• Aucun résultat trouvé

Colloidal gas aphrons based separation process for the purification and fractionation of natural phenolic extracts

N/A
N/A
Protected

Academic year: 2021

Partager "Colloidal gas aphrons based separation process for the purification and fractionation of natural phenolic extracts"

Copied!
9
0
0

Texte intégral

(1)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof ContentslistsavailableatScienceDirect

Food

and

Bioproducts

Processing

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / f b p

Colloidal

gas

aphrons

based

separation

process

for

the

purification

and

fractionation

of

natural

phenolic

extracts

G.

Spigno

a,∗

,

D.

Amendola

a

,

F.

Dahmoune

b

,

P.

Jauregi

c

aInstituteofOenologyandAgro-FoodEngineering,UniversitàCattolicadelSacroCuore,ViaEmiliaParmense84,

29122Piacenza,Italy

bLaboratoryofBiomathematics,Biochemistry,BiophysicsandScientometrics,AbderrahmaneMiraUniversityof

Bejaia,Bejaia06000,Algeria

cDepartmentofFoodandNutritionalSciences,UniversityofReading,Whiteknights,POBox226,ReadingRG66AP,

UK

a

b

s

t

r

a

c

t

Followingpreviousstudies,theaimofthisworkistofurtherinvestigatetheapplicationofcolloidalgasaphrons (CGA)totherecoveryofpolyphenolsfromagrapemarcethanolicextractwithparticularfocusonexploringthe useofanon-ionicfoodgradesurfactant(Tween20)asanalternativetothemoretoxiccationicsurfactantCTAB. Differentbatchseparationtrialsinaflotationcolumnwerecarriedouttoevaluatetheinfluenceofsurfactanttype andconcentrationandprocessingparameters(suchaspH,drainagetime,CGA/extractvolumetricandmolarratio) ontherecoveryoftotal andspecificphenoliccompounds.Thepossibility ofachievingselectiveseparationand concentrationofdifferentclassesofphenoliccompoundsandnon-phenoliccompoundswasalsoassessed,together withtheinfluenceoftheprocessontheantioxidantcapacityoftherecoveredcompounds.Theprocessledtogood recovery,limitedlossofantioxidantcapacity,butlowselectivityunderthetestedconditions.Resultsshowedthe possibilityofusingTween20withaseparationmechanismmainlydrivenbyhydrophobicinteractions.Volumetric ratioratherthanthemolarratiowasthekeyoperatingparameterintherecoveryofpolyphenolsbyCGA.

©2014TheInstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

Keywords:Antioxidants;Colloidalgasaphrons;Grapemarc;Phenolics;Surfactants

1.

Introduction

Naturalphenoliccompoundshavebeeninvestigatedfortheir antioxidantandantimicrobialactivitytoquitesomeextent and this subject still raises a large interest due to the

Abbreviations: ABTS,2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)diammoniumsalt;AOC,antioxidantcapacityexpressed asabsorbancepercentinhibitionintheABTSassay;CAE,caffeicacidequivalents;CAPy/CLPy,concentrationofcompoundyinthe col-lapsedaphronphase/liquidphaseattheendofseparationtrials;CGA,colloidalgasaphrons;CTAB,cetyltrimethylammonium-bromide; GAETPI/GAEFI,gallicacidequivalentsbasedontotalphenolindex/FolinIndex;ME,malvidin-glucosideequivalents;My/feed/My/liq,total

amountofcompoundyaddedinthefeed/measuredintheliquidphaseinseparationtrials;QE,quercetinequivalents;REy,recoveryof

compoundyintheaphronphaseinseparationtrials;SF,separationfactor;VAP/VLP/VCGA/Vliquiddrained/Vsample,volumeof:aphronphase (measuredaftercompletecollapse)/liquidphase/CGA/liquiddrainedfromcompletecollapseofCGAintheCGAcharacterisation/standard gallicacidsolutionorextractfedintothecolumninseparationtrials;ε/ε,gashold-upfromCGAcharacterisation/effectivegashold-up fromseparationtrials.

Correspondingauthor.Tel.:+390523599181;fax:+390523599232. E-mailaddress:giorgia.spigno@unicatt.it(G.Spigno).

complexnatureofthesubstances.Polyphenolsarethebiggest groupofphytochemicals,withmorethan8000phenolic struc-turescurrentlyknown,andamongthemover4000flavonoids identified(Löfetal.,2011).Thepolyphenolsnameincludes dif-ferentphenolicclasseswithevenlargelydifferentmolecular

http://dx.doi.org/10.1016/j.fbp.2014.06.002

(2)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof structures, such as non-flavonoid phenolic acids,

non-flavonoid stilbenes, anthocyanins,flavonols, flavanols, tan-nins, flavones and flavanones. The majority of studies availableinliteraturedealwiththenutritional,biochemical, orchemicalstructureaspectsofnaturalphenoliccompounds whileafew studiesaddress the physico-chemical and col-loidal properties (Tsao, 2010) which are, however, of high importanceintheunderstandingofthebehaviourand func-tionalityofthesubstances.Oneofthemainfactorspreventing efficient and widespread applications of natural phenolic compoundsistheirlimitedsolubilityinaqueousorlipidmedia (dependingonthephenolicclassandmolecular hydrophobic-ity),withthingsevenmorecomplicatedwhendealingwith naturalphenolicextractswhichcontainmixturesofdifferent phenoliccompounds(Amendolaet al.,2010;Menese etal.,

2013; Spigno et al., 2013). Production ofstandard phenolic

compounds from natural sources, including agro-food by-productswhichrepresentauniquelow-costresource,requires also important purification and fractionation steps with quiteexpensivetechnologies(strategiesincludingsequential extraction,liquid–liquidpartitioningandothercomplexand expensiveprocessesbasedonmembraneorchromatographic technologieshavebeenproposed).Asitconcernsthepolluting characterofnaturalphenoliccompounds,besidesthe intrin-sicantimicrobialproperties,limitedsolubilitycanalsoprevent theirefficientbioremediation. Limitedstability duetoeasy thermalandoxidativedegradationofnaturalphenolic com-poundsduringstorageandprocessingisanotherheavylimit totheirapplication.Finally,bindingofsomenaturalphenolic compoundstomacromolecules,primarilyproteins/enzymes andpolysaccharides,butalsominerals(suchasironand cop-per),mayhaveimportantantinutritionaleffectsorlimittheir bioavailability afteringestion, compromising theirso com-monlyclaimedhealthbenefits,orcompromisingfoodquality (seeprecipitationofproteins/polyphenolscomplexesinwine andfruitjuices).

Besidestheintensiveuseofemulsifiersinthefoodindustry

(HasenhuettlandHartel,2010)someworkshavebeenreported

abouttheinteractionsbetweensurfactantsandphenolic com-pounds.Forexample,afewworkshaveshownthepotential ofspecificsurfactantsinmicellarformto:solubiliseor precip-itatespecificphenoliccompounds(Löfetal.,2011);altertheir partitioninginoil-in-wateremulsions(Richardsetal., 2002;

SØrensenet al.,2008);enablephenoliccompounds

analyti-caldeterminationexploitingdifferentaffinities(Wangetal., 2007);protectphenoliccompoundsfromoxidation(Linetal., 2007); solubilise aromatic compounds (Yoshidaand Moroi,

2000;Weietal.,2012);improvephenoliccompoundsefficiency

intopicalformulations(Scognamiglioetal.,2013;Yutanietal., 2012).Otherworkshaveinvestigatedtheuseofsurfactantsfor therecoveryofnaturalphenoliccompoundsfrom

wastewa-ters(Gortzietal.,2008;Katsoyannosetal.,2012).

Surfactantsand colloidalgas aphrons (CGA), which are surfactant-stabilizedmicrobubbles(10–100␮m)generatedby intense stirring of a surfactant solution at high speeds (>8000rpm) (Jauregiand Dermiki,2010),havebeenusedfor manyseparationprocessessuchasproteinandenzyme

recov-ery (Fudaand Jauregi, 2006;Zidehsaraeietal., 2009;Cheng

andStuckey,2012),carotenoidsrecovery(Dermikietal.,2008;

Alvesetal.,2006);recoveryoftoxicwastesfromsoil,removal

ofdyesfrom wastewaters,strippingofdissolvedgasesand removalofdispersedoildropletsfromwater,bubble-entrained flocflotation.Dependingonthe typeofsurfactantusedfor thegenerationofCGA,e.g.cationic,anionicornon-ionic,the

outersurfaceofthemicrobubblemaybepositivelycharged, negativelychargedorneutral,towhichoppositelychargedor non-chargedmoleculeswilladsorb,resultingintheireffective separationfromthebulkliquid,andconsequentlythe selec-tivity ofadsorptioncanbe controlled.CGApossess unique properties:(i)highinterfacialareaduetotheirsmallsize;(ii) highstabilitycomparedtoconventionalfoams;(iii)sufficient stabilitytoallowthemtobepumpedfromthegenerationpoint to thepoint ofuse without lossoftheir originalstructure; (iv)CGAcanbeeasilyseparated fromthe bulkliquid with-outmechanicalaid,asopposedtoconventionalliquid–liquid extractionmethodsandtheaqueoustwophaseseparations thatneedcentrifugationforphaseseparation.Ifitis possi-bletousebiodegradableandnon-toxicsurfactants,thiscould resultinanenvironmentallyfriendlyprocesseswhilethefinal productcouldalsobesafeforhumanconsumption.

Previous research carried out by the authors (Spigno

and Jauregi, 2005; Spigno et al., 2010;) demonstrated that

the phenolic acid gallic acid in its anionic form (at neutral–basicpHconditions)canberecoveredfromaqueous solutionsusingCGAgeneratedfromthecationicsurfactant cetyltrimethylammonium-bromide(CTAB).Gallicacid recov-erywasmainlyaffectedbypH,ionicstrength,surfactant/gallic acidmolarratio,mixingconditionsandcontacttime.In fur-therworkitwasdemonstratedthattotalphenoliccompounds couldberecoveredinhighyieldfromagrapemarc(the wine-makingwasteconsistinginseedsandskins,whichistypically removed afterfermentationforredwines,and after press-ing forwhite wines)ethanolic extract(Spigno et al.,2010). Herewetakethisworkfurtherontoinvestigatingthe applica-tionofCGAtotherecoveryofpolyphenolsfromagrapemarc ethanolicextractwithparticularfocusonexploringtheuseof anon-ionicfoodgradesurfactantTween20asanalternative toamoretoxiccationicsurfactant.Thiscouldofferthe addi-tionaladvantageofextractingthepolyphenolsinasurfactant richsolutionwhichcouldconfertheproductimproved solubil-ityproperties.Inparticularthispaperaimsatgettingabetter insightintothefollowingaspectsoftheapplicationofCGA totherecoveryofnaturalphenoliccompoundsfromacrude ethanolicextract:

• Influence of surfactant type and concentration and processing parameters (such as pH, drainage time, CGA/extractvolumetricandmolarratio)ontherecoveryof totalandspecificphenoliccompounds.

• Selectiveseparationandconcentrationofdifferentclasses ofphenoliccompoundsandnon-phenoliccompounds. • Influence of the process on the functional properties

(antioxidantactivity)oftherecoveredcompounds.

2.

Materials

and

methods

2.1. Materials

Gallicacid,caffeicacid,quercetin,CTAB (cetyltrimethylam-monium bromide) and Tween 20 were supplied by Fluka (Milan, Italy); ABTS (2,2 -azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)diammoniumsalt)andmalvidin-glucosideby Sigma (Milan, Italy); potassium persulphate by Carlo Erba (Milan,Italy);allotherchemicalswereofanalyticalgrade.

Grapemarcsamplesfromtwodifferentredgrapevarieties (Barberaandoff-skinsfermentedPinotnoir)werekindly pro-videdbywineriesintheNorthernItaly.Thesampleswereoven

(3)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof

Table1–Experimentalconditionsoftheseparationtrialscarriedoutwithcolloidalgasaphrons(CGA).

Surfactant Investigatedvariables Fixedparameters Evaluatedoutputs

CTAB •CTABconcentration(0.5–1–2mM) •Drainagetime(3–25min) •pH(2–6)

•VolumetricratioCGA/sample(1–23)

•Extractconcentration (200mg/LGAETPI)

REGAE,REME,SFGAE,SFME,antioxidant

activityofrecoveredaphronphase; liquiddrainage.

Tween20 •Drainagetime •Extractconcentration (200–5000mg/LGAETPI)

•VolumetricratioCGA/sample(4–16) •InsituCGAgeneration

•Tweenconcentration(10mM) •NotmodifiedpH

REandSFof:GAETPI,GAEFI,WAE,CAE,

QE,glucose,fructose,potassium. Antioxidantactivityofrecovered aphronphase;liquiddrainage.

CAE:cinnamicacidsequivalents;FI:FolinIndex;GAE:gallicacidequivalents;ME:malvidin-glucosideequivalents;QE:quercetinequivalents; RE:percentrecovery;SF:separationfactor;TPI:totalphenolicsindex.

driedat60◦Cuntilresidualmoisturecontent<5%andthen milled(particlesize<2mm).Phenolicextractswereobtained bysolventextractionwithaqueousethanolaccordingtothe procedurereportedinAmendolaetal.(2010)slightlymodified. Briefly,125gofpowderwasextractedwith1Lof60%aqueous ethanolkeepingthemixturestirredat3500rpm(mixer Silver-son,L5M)for2hat60◦C(bymeansofanelectricheatingplate). Afterextraction,themixturewascentrifugedat5000rpmfor 10min(CentrifugeALC4237R)andthesupernatant(extract) recovered.

ForthetrialswithBarberamarc,theextractwas freeze-driedand the powder used toreconstitute a concentrated extractinethanol 60%.Theconcentratedextract wasthen dilutedwithwatertohaveaconcentrationof200mg/Loftotal phenolics(astotalphenolicsindex).Thisstepwascarriedout inordertoreducetheethanolcontenttoabout10%tolimitits antifoameffect(Alvesetal.,2006).

ForthetrialswithPinotnoirmarc,theextractwas concen-tratedundervacuumat40◦C(RotavaporBüchiR-114)until removinghalftheinitialvolumeandthendilutedwithwater untilthedesiredconcentrationintotalphenolics.Thisway,it wassimulatedanindustrialapplicationoftheprocesswhere ethanolneedstoberecovered.

2.2. CGAgenerationandcharacterisation

TheCGAweregeneratedfromasurfactantsolutionstirredat 8000rpmwiththeSilversonmixerfor5min.CGAhadbeen characterisedintermsofgashold-upandstabilityforCTAB andTween20surfactant solutionsinthegeneration vessel

(JauregiandDermiki,2010).Howeverinthisworkthegas

hold-upwasmeasuredtakingintoaccounttheeffectofpumping. Todoso,aftergeneration,100mLoftheCGAwerepumped intoavolumetriccylinderandlettodraincompletely.Thegas hold-up(ε)wasthencalculatedfromthemeasureddrained volume(Vliquiddrained)accordingtoEq.(1):

ε= VCGA−VVliquiddrained

CGA

(1)

SurfactantconcentrationinthegeneratedCGAwasestimated combiningthedrainedvolumewiththemolarityofthe sur-factantsolutionusedtogenerateCGA.

Stabilitywasmeasuredbymeasuringthedrainagerateand ashalf-life,whichisthetimetaken forhalfoftheoriginal liquidtodrain.

2.3. SeparationwithCGA

Trialswerecarriedoutinaflotationglasscolumn(i.d.0.25m, totalheight0.4m).First,theextractsampleandthentheCGA werepumpedintothecolumnbyaperistalticpump(Watson Marlow505U)fromthebottom.Thevolumetricflowwas reg-ulatedsothatthemixingtimewouldbe3.5–4min.Oncethe columnwasfilled,themixturewasleftstandingforaselected contact(ordrainagetime)beforepumpingouttheseparated bottomliquidphaseandupperaphronphase.Thelatterwas lettodraincompletely(collapsedaphronphase).Thevolumes oftheseparatedliquidphaseandcollapsedaphronphase(VLP

andVAP,respectively)weremeasured.Percentrecoveryofa

specificcompoundyintheaphronphase(REy)wascalculated

basedonthedifferencebetweenthetotalamountofadded

yinthefeed(My/feed)andtheamountofymeasuredinthe

separatedliquidphase(My/liq).

For some experiments the amount of y in the aphron phasewasalsocalculatedandthemassbalancedeviationwas within10%.

Theseparationfactor(SF)wascalculatedtogiveanideaof theaffinityofacompoundtotheaphronphasecomparedto theaffinitytotheliquidphase,basedontheconcentrations ofthecompoundyintheaphronandintheliquidphase(CAPy

andCLPy)accordingtoEq.(2):

SF= CAPy CLPy

(2)

Thedifferentcarriedoutseparationtrialsaresummarisedin

Table1.

Thevolumetricratiowascalculatedastheratiobetween thevolumeofCGAandthevolumeofthesamplefedintothe column.

The molarratio was calculated as the moles of surfac-tant tothemoles ofthecompound y fedintothe column; totalphenolsweredeterminedasgallicacidequivalentsand anthocyaninsasmalvidinglucosideequivalentsthereforethe molecularweightsofthesecompoundswereusedtocalculate themolarratioscorrespondingtoeachvolumeratio.

Inthetrialswith“in-situ”CGAgeneration,thesurfactant solutionwasmixedwiththeextract,stirredat8000rpmfor 5min and then pumped into the column and the separa-tion was performed asabove. Theinfluence ofmixing the feed(extract)withtheCGAonthegashold-upwasassessed calculating an effective gashold-up (ε) from Eq. (1) using

asVliquiddrainedthedifferencebetweenthetotaldrained

vol-ume and the volume of the sample fed into the column (VLP+VAP−Vsample).Allexperimentswereperformedatleast

(4)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof in duplicate and the results in this work are reported as

means±SD.Significance(P<0.01)oftheeffectofinvestigated variable on evaluatedoutputs was establishedtreating the dataaccordingtoagenerallinearmodel(univariateANOVA) andapplyingtheposthocTukey’stesttodiscriminatebetween means(IBMSPSSStatistics19).

2.4. Analyticaldeterminations 2.4.1. Phenoliccompounds

Thegrapemarcextractsandtherecoveredliquidandaphron phaseswerecharacterisedforthetotalphenolicscontentand forthecontentofspecificphenolicclassesaccordingtothe followinganalyses.

• Totalphenolicscontentbytotalphenolindex(TPI)basedon absorbancereadingat280nmandexpressingtheresultsas gallicacidequivalents(GAETPI)bymeansofacalibration

curvewithstandardgallicacid(Amendolaetal.,2010). • Totalphenolicscontent byFolin–Ciocalteuanalysis(Folin

Index),expressingtheresultsasGAEFIbasedona

calibra-tioncurvewithstandardgallicacid(Amendolaetal.,2010). • Total anthocyanins content by absorbance reading at 538nm of the sample diluted with chloridric ethanol and expressing the results as ME (Malvidin-glucoside Equivalents) based on a calibration curve with standard malvidin-glucoside(Amendolaetal.,2010).

• Total cinnamic acids content by absorbance reading at 320nm and expressing the resultsas caffeicacid equiv-alents(CAE) based on acalibration curve withstandard caffeicacid(Spignoetal.,2007).

• Totalflavonolscontentbyabsorbancereadingat370nmand expressingtheresultsasquercetinequivalents(QE)(Spigno

etal.,2007).

For all the abovespectrophotometric analyses,different calibrationcurveswithaqueousethanol,CTABorTween solu-tions were prepared and used depending on the analysed sample(initialextract,liquidandaphronphase).

2.4.2. Non-phenoliccompounds

Thegrapemarcextractsandtherecoveredliquidandaphron phaseswerecharacterisedalsoforthecontentofcompounds otherthanphenolics.Afterpreliminarycharacterisation,the followingcompoundswereselectedbasedontheirlevelinthe extracts.

• GlucoseandfructosecontentwasevaluatedbyaMegazyme enzymatickit(K-FRUGL).

• Potassiumcontent wasevaluated byAtomicAbsorptions Spectroscopy(PerkinElmerAAnalyst300,Norwalk,CT,USA) basedoncalibrationcurvewithstandardK.

2.4.3. Antioxidantcapacity

Theantioxidantcapacityofthegrapemarcextractsandthe recoveredliquidandaphronphaseswereassessedbythe rad-icalABTSassaywhichisbasedontheabilityofantioxidants to reduce the radical decreasing its absorbance at 734nm

(Amendolaetal.,2010).Antioxidantcapacitywasexpressed

asabsorbancepercentinhibition(AOC).

3.

Results

and

discussion

3.1. SeparationwithCTAB

In previous work bythe authors it was demonstrated that CGAgeneratedfrom thecationicsurfactant CTAB couldbe appliedsuccessfullytotherecoveryofthestandard pheno-licacidgallicacidfromwatersolutions(Spignoetal.,2010).In thisworkitwasfoundthatoptimumrecoverywasobtained withCGAgeneratedfroma1mMCTABaqueoussolutionat neutral to basic pH’s, without buffer salts as these would increase ionic strength which will in turn reduce interac-tions between gallic acidand surfactant resulting in lower recoveries.

HereweappliedtheoptimumconditionsabovetoaBarbera marc extract diluted to 200mg/L GAETPI as in the

experi-mentswithgallicacid.Similarrecoverieswereobtainedfor the extractasforthestandardgallicacid (Fig.1A).Slightly higherrecoverywasobtainedforanthocyaninsthanfortotal phenolics basedonthe volumetricratio(Fig.1A),However, particularlyathighvolumetricratios,higherseparation fac-torswereobtainedforanthocyaninsthanfortotalphenolics whichsuggeststhatanthocyaninshaveahigheraffinityfor CGAthantotalphenols(Fig.1B).

Thehigherrecoveriesobtainedwiththerealextract,might havebeenduetothestabilisingeffectofthesampleonthe CGA, as evidentfrom the lower volumes ofdrained liquid phase(Fig.1C).Othercompoundspresentintherealextract suchassugarsmostprobablycontributedtoanincreasein theviscosityoftheliquidwithintheaphronswhichresulted inreduceddrainagerate.

Further separation trials at constant volumetric ratio (15.33) and variable drainage time were conducted(Fig. 2) in order to see if increased drainage led to an increase concentrationoftotalphenolicsand/oranthocyaninsinthe aphron phaseasobservedinourpreviousworkfor asthax-antin(Dermikietal.,2008).Recoverydecreasedatincreased drainage time following a linear trend (r2 0.985 and 0.978

for MEand GAE,respectively)which impliedthat phenolic compoundsdrainedtogetherwiththeliquidphase(Fig.2A). However,theseparationfactorincreasedwithdrainagetime particularlyforanthocyaninsfollowinganonlineartrend.A verysimilartrendwasfollowedbytheratioofdrainedliquid phasetothevolumeofcollapsedaphronphase(Fig.2B).This againsupportsthatanthocyaninshavemoreaffinityforthe CGAthanpolyphenols.

Overallahigherselectivityforanthocyaninsthanfortotal phenolicswasfound.AlthoughatthepHconditionsofour experiments (pH of the recovered liquid phase 3.5–4.36 in therangeofvolumetricratiosstudied)anthocyaninsarenot expectedtobechargedsincetheflaviliumform(cationicform) existsonlyatpH≤2thesemoleculesarepolarisedwithhigh electrondensityinthearomaticringswhichmayexplaintheir affinityforthepositivelychargedCGAgeneratedfromCTAB. However,itisexpectedthathydrophobicinteractionswillalso playanimportantroleintheirseparation.

ToverifythepHeffect,additionaltrialswerecarriedoutat pH2(with1MHCl)inboththeCTABsolutionandtheextract. ThepHreductionledtoasmallincreaseinrecoveryoftotal phenolicsand areductioninthe recoveryofanthocyanins, particularlyatlowvolumetricratios(Fig.3A).Theseparation factorincreasedfortotalphenolicsbutnotforanthocyanins (Fig. 3B). A reduction in recovery can be explained based onrepulsiveelectrostaticinteractionsbetweenthepositively

(5)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof

Fig.1–Resultsofseparationtrialscarriedoutwithcolloidalgasaphrons(CGA)(generatedfromCTAB1mM)andsample

consistinginstandardgallicacid(GA)solutionsorBarberamarcextract(GAE:gallicacidequivalentsastotalphenolics

index;ME:malvidin-glucosideequivalents).(AandB)Recoveryasafunctionofvolumetricratioormolarratio,respectively.

(CandD)Separationfactororvolumeofdrainedliquidphaseasafunctionofvolumetricratio,respectively.Errorbars

indicate±SD.

chargedcationicsurfactantandanthocyaninsatthispH. How-ever,therecoveryandseparationfactorwerestillhighwhich shows that separation of anthocyanins occurs also due to hydrophobicinteractions;atthispHaproportionof antho-cyaninmoleculeswillnotbechargedandwillbecomplexed withotherphenoliccompounds.

TrialscarriedoutatpH2and0.5mMCTAB,confirmedthe aboveresults,alower recoveryofanthocyaninsatthispH. However,therecoveryofthetotalphenolicsdecreasedalso contrarytowhatwasobservedatpH2with1mMCTAB.This

islikelytobenotapHeffectbut aneffectofCGAstability. Infact,0.5mMisbelowthecriticalmicellarconcentrationof CTAB (reportedtobe0.8–1mMat25◦C),withaconsequent decreaseinCGAstability,ahigherdrainagerateandalower effectivegashold-up.

Furthermore,inallthetrials,itwasfoundthatthe antioxi-dantactivityoftotalphenolicsrecoveredintheaphronphase isreducedcomparedtototalphenolicsdrainedintheliquid phase(Fig.4).Thiscanbeduetooxidationduringrecoveryor toaselectivepartitionofphenolicsbetweenthetwophases.

Table2–Results(intermsofrecoveryefficiencyRE)fortheseparationtrialscarriedoutwithcolloidalgasaphrons generatedfromTween2010mM,atdifferentvolumetricratios(mlCGA/mlextract)anddifferentmolarratios

(molTween/molGAETPI).VAPandVLPistherecoveredvolumeofaphronandliquidphase,respectively.

mlCGA/mlextract 16 16 16 8 4

gGAETPI/Lextract 0.3 1.0 5.4 1.0 1.0

molTween/molGAE 90.7 27.2 4.8 13.6 6.8

VLP/VAP 1.25 1.00 0.83 1.25 2.50

Effectivegashold-up 0.53 0.60 0.60 0.60 0.55

RE GAETPI 77.29c 75.59d 78.47b 61.75c 48.25c GAEFI 69.42b 72.86bcd 76.33b 55.40b 41.21b CAE 75.92c 78.90e 84.51c 60.66bc 54.56d ME NE 69.76b 76.36b 68.90d 24.56a QE 70.75b 79.28e 84.28c 60.18bc 54.03d Glucose 44.52a 73.03cd 70.98a 66.09cd 46.99c Fructose 46.20a 71.30bc 70.62a 46.09a 45.34bc Potassium 70.88b 52.38a 72.21a 68.40d 43.92bc

FI/TPI(Aphronphase) 1.88 1.76 2.02 1.12 0.76

FI/TPI(liquidphase) 2.82 1.52 1.78 1.46 1.01

GAE:gallicacidequivalentsaccordingtototalphenolindex(TPI)orFolinIndex(FI).CAE:caffeicacidequivalents.ME:malvidin-glucoside equivalents.QE:quercetinequivalents.NE:notevaluated.Samesuperscriptlettersinthesamecolumnindicatemeansnotstatisticallydifferent accordingtoANOVAandTukey’sposthoctest.

(6)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof

Fig.2–Resultsofseparationtrialscarriedoutwithcolloidal

gasaphrons(CGA)(generatedfromCTAB1mM)and

Barberamarcextract(GAE:gallicacidequivalentsastotal

phenolicsindex;ME:malvidin-glucosideequivalents)with

aconstantvolumetricratioof15.33mLCGA/mLextract.(A):

recoveryasafunctionofdrainagetime.(B):thevolumetric

ratioofdrainedliquidphasetodrainedaphronphaseasa

functionofdrainagetime.Errorbarsindicate±SD.

3.2. SeparationwithTween20

CGAweregeneratedfromthenon-ionic,food-gradesurfactant Tween20 at a fixedconcentration of10mM. This concen-trationwas used based on characteristics ofCGA suchas, stability(half-life)=407sandgashold-up=60%which,were similartothose ofthe CGAgeneratedfromCTAB,stability (half-life)=493sandgashold-up=63%.

Comparedto the trials withCGA generated from CTAB 1mM (withoutpHcorrection),lower anthocyaninsrecovery andseparationfactorwereobtainedwithCGA(Tween20)than CGA(CTAB),butonlyslightlylowerrecoveryandhigher sepa-rationfactoroftotalphenolics(Fig.5AandB).Theseresults confirmthattheseparationofpolyphenolsisdrivenbyboth electrostaticandhydrophobicinteractionsinthecaseofCGA generatedfromCTABwhilstwithCGAgeneratedfromTween 20,onlyhydrophobicinteractionsdrivetheseparationhence thelowerrecoverywithTween.CGAgeneratedfromTween 20hadalsolowerstabilityandgashold-upthanCGA gener-atedfromCTAB(Fig.5C).Particularlyatlowvolumetricratio(4) Tween20hadveryloweffectivegashold-up(about0.2)which coincideswithlowrecoveryofpolyphenols.Thereductionin gashold-upleadstoareductionininterfacialareahencelower recovery;asimilarobservationwasmadebytheauthorson therecoveryofastaxanthin(Dermikietal.,2010).

Fig.3–Resultsofseparationtrialscarriedoutwith

colloidalgasaphrons(CGA)(generatedfromCTAB1mM

and0.5mM,modifyingornotthepHto2)andBarbera

marcextract(GAE:gallicacidequivalentsastotalphenolics

index;ME:malvidin-glucosideequivalents).(A):recovery;

(B):separationfactorasafunctionofvolumetricratio.Error

barsindicate±SD.

Fig.4–Comparisonbetweentheantioxidantcapacityasa

functionoftotalphenolicsconcentration(GAE:gallicacid

equivalentsastotalphenolicsindex)fortheinitialBarbera

marcandtherecoveredliquidandaphronphase,for

separationtrialscarriedoutwithcolloidalgasaphrons

generatedfromCTAB(withoutpHmodification)and

(7)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof

Fig.5–Resultsofseparationtrialscarriedoutwith

colloidalgasaphrons(generatedfromCTAB1mMorTween

2010mM)andBarberamarcextract(GAE:gallicacid

equivalentsastotalphenolicsindex;ME:

malvidin-glucosideequivalents).(A):recovery;(B):

separationfactorand(C)thevolumetricratioofdrained

liquidphasetodrainedaphronphaseandtheeffectivegas

hold-upasafunctionofvolumetricratio.Errorbars

indicate±SD.

ContrarytowhatwasobservedwithCGAgeneratedfrom CTABnolossofantioxidantactivitywasobservedinrecovered fractionswithCGAgeneratedfromTween20(datanotshown here).

Overall16wasfoundtobeanoptimumvolumetricratio where recovery of both total phenolics and anthocyanins reachedaplateau.Furtherexperimentswerecarriedout in ordertoinvestigatetheapplicabilityoftheprocessto differ-entphenolicextracts,totalphenolicsloadandselectivityof

different classes ofphenoliccompounds and non-phenolic compounds.

ComparedtoBarberaextract,thePinotextractwas charac-terisedbya1.6timeshighercontentoftotalphenolics,but a5times loweramount inanthocyanins(Barberagrapeis, infact,well-knownforitshighanthocyaninscontent). Over-all composition ofPinot extract was: 5.43±0.16g/LGAETPI;

8.74±1.32g/L GAEFI; 2.54±0.03g/L CE; 161.46±2.28mg/L

ME; 8.10±0.086g/L glucose; 10.42±0.16g/L fructose and 767.5±0.14mg/Lpotassium.

Separation experiments were carried out at differ-ent volumetric ratios and different dilutions of the feed extract (0.3–1.0–5.4g/L GAETPI). The results are reported in

Tables2and3.

Very similarrecoveryoftotalphenolicswasobtainedto thatobtainedwithBarberaextract.

When the volumetric ratio was kept constant, it was observed,foralmostallthecompounds,ageneralincreasein therecoverywithdecreasingmolarratio(Table2).Thismight havebeenduetothehigherCGAstabilityobservedwhena moreconcentratedextractwasused;withthestabilisingeffect possiblyduetoothercompoundsintheextractasobserved previouslyfortheBarberaextract.Furthermore,contraryto whatwasobservedwithCGAgeneratedfromCTAB,the volu-metricratiohasamajoreffectontherecoveryinsteadofthe molarratio. Forexample inexperimentsataconstant vol-umetric ratioof16 but varyingmolarratio,the recoveryis almostthesame(Table2).However,experimentsatincreased volumetricratio(4–16)atconstantfeedconcentrationshowan importantincreaseinrecovery(48.25–75.59)ofGAE.Inthe tri-alswithconcentratedextract(molarratio4.8),theformation ofaggregateswasobservedintherecoveredaphron phase. Sincethese aggregatedcouldnotbe completelysolubilised duringsampleanalysis,anunderestimationoftherecovery wasprobablydone.

Insummarymaximumrecoveryisobtainedathigh volu-metricratioandconcentratedextract,whichresultsoptimal also for the selectivity of the process. In fact, looking at the separation factor (Table 3), in these trials it was observedahigheraffinityfortheaphronphasebycinnamic acids and flavonols, which tend to be smaller molecules comparedtoanthocyaninsand otherphenoliccompounds. However,itwasstillnotpossibletoselectivelyseparate antho-cyanins (confirming their probable association with other molecules),ornon-phenoliccompoundssuchassugarsand minerals.

Analysis of antioxidant activity (Fig. 6) confirmed that only a slight reduction in the antiradical activ-ity of the phenolic compounds could be achieved using Tween20.

Theoccurrence ofa certainselectivity and/oroxidation of the compounds duringthe separation is shown alsoby the ratio between the total phenolic index and the Folin Index. In fact, even though both methods are used to quantify total phenolics, the total phenolic index is based on the characteristic absorption of the aromatic ring at 280nm(withdifferentmolarextinctioncoefficients depend-ing on the molecular structure), while the Folin Index is based on the abilityof the compound to reduce the Folin reagentwhichdependsonthemolecularstructureand oxida-tive status of the antioxidant. It follows that a change in the Folin Index/total phenolic index ratio indicates a changeinthecompositionand/oroxidationofthephenolic compounds.

(8)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof

Table3–Results(intermsofseparationfactor,SF)fortheseparationtrialscarriedoutwithcolloidalgasaphrons generatedfromTween2010mM,atdifferentvolumetricratios(mlCGA/mlextract)anddifferentmolarratios

(molTween/molGAETPI).VAPandVLPistherecoveredvolumeofaphronandliquidphase,respectively.

mlCGA/mlextract 16 16 16 8 4

gGAETPI/Lextract 0.3 1.0 5.4 1.0 1.0

molTween/molGAE 90.7 27.2 4.8 13.6 6.8

VLP/VAP 1.25 1.00 0.83 1.25 2.50

Effectivegashold-up 0.53 0.60 0.60 0.60 0.55

SF SF SF SF SF GAETPI 4.10c 3.00c 3.78b 1.91bc 2.27c GAEFI 2.71b 2.60bc 3.35ab 1.48ab 1.71b CAE 3.82c 3.64d 5.70c 1.84bc 2.93d ME NE 2.24b 3.43b 2.66d 0.79a QE 2.88b 3.74d 6.60d 1.79b 2.88d Glucose 0.95a 2.62bc 3.03a 2.32cd 2.18bc Fructose 1.02a 2.41bc 3.03a 1.01a 2.03bc Potassium 2.89b 1.06a 3.21a 2.56d 1.91bc

GAE:gallicacidequivalentsaccordingtototalphenolindex(TPI)orFolinIndex(FI).CAE:caffeicacidequivalents.ME:malvidin-glucoside equivalents.QE:quercetinequivalents.NE:notevaluated.Samesuperscriptlettersinthesamecolumnindicatemeansnotstatisticallydifferent accordingtoANOVAandTukey’sposthoctest.

Fig.6–Comparisonbetweentheantioxidantcapacityasa functionoftotalphenolicsconcentration(GAE:gallicacid equivalentsasFolinIndex)fortheinitialPinotnoirmarc extractandtherecoveredliquidandaphronphase,forthe differentseparationtrialscarriedoutwithcolloidalgas aphronsgeneratedfromTween20.

3.2.1. InsituCGAgeneration

The last trials were carried out by generating the CGA directly from a mixture of surfactant solution and extract withavolumetricratioof8mLTween/mLextract(corresponding to a theoretic volumetric ratio of 18.56mLCGA/mLextract, based on the gas hold-up of Tween 20 10mM). Two different extract concentrations (0.3 and 5.4g/L GAETPI) were used, corresponding to molar ratio of 45.3 and 2.5molTween/molGAE, respectively. Results are reported

in Table 4. Decidedly lower recovery and selectivity,

com-paredto the conventionalseparation trials, were obtained. In particular, the trials withthe undiluted extract showed a uniform partition of all the analysed compounds in the two phases (separation factors around 1 and the same ratio FolinIndex/totalphenolicindex),whichsuggests that when CGA are generated in the presence of the extract, the solubilisation of polyphenols by the micelles com-petes strongly with the flotation of polyphenols by the CGA.

Table4–Results(intermsofrecoveryefficiencyREandseparationfactorSF)fortheseparationtrialscarriedoutwith colloidalgasaphronsgeneratedfromTween2010mMmixedwithPinotnoirmarcextract,atdifferentmolarratios (molTween/molGAETPI).VAPandVLPistherecoveredvolumeofaphronandliquidphase,respectively.

gGAETPI/Lextract 0.3 5.4

molTween/molGAE 45.3 2.5

VLP/VAP 1.69 0.77 RE SF RE SF GAETPI 41.96ab 1.23ab 55.07a 0.94a GAEFI 50.94c 1.78c 55.65a 0.97a CAE 41.69ab 1.21ab 57.12a 1.03a ME 52.44c 1.87c 55.91a 0.98a QE 45.83b 1.43b 55.07a 0.95a Glucose 37.98a 1.04a 58.24a 1.09a Fructose 38.51a 1.06a 48.27b 0.72b

FI/TPI(Aphronphase) 2.12 1.50

FI/TPI(liquidphase) 1.46 1.46

GAE:gallicacidequivalentsaccordingtototalphenolindex(TPI)orFolinIndex(FI).CAE:caffeicacidequivalents.ME:malvidin-glucoside equivalents.QE:quercetinequivalents.NE:notevaluated.Samesuperscriptlettersinthesamecolumnindicatemeansnotstatisticallydifferent accordingtoANOVAandTukey’sposthoctest.

(9)

Pleasecitethisarticleinpressas:Spigno,G.,etal., Colloidalgasaphronsbasedseparationprocessforthepurificationandfractionationof

4.

Conclusions

InthisworkwehaveshownthatCGAgeneratedfromCTAB caneffectivelyextractphenoliccompounds. Slightlyhigher recoveriesthan whenappliedtostandard solutionofgallic acidareobtainedwhichisthoughttobeduetoan stabilis-ingeffectbythefeed.Furthermoreslightlyhigherrecoveries andseparationfactorsareobtainedforanthocyanins show-ingaslightlyhigheraffinityofCGAgeneratedfromCTABfor thesecompounds.Thisresultstogetherwiththoseobtained atpH=2suggestthatpolyphenolspartitiontotheCGAmainly duetohydrophobicinteractionsbutelectrostaticinteractions enhancethepartitioningasshownbyahigherrecoveryand separationfactor obtainedforanthocyaninsatpH>2. This couldalsoexplainwhylowerrecoveryandseparationfactor wereobtainedforphenoliccompoundswithCGAgenerated fromTween20thanwithCGAgeneratedfromCTABaswith the former partitioning into the CGA phase is driven by hydrophobicinteractionsonly.Maximumrecovery(78%GAE and76% ME)and separationfactor (4 GAEand 3ME)were obtainedatthehighestvolumetricratioandhigherextract concentrationwithCGAgeneratedfromTween20.Moreover, theextractionwithCGAgeneratedfromTween20didnotlead toasubstantiallossofantioxidantcapacitycontrary tothe extractionwithCGAgeneratedfromCTAB.Overall,hereithas beenshownthattheextractionofphenoliccompoundswith CGAgeneratedfromTween20couldbeapromisingalternative tootherseparationssuchasorganicextraction.

Acknowledgment

ThisresearchwaspartlysupportedbyProjectAger,grantn◦ 2010-2222.

References

Alves,R.W.,UlsondeSouza,A.A.,UlsondeSouza,S.M.,Jauregi,P., 2006.Recoveryofnorbixinfromarawextractionsolutionof

annattopigmentsusingcolloidalgasaphrons(CGAs).Sep.

Purif.Technol.48,208–213.

Amendola,D.,DeFaveri,D.M.,Spigno,G.,2010.Grapemarc

phenolics:extractionkinetics,qualityandstabilityof

extracts.J.FoodEng.97,384–392.

Cheng,S.,Stuckey,D.C.,2012.Proteinprecipitationusingan

anionicsurfactant.ProcessBiochem.47(5),712–719.

Dermiki,M.,Gordon,M.H.,Jauregi,P.,2008.Theuseofcolloidal

gasaphronsasnoveldownstreamprocessingfortherecovery

ofastaxanthinfromcellsofPhaffiarhodozyma.J.Chem.

Technol.Biotechnol.83,174–182.

Dermiki,M.,Bourquin,A.,Jauregi,P.,2010.Separationof

astaxanthinfromcellsofPhaffiarhodozymausingcolloidalgas

aphrons(CGA)inaflotationcolumn.Biotechnol.Prog.26(2),

477–487.

Fuda,E.,Jauregi,P.,2006.Aninsightintothemechanismof

proteinseparationbycolloidalgasaphrons(CGA)generated

fromionicsurfactants.J.Chromatogr.B.843,317–326.

Gortzi,O.,Lalas,S.,Chatzilazarou,A.,Katsoyannos,E., Papaconstandinou,S.,Dourtoglou,E.,2008.Recoveryof

naturalantioxidantsfromolivemillwastewaterusing

Genapol-X080.J.Am.OilChem.Soc.85,133–140.

Hasenhuettl,G.L.,Hartel,R.W.,2010.FoodEmulsifiersandTheir

Applications,seconded.Springer,NewYork.

Jauregi,P.,Dermiki,M.,2010.Separationofvalueadded

bioproductsbycolloidalgasaphrons(CGA)flotationand

applicationsintherecoveryofvalue-addedfoodproducts.In:

Rizvi,S.S.H.(Ed.),Separation,ExtractionandConcentration

ProcessesinFood,BeverageandNutraceutical

Industries.WoodheadPublishingLimited,Cambridge,

pp.284–313.

Katsoyannos,E.,Gortzi,O.,Chatzilazarou,A.,Athanasiadis,V., Tsaknis,J.,Lalas,S.,2012.Evaluationofthesuitabilityoflow

hazardsurfactantsfortheseparationofphenolsand

carotenoidsfromred-fleshorangejuiceandolivemill

wastewaterusingcloudpointextraction.J.Sep.Sci.35(19),

2665–2670.

Lin,Q.L.,Wang,J.,Qin,D.,Björn,B.,2007.Infuenceofamphiphilic

structuresonthestabilityofpolyphenolswithdifferent

hydrophobicity.Sci.ChinaSer.B:Chem.50,121–126.

Löf,D.,Schillén,K.,Nilsson,L.,2011.Flavonoids:precipitation

kineticsandinteractionwithsurfactantmicelles.J.FoodSci.

76(3),N35–N39.

Menese,N.G.T.,Martins,S.,Teixeira,J.,Mussatto,S.I.,2013.

Influenceofextractionsolventsontherecoveryof

antioxidantphenoliccompoundsfrombrewer’sspentgrains.

Sep.Purif.Technol.108,152–158.

Richards,M.P.,Chaiyasit,W.,McClements,D.J.,Decker,E.A.,2002.

Abilityofsurfactantmicellestoalterthepartitioningof

phenolicantioxidantsinoil-in-wateremulsions.J.Agric.Food

Chem.50,1254–1259.

Scognamiglio,I.,DeStefano,D.,Campani,V.,Mayol,L., Carnuccio,R.,Fabbroccini,G.,Ayala,F.,LaRotonda,M.I.,De Rosa,G.,2013.Nanocarriersfortopicaladministrationof

resveratrol:acomparativestudy.Int.J.Pharm.440,179–187.

SØrensen,A.-D.M.,Haahr,A.-M.,Becker,E.M.,Skibsted,L.H., Bergenståhl,B.,Nilsson,L.,Jacobsen,C.,2008.Interactions

betweeniron,phenoliccompounds,emulsifiers,andpHin

omega-3-enrichedoil-in-wateremulsions.J.Agric.Food

Chem.56,1740–1750.

Spigno,G.,Jauregi,P.,2005.Recoveryofgallicacidwithcolloidal

gasaphrons(CGA).Int.J.FoodEng.1(4),Article5.

Spigno,G.,Dermiki,M.,Pastori,C.,Casanova,F.,Jauregi,P.,2010.

Recoveryofgallicacidwithcolloidalgasaphronsgenerated

fromacationicsurfactant.Sep.Purif.Technol.71,56–62.

Spigno,G.,Donsì,F.,Amendola,D.,Sessa,M.,Ferrari,G.,De Faveri,D.M.,2013.Nanoencapsulationsystemstoimprove

solubilityandantioxidantefficiencyofagrapemarcextract

intohazelnutpaste.J.FoodEng.114,207–214.

Spigno,G.,Tramelli,L.,DeFaveri,D.M.,2007.Effectsofextraction

time,temperatureandsolventonconcentrationand

antioxidantactivityofgrapemarcphenolics.J.FoodEng.81,

200–208.

Tsao,R.,2010.Chemistryandbiochemistryofdietary

polyphenols.Nutrients2,1231–1246.

Wang,X.-K.,He,Y.-Z.,Qian,L.-L.,2007.Determinationof

polyphenolcomponentsinherbalmedicinesbymicellar

electrokineticcapillarychromatographywithTween20.

Talanta74,1–6.

Wei,J.,Huang,G.,Zhu,L.,Zhao,S.,An,C.,Fan,Y.,2012.Enhanced

aqueoussolubilityofnaphthaleneandpyrenebybinaryand

ternaryGeminicationicandconventionalnon-ionic

surfactants.Chemosphere89,1347–1353.

Yoshida,N.,Moroi,Y.,2000.Solubilizationofpolycyclicaromatic

compoundsinton-decyltrimethylammonium

perfluorocarboxylatemicelles.J.ColloidInterfaceSci.232,

33–38.

Yutani,R.,Morita,S.,Teraoka,R.,Kitagawa,S.,2012.Distribution

ofpolyphenolsandasurfactantcomponentinskinduring

aerosolOTmicroemulsion-enhancedintradermaldelivery.

Chem.Pharm.Bull.60,989–994.

Zidehsaraei,A.Z.,Moshkelani,M.,Amiri,M.C.,2009.An

innovativesimultaneousglucoamylaseextractionand

recoveryusingcolloidalgasaphrons.Sep.Purif.Technol.67,

Figure

Table 2 – Results (in terms of recovery efficiency RE) for the separation trials carried out with colloidal gas aphrons generated from Tween 20 10 mM, at different volumetric ratios (ml CGA /ml extract ) and different molar ratios
Fig. 4 – Comparison between the antioxidant capacity as a function of total phenolics concentration (GAE: gallic acid equivalents as total phenolics index) for the initial Barbera marc and the recovered liquid and aphron phase, for separation trials carrie
Table 4 – Results (in terms of recovery efficiency RE and separation factor SF) for the separation trials carried out with colloidal gas aphrons generated from Tween 20 10 mM mixed with Pinot noir marc extract, at different molar ratios (mol Tween /mol GAET

Références

Documents relatifs

For cellulose acetate grafted with ammonium ionic liquids containing different anions, the anion influence on the sorption data generally followed the same trends as for the first

SUHVHQWVUHFHQWZRUNVFDUULHGRXWRQXVLQJ&DORQHDQG&FRXSOHGWRRWKHUWUHDWPHQWPHWKRGV DLPLQJDWWUHDWLQJZDVWHZDWHU

Non-gray gas radiation analysis and comparison are conducted by combining a ray tracing method and two statistical narrow band (SNB) spectral models, namely the Goody SNB model

Figure 5: Example of Electro-thermal modeling results for different heater resistor shapes: Power of consumption and Homogeneity rate for Tmax =650°C.. Considering these results,

At the first order of our perturbation theory, as in the case of a single contact transformation [10,14,15], we do find that the laboratory-fixed effective dipole moment operator is

Oxygen incorporated during deposition determines the crystallinity of magnetron-sputtered Ta3N5 films.. Minea,

L’ensemble constitue un système de transmission des savoirs scolaires auquel il faut ajouter le curriculum caché du développement durable (Barthes, Alpe, 2013 ; Barthes, 2018)

This confirmed the production of an ADP-ribosyltransferase activity targeting RhoA by WT ST80-MRSA-IV strain (ST80) and the ΔedinB/edinB-WT strains opposite to ΔedinB