• Aucun résultat trouvé

Ife'"Xd~(z) l I e"Xdz By

N/A
N/A
Protected

Academic year: 2022

Partager "Ife'"Xd~(z) l I e"Xdz By"

Copied!
10
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 4 n r 15

Communicated 10 February 1960 by O. FROSTMAN and L. CARLESON

O n linear d e p e n d e n c e in closed sets By

I N G E M A R W I K

1. K r o n e c k e r ' s t h e o r e m can be f o r m u l a t e d as follows: A n e c e s s a r y a n d sufficient c o n d i t i o n for 22 - 21, 43 - 21 . . . h e - 21 to be l i n e a r l y i n d e p e n d e n t (rood 2 z ) is

k k

inf s u p l ~ a , e ' % l = ~ [ a , [ .

a v n > . O

T h r o u g h o u t the p a p e r n r e p r e s e n t s integers F o r a n a r b i t r a r y closed set on (0,2~) we i n d e p e n d e n c e :

(a) Pc

(E) = inf sup

,ueU* n~>O

(b) P ~ ( E ) = i n f sup

pe 1~* t>~O

(c) Pn

(E) = inf sup

peP* n

(d) P ~ (E) = inf sup

,u~F* t

where r ~ is t h e class of functions ~u which

a n d t a r b i t r a r y real numbers.

define t h e following indices of l i n e a r

If e'"x dr (x) I

I] e"Xdz (zll Ife'"Xd~(z) l

E

a r e c o n s t a n t o u t s i d e E a n d s a t i s f y

fld~,l=l.

E

A n i m m e d i a t e consequence of t h e definitions is:

O<.Pc<- ( p n < ~ P ~ l .

I n K r o n e c k e r ' s t h e o r e m t h e c o n d i t i o n n~> 0 can be c h a n g e d to t~> 0, - c ~ <

< n < ~ or - c~ < t < oo.

I f E consists of a finite n u m b e r of l i n e a r l y i n d e p e n d e n t p o i n t s we t h u s h a v e

Pc = P~ = Pn= P * =

1. W e shall p r o v e t h a t this p r o p e r t y holds for all sets E for which

P*H(E)=I

(Theorem 1) a n d t h a t P ~ ( E ) > 0 implies P c ( E ) > 0 (Theo- r e m 2).

A set E is called a

Kronecker set if Pc

( E ) = 1 a n d a

weak Kronecker set

if

Pc (B) > O.

13:'2 2 0 9

(2)

An example of a perfect Kronecker set of the Cantor t y p e was given in R u d i n [4]. Theorem 2 provides a positive answer to the question, raised b y Kahane-Salem in [3], concerning the equivalence of Carleson-sets and Helson-sets.

B o t h notions are equivalent to weak Kronecker sets.

The following theorem b y Carleson [1] is f u n d a m e n t a l for the proof of Theo- rem 2:

Theorem A. A necessary and sufficient condition that PH (E)> 0 is that for each

> 0 every continuous function q~ (x) has a representation

r

r (x)= ~ a,e ~=, x f E,

where l a" l "< G + 1

2. To prove Theorem 1 below we use

L e m m a 1. I f P * ( E ) = 1 we have for all IX f F ~ lira Ij eUZdix (x) l = 1.

I t l ~ o r

Proof. Suppose t h a t the lemma is false. Then there exists a function IX f i f ~ so t h a t for t = t o we have

f e'"= dix (~)= d~..

E

IX cannot be a step function. I n t h a t case the lemma follows immediately from Kroneeker's theorem. W i t h o u t loss of generality we p u t ~ 0 = 0 and we have d#=e-tt~ dp(x)>~O.

Choose ~ r E , a point of continuity of IX, so t h a t e~t*~# 1 and form d Ixx = e-tt'x d p (x) + d (~ ( x - ~). [d} (x) = 0 for x < 0, = 1 for x >~ 0].

There is no v satisfying

Ife'=d ,ll=2.

E

Thus lim [f e 't~ dixl (x) l = 2 a n d lira I f ei t~dl x (x) l = 1 which is a contradiction t h a t

Itt ~ * r ~ ltl ~ r E

proves L e m m a 1.

L e m m a 2. I f P*n(E)= 1 ue have ]or all IX f F ~

~m Ifen~dix(~)l= 1.

I n l ~

Proof. The same as for L e m m a 1 if t is changed to n.

Cor. 1. If P*H(E)=I we have for all IXEI "~

lim fie"=- llldix[=O.

t - - ~ E

210

(3)

ARKIV FOR MATEMATIK. B d 4 nr 15

Proo/.

Choose an a r b i t r a r y e > 0. B y L e m m a 1 there is a sequence {t,}i ~ so t h a t

[ f e % ~ + ~ d # - l l < ~ , r>~v o.

E

P u t d/z2 =

e%'. z +i~ d be = d tt~ + i d #~'.

t d H ~2

Then

w e

have f(Id~,t-dm)<~ ~ and fl

~'~ < - - -

E E 6

B y the triangle inequality we obtain for v >~ ro

e 2

6 g

whence

E E E

/32 E2

f 1 - - c o s

( ' . - t , o ) X l d l ~ l < ~ + ~ + . . . .

E 6 2

a n d b y Schwarz's inequality

9 s i n I !_t~ - t.0) x

f i e,(t _,,~ 11 [ d/~ i = 2~

(t,~t~~

i d # l ~ < 2 ~ sin 2 2 dja]

fie~(e.-t.o)X-ll[djal<e

for v~>r o a n d Cor. 1 is shown.

Cor.

2. I[ PH(E)= 1 we have /or all # E F ~

lira

fl~'"=- llld/,[=o.

n---~oO E

Proo].

The same as for Cor, 1 if t is changed to n and L e m m a 2 is used instead of L e m m a 1.

Cor. 3.

Ph,(E)= 1 implies P c ( E ) = 1

Proo[.

Suppose t h a t P c ( E ) < I . Then there exists a function # E F ~ with

I / e ' n X d / a ( x ) l < r < l , n>~O.

According to L e m m a 2 we choose n o so t h a t

E

l + r

B

and b y Cor. 2 there exists n x with the properties: n I + n o > 0 a n d I - r

f I~'"'~- Illet'l< 2

E

(4)

T h e triangle i n e q u a l i t y gives

r>l f e'<~'+~"~d:, (x) I > I f e'~'~d# (~) I- f I e'(~'+~')~- e'~'~ I I d. (x) I >

E E E

l + r 1 - r

2 2 r .

This c o n t r a d i c t i o n proves Cor. 3.

L e m m a 3. From a set o/ rational numbers with denominator m, it is su//icient to remove m - 1 to get an integer as the s u m o / t h e others.

Proo/. E n u m e r a t e t h e n u m b e r s I P ' ! N a n d from t h e sums ( m J1

~ P ' = n ~ + a k ~ k = 1,2 . . . m.

1 m m

A t least two of t h e gk:s are identical, e.g. ~k, a n d ~ , . T h u s k, p~

These P , are r e m o v e d a n d t h e o t h e r s are e n u m e r a t e d a g a i n from 1 t o N - (k I - k2).

W e o b t a i n a similar sum:

k ' t + l lf~

A n a l o g o u s l y we can continue u n t i l th~ n u m b e r of t e r m s is less t h a n m - 1. The sum of t h e o t h e r s is t h e n a n integer, which was t o b e p r o v e d .

T h e o r e m 1. I / P ~ (E) = 1, then E is a Kronecker set.

Proo/: Suppose t h a t P * ( E ) = 1 a n d P x ( E ) < 1. T h e n t h e r e e x i s t s a f u n c t i o n /z E F ~ satisfying

lfe'"=d/~(~)l

< P I , all n, P l < 1. (1)

E

a n d P u t

F o r j>~ Jo we h a v e

B y L e m m a 1 t h e r e is a sequence (tj}~ w i t h t h e properties:

E

t, - [t,]-+~, [t,] = n,.

~ = 1 l a n d m = ~ + 1 .

l - If (2)

212

(5)

ARKIV FOR MATEMATIK. B d 4 nr 15 /~ is c o n t i n u o u s on E c a n d d i s c o n t i n u o u s on E s. E = E c U E s a n d f [ d ~ [ = a .

E

a ~= 0 for otherwise t h e t h e o r e m follows d i r e c t l y from K r o n e c k e r ' s t h e o r e m . Before p r o v i n g the t h e o r e m we m a k e t h e following s t a t e m e n t : To each n u m b e r fl a n d each ~p t h e r e exist a n i n t e g e r N~ a n d a c o n s t a n t ~@ w i t h t h e p r o p e r t i e s

f I e ' " ~ + ~ . - ?~",~11dgl < 2 ~

a n d

f I?"~+~,- 11 Idol < ~.

E,.g

To show t h i s we d i v i d e E c i n t o d i s j o i n t subsets E . U E , = E c, r e s t r i c t e d b y t h e c o n d i t i o n

a(~ .< fl a(~

9 ~

W e c o n s t r u c t new f u n c t i o n s / ~ of b o u n d e d v a r i a t i o n on E b y choosing

d~t, = ] d g (x) l otherwise.

f l d ~ , l = l a n d t h u s b y L e m m a I t h e r e exists a sequence t'k a n d a c o n s t a n t ~0,

N

so t h a t

f

ett~z+~% dl~,-->l (3)

E

a n d t" - k r~.'. 1 L v ~ j ~ a , rt" ~ L kj - - n" k.

H o w e v e r , ~ is a r a t i o n a l n u m b e r w i t h d e n o m i n a t o r less t h a n m. F o r s u p p o s e t h a t t h e c o n t r a r y is true. T h e n t h e r e are two integers ql a n d qu satisfying

q l ~ + z c - q 2 = h , where [ h i < 1 . m F o r k>~k o we h a v e according t o (3) a n d t h e definition of / ~

v _ I s,

a n d thus, i f q l / I , k -~- q 2 - k ,

w h e n c e

E - E p E - E v

m l E

(6)

This gives

If e'~'x e'~ d ~ (~) - f e'('~+ ~' ,~+'~'~, d ~ (~)1 < 4 ~.

E E

F o r 7">~?'0 we have b y (2)

] f ei('~ +'q)~ d,u ] > 1 - 5 ~ > P1

E

contrary to (1), a n d we have proved t h a t all ~ are rational numbers with de- n o m i n a t o r m !.

a52

We p u t e l = 4 m !. If k ~ k 1 we have b y (3) for all v

< 1

E v E - E ~

Applying Schwarz's inequality as in the proof of Cor. 1 we get:

Ev

and E 1

E - E v

Since all ~ are rational numbers with d e n o m i n a t o r m! we have by L e m m a 3

~ = N, where the s u m m a t i o n runs over all v except at m o s t m!. The sets E , corresponding to these indices are removed a n d we get a new set E c'.

m ! a ~

f ]d~l<~q-.t =a~.

E C _ EC"

B y the triangle inequality

EC, I' E v

< 2 r a ! . ~ , ~ < 8 for k > k 1,

a ~ 2

P u t ~ ' n~, = Nk, a n d ~ ' ~o, = Ta.

N o w we eonclude t h a t

EC

The triangle inequality also gives 214

(7)

ARKIV F6R MATEMATIK. B d 4 nr 15

ES

P u t N + N ~ , = 2Va and our statement is proved.

Returning to the proof of the theorem we assume t h a t / z is continuous except at the points 2s. 2 s - 2 1 are linearly independent since P* ( E ) = 1. There are by Kronecker's theorem an integer M and a constant W so that

fle-'~'~+'~-~'~lld~,l<,~.

ES;

According to the preeeeding statement there exist an integer NM and a constant

~M with the properties

EC

and

fl,'~+'~,-llld~,l<O.

ES

By the triangle inequality

EC

E$

(4)

There also exist an integer N~ and a constant q0~ so t h a t

(4) and (5) imply

EC

ES

E

P u t N ~ + N M - M = N ' and qJ~q-q)Mq-~p=q~ '.

For ]~>?o we have b y (1) and (2)

(5)

E E

whence 8~ > 1 - P 1 , which is a contradiction.

Thus we have proved t h a t P * ( E ) = 1 implies P H ( E ) = 1 but b y Cor. 3 this implies P c ( E ) = 1 and E is a Kronecker set which was to be proved.

T h e o r e m 2. I / P ~ ( E ) > 0, then E is a weak Kronecker set.

215

(8)

Proo/:

Carleson has shown in [1] that P~ (E) > 0 implies

PH

(E) > 0. I t is therefore sufficient to prove that

PH(E)>

0 implies Pc (E)> 0. We give an indirect proof and assume that Pc (E)= 0 while

PH(E)> O.

Choose 0 < ~ < Pn. Since Pc = 0 there exists a function /~ 6 F ~ satisfying

:

ePH

By the Radon-Nikodym theorem we obtain

E E E

where [/0 (x)[= 1 and [0 is measurable (#).

Then we can approximate /o (x) with a continuous function ~ (x), [~ (x)[ ~< 1 in the sense that

f [ ~ ( x ) - / o ( X ) [ [ d r ( x ) [ < i "

E

Since

PH > O, ~ (x)

can be represented

oo

cp(x)=~a'e'~'-oo

where _~or ~ ~ + e . 1

Choose N so that ~ a, < e I,l>~ ~. By the triangle inequality we obtain for

n>~N

E E E

N " 8

<4 +'fe'nX~-a'e"~dl~(X)'+l.~N]a~'<i+ 2+ 4

i.e. Iftnxd~(x)l<~ I ~ 1 ~ . (6>

E

If e *nz d/~ (x)] assumes its greatest value, which is called P0, 1 >~ Po >/P~, (7)

E

when

n=no,

]noi~<N.

Hence we have

[! e'"~:(l+eu'~)d~(x)]-

{ ~ P ~ + e' In] < 3 N < 2 e ,

In[>~ 3N (8)

We form the functions % (x) and az(x).

z x

% (x) = ] (1 + e u'Nx) d/~ (x), ~2 (x) = f (1

- e 2'~z) d/~ (x),

0 0

(9)

216

(9)

ARKIV FOR MATEMATIK, Bd 4 nr 15 Choose ~ = ~ ( P o - e) and suppose t h a t

E E

and This gives

fld~:l = f l l -e2'~: I Id~ (x)] < 1 +~

E E

E

whence

f 211 + e~'~l [ 1 -e~'~ I I d/x (x) I I1 + ~ ' ~ 1 + 1 1 - ~ ' ~ I +2

E

< 2 ~

and But by (6)

fll-e"~lJd#(x) l<2(l + V~)O<5o.

E

E E E

This is a contradiction and thus

m a x [ [ d ~ ] ~ > l + P ~ - - e ' ' , = l . z

Suppose that the maximum is assumed by ~1.

The function

z

0

s

then belongs to F ~ and by (8)

E

(7')

l fetnXdl~1(x)[

assumes its greatest value, which is called P1 for

n = n 1,

E

n 1 ~< 3 N , P I < - P o + e l + P o - e "

5

In the same way as (8) and (9) were formed from (6) and (7) we now form (8') and (9') and obtain a new function p z ( x ) E r ~ w i t h the property

(10)

where

~ <P2, [ n [ < 3 z ' N , = P z for n = n 2

P l + 2 e P~

1-~ P 1 - 2 e "

5 F r o m /~ (x) we construct /z a (x) etc.

We get functions /~k(x)EF ~ satisfying [ / e lnz d/zk (x)[~< Pk, where Pk ~<

g

P k - 1 + 2 k-1 "

P k - 1 - - 2 ~-1" s "

I +

5 a k - 1

However, the sequence given b y % = 1, ak tends to zero. F u r t h e r ak-1

1 + - - 5

when e---~O.

w o o oo o soo

If we start with ~ = e 0 we obtain a function /zk. satisfying s u p I f c n x e ~ . ( x l l < - ~

2P~

- .

n

This contradicts our assumption and the theorem is proved.

R E F E R E N C E S

1. CARLESOI~, L,: Representations of continuous functions. Math. Zeitschr. Bd. 66, pp. 447-451 (1957).

2. - - , Sets of u n i q u e n e s s for f u n c t i o n s regular in t h e u n i t circle. A c t a Math. 87, pp. 325-345 (1952).

3. KAHANE, J.-P.--SALEM, R.: Construction de pseudomeasures sur los ensembles parfaits sym6- triques. C. R. Acad. Sci. Paris 243. pp. 1986-1988 (1956).

4. RUDI~, W.: The role of perfect sets in harmonic analysis. S y m p o s i u m on harmonic analysis.

CorneU University. J u l y 23-27 (1956).

2 1 8

Tryckt den 10 december 1960

Uppsala 1960. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

LINDENSTRAUSS, L., On nonlinear projections in Banach spaces.. Almqvist &amp; Wiksells

ARKIV F/JR MATEMATIK.. Almqvist &amp; Wiksells Boktryckeri

Actually Sali6 proves only the first inequality.. Almqvist &amp; Wiksells

Almqvist &amp; Wiksells Boktryckeri AB... Almqvist &amp; Wiksells Boktryckeri

Titulaire d’une maitrise en droit privé mention DROIT DES AFFAIRES ainsi que d’un diplôme d’études supérieures spécialisées en droit des transports, Véronique GODFRIN

Each unit of the Phanerozoic (~542 Ma to Present) and the base of Ediacaran are defined by a basal Global Standard Section and Point (GSSP ), whereas Precambrian units

Shipper further recognizes that any decision made by TransCanada as described above may be subject to change upon any change in any obligations TransCanada has with

Velocità di esecuzione (3 secondi), semplicità e sicurezza d’uso hanno reso le formatrici PRESSFORM strumento indispensabile per il lavoro continuato dei labo- ratori di