i c energy o f t h e system), i s q u i c k l y lowered two times i n succession w i t h an i n t e r v a l , t

,

between quenches. A t a t i m e ti a f t e r t h e second quench, i f t h e system i s allowed t o r u n f r e e l y , t h e tem- ~ e r a t u r e suPdenly drops and then r i s e s again. I n Fig. 1, we show t h e echo behavior o f t h e tem- o e r a t u r e a f t e r t h e second quench when an i n t e r v a l tl = 45At separates t h e two quenches. Here A t i s t h e t i m e s t e p used i n t h e i n t e g r a t i o n o f ?!ewtonls equation i n t h e molecular dynamics s i n u l a t i o n . 2 Note t h e l a r g e d i p i n temperature a t a t i m e tl a f t e r t h e second quench.

his

quench echo.can be e x p l a i n e d i n terms o f c l a s s i c a l normal mode a n a l y s i s . I n a completely harmonic s o l i d each mode w i l l v i b r a t e independently. The decay o f a mode

w i l l

be caused b y anharmonic i n t e r a c - t i o n s between t h e modes. The modes which have j u s t t h e r i g h t frequency, w = where n i s an

- 1

i n t e g e r , w i l l escape t h e second quench w i t h o u t l o s i n g any o f t h e i r k i n e t i c energy. A1T t h e o t h e r modes (those w i t h t h e "wrong" frequency) w i l l l o s e some energy d u r i n g t h e second quench. Assuming a completely harmonic system i t i s p o s s i b l e t o w r i t e down e x a c t l y t h e behavior o f t h e temperature as a f u n c t i o n o f time. A f t e r t h e f i r s t quench each mode c o n t r i b u t e s an amount t o t $ e k i n e t i c energy and t h e r e f o r e t o t h e tempera- t u r e depending on i t s amplitude a t t h e time o f t h e quench. A l l modes s t a r t o f f a f t e r ' t h e f i r s t quench w i t h t h e same phase. Hence

where Ai i s p r o p o r t i o n a l t o t h e amplitude o f mode

i

a t t = 0. A f t e r a second quench t h e new ampli- t u d e ' w i l l be Aicosw.tl so t h a t , measuring t i m e from t h e moment o f $he l a s t quench:

I f t h e r e a r e many modes i n t h e system, d i s t r i - b u t e d o v e r a smooth d e n s i t y o f s t a t e s , t h i s

expression leads t o a w e l l - d e f i n e d echo a t t = tl. Each a d d i t i o n a l quench w i l l i n t r o d u c e another

f a c t o r cos2wit2 where t2 is t h e i n t e r v a l between t h e l a s t two quenches

2 2 2 2

T ( t ) = GAi cos w.t cos w.t s i n w . t

i 1 1 1 2 1

where t i m e i s again measured from t h e l a s t quench. T h i s w i l l c r e a t e echoes a t tl (which we s h a l l r e f e r t o as t h e " s t i m u l a t e d echo"), t 2 and s m a l l e r ones a t

I

t2

+

tl

1

.

The degree t o which a p a r t i c - u l a r s o l i d i s anharmonic can be measured by observing whethe.r t h e echo behavior obeys these equations e x a c t l y .

Fig. 1.--Temperature versus t i m e a f t e r two- quenches w i t h an i n t e r v a l tl = 45At between them. Note t h e echo a t 45At.

I n t h e p r e s e n t oaoer we w i l l show t h e tem- p e r a t u r e dependence o f t h e quench echoes i n t h e g l a s s and l i q u i d phases o f two 500 p a r t i c l e systems i n t e r a c t i n g v i a d i f f e r e n t i n t e r a t o m i c p o t e n t i a l : a Lennard-Jones 6-12 p o t e n t i a l and an i n t e r a t o m i c o o t e n t i a l which corresponds t o t h a t found i n l i q u i d rubidium.3 The reduced temperature, g i v e n b y T* = k B T / ~ where E i s t h e

depth o f t h e i n t e r a t o m i c p o t e n t i a l w e l l , was v a r i e d . These two systems have been s t u d i e d previously4, 5,

6

and were found t o have v e r y

(3)

JOURNAL DE PHYSIQUE

cg-294

d i f f e r e n t p r o p e r t i e s i n t h e l i q u i d s t a t e . The l i q u i d r u b i d i u m sample showed w e l l - d e f i n e d modes o u t t o l a r g e wavevectors (wavelengths as small as 1.25 times t h e i n t e r p a r t i c l e soacing5) whereas t h e Lennard-Jones l i q u i d showed t h a t t h i s ohonon behavior d i s a ~ p e a r s much more r a o i d l y w i t h wave- v e c t o r (wavelengths o n l y as small as 5 times t h e i n t e r p a r t i c l e distance5).

By

s t u d y i n g t h e behavior o f t h e quench echoes i n these two systems we have found evidence o f a s i m i l a r d i f - ference between t h e b e h a v i o r o f these two systems i n t h e g l a s s phase a t temperatures much below t h e m e l t i n g temperature. The decay i n time o f t h e normal modes i n t h e Lennard-Jones system i s much f a s t e r than t h a t o f t h e modes i n t h e rubidium sample a t t h e same value o f t h e reduced tempera- t u r e . The echo behavior c o n t a i n s no i n f o r m a t i o n about t h e s p a t i a l d i s t r i b u t i o n of a mode b u t o n l y about i t s t i m e dependence.

There are s e v e r a l ways t o demonstrate t h e p r e s e n c e ' o f anharmonic b e h a v i o r i n a system using quench echoes. As can be seen from Eq. 3, i t does n o t m a t t e r f o r t h e subsequent behavior o f a harmonic system whether t h e i n t e r v a l tl comes b e f o r e o r a f t e r t h e i n t e r v a l t2 in the quench sequence t h a t c r e a t e s t h e echoes a t t T , t and

I t

+ tl

1 .

By quenching t h e same system ? i r s t wizh-the i n t e r v a l s i n one o r d e r and then again w i t h t h e i n t e r v a l s reversed, one can m o n i t o r t h e amount o f anharmonic behavior i n a system b y seeinc how d i f f e r e n t t h e response o f t h e

system i s t o t h e two d i f f e r e n t quench sequences.

F i g . 2.--The temperature versus time f o r t h e Lennard-Jones system quenched t h r e e times w i t h tl = 45At and t2 = 30At (dashed l i n e ) and w i t h tl = 30At and t 2

=

45At ( d o t t e d l i n e ) . The t ~ o curves a r e d i s p l a c e d v e r t i c a l l y . The i n i t i a l temperatures a r e (a) T* = 0.11, (b) T* = 0.46 and ( c ) T* = 1.2.

I n Fig. 2 we show t h e r e s u l t s o f t h i s behavior f o r i n t e r v a l s o f 30At and 45At f o r t h e Lennard- Jones system a t 3 temperatures. I n each case the curves a r e displaced v e r t i c a l l y from each o t h e r f o r comparison and t h e lower curve i n each s e t i s f o r tl = 45At and t2 = 30At and t h e upper curve i s f o r tl = 30At and t 2 = 45At. A t very low s t a r t i n g temperatures, we can observe no d i f f e r e n c e between t h e two curves. However a t a s t a r t i n g temperature o f T* = 0.11 (Fig. 2a)

,

we a l r e a d y see t h a t t h e depth o f t h e two echoes i s d i f f e r e n t i n t h e two curves i n d i c a t i n g a s i z a b l e m o u n t o f anharmonicity. Even a t t h i s low tem- o e r a t u r e (% 1/8 o f t h e m e l t i n g temperature o f t h e

P.c.c. c r y s t a l ) t h e b e h a v i o r o f t h e s o l i d shows t h a t approximately 20% of t h e energy o f a mode i s rlissi,pated per period. A t h i g h e r temperatures

we see t h a t t h e anharmonic behavior becomes pro- g r e s s i v e l y more pronounced u n t i l , i n t h e l i q u i d a t T* = 1.2 we have d i f f i c u l t y seeing any echo behavior a t a1 1.

I n Fig. 3, we show t h e behavior o f t h e r u b i d i u m sample a f t e r a s i m i l a r s e r i e s o f quenches, The lowest temperature s t u d i e d was T* = 0.15. Although t h i s temperature i s above t h a t f o r Fig. ?a-where T* = 0.11, i t i s c l e a r t h a t t h e r e i s considerably l e s s anharmonic behavior than i n t h e Lennard-Jones system s i n c e t h e two curves show much s m a l l e r d e v i a t i o n s from each o t h e r . As t h e temoerature i s r a i s e d we c o n s i s t e n t l y see t h a t

t h e rubidium system i s much more harmonic than t h e Lennard-Jones one a t a comparable temperature.

F i g . 3.--The r e s u l t s o f a s i m i l a r quench sequence as i n F i g . 2 when a p p l i e d t o t h e rubidium sample. The i n i t i a l temperatures a r e (a) T* = 0.15, (b) T* = 0.5 and ( c ) T* = 1.1.

(4)

Lennard-Jones sample a t T* = 0.11 and t h e r u b i d i u m sample a t T* = 0.15. We can determine from t h e slope o f t h e decay o f t h e echo t h e e x t e n t o f anharmonic mode coupling. t4e see t h a t t h e echo i n rubidium decays much more s l o w l y than i n t h e Lennard-Jones sample. This i s c o n s i s t e n t w i t h what was found from t h e data i n F i g s . 2 and 3.

Fig. 4.--The decay o f t h e s t i m u l a t e d echo as a f u n c t i o n o f t f o r t h e rubidium sample a t T* = 0.15 ( t r i a n g l e s f and f o r t h e Lennard-Jones sample a t T = 0.11 ( c i r c l e s ) . I n each case t l = 30At. The conclusion from t h i s a n a l y s i s o f the quench echoes i s t h a t t h e Lennard-Jones glass i s much more anharmonic than t h e rubidium. T h i s anhar- m o n i c i t y becomes more and more pronounced as t h e temperature i s r a i s e d towards t h e l i q u i d phase. These r e s u l t s suggest t h a t i n the l i q u i d the sound modes o f t h e Lennard-Jones f l u i d would be auch more q u i c k l y damped than i n r u b i d i c m i n p a r t due t o t h e g r e a t e r anharmonicity i n t h e former system. T h i s i s what i s p a r t i a l l y responsible f o r t h e f a c t t h a t sound modes are n o t observed a t l a r g e wavevectors i n Lennard-Jones f l u i d s .

Fig. 5.--The decay o f t h e simulated echo i n d i f f e r e n t p o t e n t i a l s as a f u n c t i o n o f t 2 a t T* = 1 1 . I n a l l cases tl = 30At. The r e s u l t s are

f o r t l i e 10-6

Lennard Jones (open c i r c l e s ) ; 12-6 Lennard-Jones (closed c i r c l e s ) and 12-8 Lennard-Jones (closed t r i a n g l e s ) .

I n order t o understand i n more d e t a i l t h e r o l e t h a t t h e p o t e n t i a l p l a y s i n t h e damping o f nodes we have s t u d i e d the behavior of t h e stimu- l a t e d echo f o r s e v e r a l d i f f e r e n t p o t e n t i a l s . I n each case we s t a r t w i t h i d e n t i c a l c o n f i g u r a - t i o n s o f t h e atoms so t h a t t h e e f f e c t o f t h e p o t e n t i a l on forming t h e s t r u c t u r e i s n o t included. The i n i t i a l s t a r t i n g temperature o f t h e system i s a l s o t h e same f o r a l l t h e systems studied. The p o t e n t i a l s we have used a r e s i m i l a r t o t h e Lennard-Jones b u t w i t h d i f f e r e n t values -For t h e exponents i n o r d e r t o vary t h e r e l a t i v e s t r e n g t h s o f t h e r e p u l s i v e and a t t r a c t i v e f o r c e s : V ( r ) a ($)" - We have s t u d i e d n = 12,

m

= 6 ;

n

= 10, m = 6; and

n = 12, m = 8. The r e s u l t s a r e shown i n Fig. 5. I t i s c l e a r t h a t t h e l a r g e r the value o f (m

+

n) ( i .e., t h e steeper t h e p o t e n t i a l ) t h e f a s t e r i s t h e damping o f t h e echo. The deaay o f t h e rubidium echo i n Fig. 4 i s c l o s e s t t o t h a t o f t h e system w i t h t h e l o w e s t value o f ( n

+

m). The steepness o f t h e p o t e n t i a l i s a p p a r e n t l y what i s ~ r i m a r i l y r e s p o n s i b l e f o r t h e anharmonic c o u p l i n g of nodes. This conclusion i s s i m i l a r t o t h a t o f !laan

u.

,4 who showed t h a t t h e sound modes i n t h e l i q u i d were r e l a t i v e l y i n s e n s i t i v e t o t h e a t t r a c t i v e p a r t o f t h e p o t e n t i a l .7 They con- cluded t h a t i t was t h e r e l a t i v e steepness o f t h e r e p u l s i v e core o f t h e Lennard-Jones p o t e n t i a l comnared t o t h a t o f rubidium which caused t h e dramatic e f f e c t o f t h e sound modes being h i g h l y damned i n t h e former w h i l e n o t i n t h e l a t t e r . I n t h e present paper we have extended t h e i r r e s u l t s and have shown how t h e anharmonicity and mode c o u p l i n g i n a g l a s s y system e x i s t s even i n the s o l i d s t a t e and how they grow w i t h temperature The steepness of t h e p o t e n t i a l i s i m ~ o r t a n t f o r the damping o f the sound modes i n t h e glass because i t causes each atom t o f e e l a s t r o n g departure from a p u r e l y harmonic p o t e n t i a l and thus couples t h e v a r i o u s normal modes. !Je presume t h a t t h e f a s t decay of t h e sound modes i n t h e l i q u i d s t a t e i s i n p a r t due t o s i m i l a r e f f e c t s as observed i n t h e glass.

S.R.N. acknowledges support from an A l f r e d P. Sloan Foundation f e l l o w s h i p . T h i s work was s u ~ p o r t e d in p a r t by NSF Grant DMR77-09931 NSF- MRL DMR77-23798 and by t h e U.S. Department o f Energy.

1. G. S . Grest, S . R. Nagel and A. Rahman, t o be published.

2. For a Lennard-Jones system t h e i n t e r a t o m i c 0 1 2 - 0 6

p o t e n t i a l i s given by V = 4&[(--)

(F)

1.

The t i m e step of i n t e g r a t i o n used was A t = 0.01 (!)1/2 where M i s t h e mass of t h e p a r t i c l e . S i m i l a r l y f o r t h e rubidium p o t e n t i a l cr and E a r e t h e u n i t s of l e n g t h and

energy and t h e A t used was dt = 0 . 0 0 7 5 ( E ) ~ / ~ . E

3.

D.

L. P r i c e , Phys. Rev. A

4,

358 (1971).

D.

L. P r i c e , K. S. Singwi and M. P. Tosi, Phys. Rev. B

2,

2983 (1970).

(5)

JOURNAL DE PHYSIQUE

5.

A .

Rahman, Phys. Rev. A

2,

1667 (1974).

A .

Rahman, Phys. Rev. L e t t .

z,

52

(1974).

6. H . B e l l ,

H.

Moeller-l$Ienghoffer,

A .

Kollmar,

R .

Stockmeyer,

T .

S p r i n g e r , H . S t i l l e r ,

Phys. Rev.

A

11,

316 (1975);

D.

Levesque,

L . Verlet and J . Kurkijarvi

,

Phys. Rev.

A

2,

1690 (1973).

7.

In t h i s context t h e a t t r a c t i v e Dart of t h e

p o t e n t i a l implies t h e region where

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to