• Aucun résultat trouvé

ENCORE-CANADA : Computer program for the study of energy consumption of residential buildings in Canada

N/A
N/A
Protected

Academic year: 2021

Partager "ENCORE-CANADA : Computer program for the study of energy consumption of residential buildings in Canada"

Copied!
15
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

ENCORE-CANADA : Computer program for the study of energy

consumption of residential buildings in Canada

Konrad, A.; Larsen, B. T.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=75060de2-cd80-4c2b-bbae-3b1829b3cb69

https://publications-cnrc.canada.ca/fra/voir/objet/?id=75060de2-cd80-4c2b-bbae-3b1829b3cb69

(2)

Ser

I

no.859

National Research

Conseil national

e ,

a

i t > , /,

I

#

Council Canada

de recherches Canada

i

ENCORECANADA: COMPUTER PROGRAM FOR

THE STUDY OF ENERGY CONSUMPTION OF

RESIDENTIAL BUILDINGS IN CANADA

by

A.

Konrad and B.T. Larsen

Appeared in

Proceedings, Third International Symposium on

The Use of Computers for Environmental Engineering

Related to Buildings

held in Banff, Alberta, 10

12 May

1978

p.

439

-

450

DBR Paper No. 859

Division of Building Research

(3)

Thie publication is being dietributed by the Divieion of Building R e s e a r c h of the National R e s e a r c h Council of Canada. I t should not be reproduced in whole o r in p a r t without permiesion of the original publisher. The Di- vieion would be glad to be of aeoietance in obtaining such permiseion.

Publicatione of the Divieion may be obtained by m a i l - ing the appropriate remittance ( a Bank, Exprero, o r b e t Office Money Order, o r a cheque, made payable to the Receiver General of Canada, c r e d i t NRC) to the National Research Council-of Canada, Ottawa. KIA OR6. Stamps a r e not acceptable.

A l i s t of a l l publications of the Division i s available and may be obtained f r o m the Publications Section, Diviaion of Building Research. National R e s e a r c h Council of Canada, Ottawa. KIA OR6.

(4)

ENCORE-CANADA: COMPUTER PROGRAM FOR THE STUDY OF ENERGY CONSUMPTION OF RESIDENTIAL BUILDINGS I N CANADA

A . ~ o n r a d l and B .T. ~ a r s e n ~

l ~ i v i s i o n of Building Research, National Research Council o f Canada

Ottawa, Canada

2 ~ o r w e g i a n Building Research I n s t i t u t e , Oslo, Norway (Guest worker w i t h DBR/NRC, 1975)

ABSTRACT

-

The paper d e s c r i b e s t h e mathematical methods employed in t h e ENCORE-CANADA computer program which p r e d i c t s t h e hourly a s we1 1 a s t h e annual h e a t i n g requi rements of smal l r e s i d e n t i a l - t y p e bui l d i n g s .

ENCORE-CANADA i s p r i m a r i l y intended f o r r e s e a r c h e r s , d e s i g n e r s and con- s u l t i n g e n g i n e e r s i n t e r e s t e d in energy c o n s e r v a t i o n measures. The model

includes t h e e f f e c t s o f thermal s t o r a g e , i n t e r n a l h e a t g a i n s , basement and a i r i n f i l t r a t i o n l o s s e s , t r a n s m i s s i o n h e a t l o s s e s and s o l a r h e a t g a i n s . The h e a t i n g system is a t h e r m o s t a t i c a l l y c o n t r o l l e d o i l - f i r e d furnace with warm a i r d i s t r i b u t i o n . Hourly s o l a r r a d i a t i o n and weather d a t a f o r v a r i o u s Canadian c i t i e s a r e used t o s i m u l a t e outdoor c o n d i t i o n s .

R ~ S U M E

-

Les a u t e u r s d e c r i v e n t l e s d t h o d e s mathematiques ut i 1 i s b e s dans l e programme informatique ENCORE-CANADA qui predi t l e s besoins de c h a u f f a g e h o r a i r e s e t annuels des p e t i t s immeubles r C s i d e n t i e l s . ENCORE-CANADA

s ' a d r e s s e s u r t o u t aux c h e r c h e u r s , aux concepteurs e t aux i n g e n i e u r s - c o n s e i l s qui s 1 i n t 6 r e s s e n t aux mesures d18conomie de I 1 b n e r g i e . Le modele englobe l e s e f f e t s de I ' i n e r t i e thermique, l e s g a i n s de c h a l e u r i n t e r n e s , l e s p e r t e s de c h a l e u r par l e s f o n d a t i o n s e t l 1 i n f i l t r a t i o n d ' a i r , l e s p e r t e s par t r a n s - mission e t l e s g a i n s de c h a l e u r s o l a i r e . L ' i n s t a l l a t i o n de chauffage 3 a i r chaud pulsd u t i l i s e I ' h u i l e comme combustible e t e s t rCgl8e par t h e r m o s t a t . Des donnees m 6 t ~ o r o l o g i q u e s e t l e rayonnement s o l a i r e h o r a i r e en d i f f e r e n t s c e n t r e s c a n a d i e n s . s e r v e n t 3 s i m u l e r l e s c o n d i t i o n s e x t e r i e u r e s .

INTRODUCTION s t u d y , f o r a given b u i l d i n g d e s i g n , t h e r e l a t i o n The d e t e r m i n a t i o n o f t h e h e a t energy r e q u i r e d t o

m a i n t a i n p r e s c r i b e d i n d o o r c o n d i t i o n s i n a b u i l d i n g i s one o f t h e main concerns o f b u i l d i n g d e s i g n e r s . (Ayres 1977). For many y e a r s t h e degree-day method (ASHRAE 1976) was widely used b u t , some of t h e e s s e n t i a l elements o f energy c a l c u l a t i o n s a r e a b s e n t from such simple methods ( M i t a l a s 1976). Owing t o t h e r e l a t i v e l y h i g h c o s t o f energy t h e r e i s a need t o r e f i n e t h e accuracy o f b u i l d i n g energy requirement c a l c u l a t i o n s . The u s e o f t h e computer

i s i n e v i t a b l e due t o t h e l e n g t h and complexity of computations f o r hour -b y-hour a n a l y s i s . F u r t h e r - more, i t i s important t o p r e d i c t a c c u r a t e l y n o t o n l y t h e t o t a l energy consumption of a b u i l d i n g , b u t a l s o t h e s a v i n g s a s a r e s u l t o f energy conser- v a t i o n measures. Thus t h e mathematical model i n c l u d e s many p r e v i o u s l y ignored f a c t o r s .

between h e a t i n g demand and

-

c l i m a t o l o g i c a l f a c t o r s ( e . g . temperature, wind, s o l a r r a d i a t i o n ) ,

-

b u i l d i n g l o c a t i o n and o r i e n t a t i o n , - i n s u l a t i o n l e v e l s i n c e i l i n g / r o o f system, w a l l s and basement,

-

thermal s t o r a g e i n t h e b u i l d i n g s t r u c t u r e and c o n t e n t s ,

-

t y p e s of f e n e s t r a t i o n ,

-

e x t e r i o r s u r f a c e s o l a r a b s o r p t i v i t y ,

-

a i r i n f i l t r a t i o n ,

-

t h e r m o s t a t s e t t i n g s , and

-

h e a t i n g system c h a r a c t e r i s t i c s .

T h i s p a p e r d e s c r i b e s a mathematical model f o r OVERVIEW OF MODEL

hour-by-hour s i m u l a t i o n of energy consumption o f ENCORE-CANADA r e q u i r e s two i n p u t d a t a s e t s : small r e s i d e n t i a l - t y p e b u i l d i n g s u s i n g r e a l weather one describing the building model, and the other d a t a . The a s s o c i a t e d computer program, ENCORE- c o n t a i n i n g h o u r l y weather and s o l a r r a d i a t i o n CANADA (Energy Consumption o f Residences i n Canada) d a t a . The b u i l d i n g model h a s t h e f o l l o w i n g i s t h e Canadian v e r s i o n o f t h e Norwegian ENCORE components:

(5)

-

basement w i t h below- and abcve-grade p o r t i o n s ,

-

n o n - p a r t i t i o n e d b u i l d i n g . e n c l o s u r e t h a t i n c l u d e s

c e i l i n g / r o o f system, w a l l s , doors and windows,

-

t h e r m o s t a t i c a l l y c o n t r o l l e d w a n a i r d i s t r i b u t i o n

h e a t i n g system c o n s i s , t i n g o f o i l - f i r e d furnace,, .smoke p i p e w i t h b a r o m e t r i c damper, and chimney,

-

two-element e l e c t r i c h o t w a t e r h e a t e r and s t o r a g e

tank from which w a t e r i s drawn a c c o r d i n g t o a 24 h schedufe,

-

l i g h t s which a r e on o r o f f a c c o r d i n g t o a 24 h s c h e d u l e ,

-

v a r i o u s h e a t - g e n e r a t i n g e l e c t r i c a l a p p l i a n c e s and equipment t h a t a r e t u r n e d on o r o f f a c c o r d i n g t o a 24 h schedule,

-

occupants who a r e p r e s e n t i n t h e b u i l d i n g i n v a r y i n g numbers a c c o r d i n g t o a 24 h s c h e d u l e . Schedules f o r h o l i d a y s may b e d i f f e r e n t from t h o s e f o r working days. Using t h e schedules and t h e s p e c i f i c a t i o n s o f model components, ENCORE-CANADA computes t h e i n t e r n a l h e a t g a i n due t o '- occupants,

-

e l e c t r i c a l a p p l i a n c e s and equipment,

-

l i g h t s , and

-

h o t w a t e r consumption.

I

S i m i l a r l y , t h e program u s e s weather and s o l a r r a d i - a t i o n d a t a and t h e s p e c i f i c a t i o n s o f model compo- n e n t s t o compute h e a t g a i n and l o s s through - below-grade p o r t i o n o f basement,

-

c e i l i n g / , r o o f system and e x t e r i o r w a l l s i n c l u d i n g above grade p o r t i o n o f basement,

1

-

d o o r s ,

I

-

windows, and

I

-

a i r i n f i l t r a t i o n .

These g a i n s o r l o s s e s , w i t h t h e e x c e p t i o n o f t h e below-grade p o r t i o n of t h e basement a r e computed w i t h r e s p e c t t o an a r b i t r a r i l y chosen indoor r e f e r e n c e t e m p e r a t u r e . The sum o f v a r i o u s h e a t g a i n s and l o s s e s computed w i t h r e s p e c t t o t h e r e f e r e n c e temperature a r e transformed i n t o h e a t i n g demand based on indoor a i r temperature c o n t r o l l e d by t h e r m o s t a t .

I

WEATHER AND SOLAR RADIATION DATA

ENCORE-CANADA may u s e any one o f 39 preprocessed

!

weather and s o l a r r a d i a t i o n d a t a s e t s . They

correspond t o t h r e e c o n s e c u t i v e y e a r s o f d a t a f o r t h e f o l l o w i n g 13 Canadian c i t i e s . Vancouver, B .C

.

Edmonton, A l t a . Winnipeg, Man. Ottawa, Ont. F r e d e r i c t o n , N . B

.

Toronto, Ont

.

Montreal, Que. H a l i f a x , N.S

.

S t . J o h n ' s , Nfld. Summerland, B .C

.

S u f f i e l d , A l t a . (1970-72) Swift C u r r e n t , Sask. (1970-72) Charlottetown, P .E.I

.

(1972-74) Each s e t c o n t a i n s t h e c i t y ' s l a t i t u d e

(R) md

t h e f o l l a w i n g d a t a f o r each day o f t h e y e a r :

-

d a t e (day, month),

-

h o l i d a y i n d i c a t o r (used f o r s e l e c t i n g s c h e d u l e s ) ,

-

hour a n g l e when s o l a r a l t i t u d e i s zero ( s u n r i s e

a n g l e , ho),

- t a n g e n t of d e c l i n a t i o n a n g l e , t a n ( & ) ,

-

ground r e f l e c t i v i t y , R (0.4 w i t h snowcover, 0.2 w i t h o u t )

.

For each day o f t h e y e a r t h e d a t a s e t c o n t a i n s 24 hourly v a l u e s o f

a ) dry-bulb t e m p e r a t u r e of ambient a i r

(O,),

b) t o t a l c l o u d amount i n t e n t h s (C), c) wind speed (V), 1 0 m above ground, a t

m e t e o r o l o g i c a l s i t e , d) wind d i r e c t i o n ,

e) atmospheric p r e s s u r e ( P ) ,

f ) hour a n g l e ( h ) , (sun i s above h o r i z o n i f I h l < l h O O ,

g) i n t e n s i t y o f d i f f u s e sky r a d i a t i o n (M,), h) i n t e n s i t y of d i r e c t s o l a r r a d i a t i o n p e r u n i t

a r e a normal t o s u n ' s r a y s (Mdn) ,

i ) conversion f a c t o r f o r i t e m s g) and h ) , ( e )

.

Of t h e s e , a ) through e) a r e measured o r observed q u a n t i t i e s ; f ) through i ) a r e computed v a l u e s . ENCORE-CANADA a p p l i e s t h e f o l l o w i n g c o n v e r s i o n

formula t o items g) and h)

where

I ( 0 ) = average s o l a r r a d i a t i o n d u r i n g p r e s e n t hour,

e(0) = p e r c e n t d i f f e r e n c e between computed and measured average t o t a l s o l a r r a d i - a t i o n ( d i r e c t p l u s d i f f u s e ) on a h o r i - z o n t a l s u r f a c e d u r i n g p r e s e n t hour, M(0) = c a l c u l a t e d i n s t a n t a n e o u s s o l a r r a d i - a t i o n a t p r e s e n t hour, M(l) = c a l c u l a t e d i n s t a n t a n e o u s s o l a r r a d i a - t i o n a t p r e v i o u s hour.

The f a c t o r 100/[100-e(O)] i n Eq. (1) is a cloud cover m o d i f i e r d e r i v e d b y comparing computed and measured t o t a l s o l a r r a d i a t i o n on a h o r i z o n t a l s u r f a c e .

ENCORE-CANADA u s e s t h e i n f o r m a t i o n i n t h e weather and s o l a r r a d i a t i o n d a t a s e t s t o compute t h e s o l a r r a d i a t i o n i n t e r c e p t e d by b u i l d i n g compo- n e n t s . The number o f d i s t i n c t s u r f a c e o r i e n t a - t i o n s f o r a given b u i l d i n g envelope a r e determined

(6)

i n t h e s u b r o u t i n e SOLRAD. For every d i s t i n c t s u r -

e = e

1 1 + c o s ( ) C

f a c e o r i e n t a t i o n t h e s u b r o u t i n e DIRDIF c a l c u l a t e s o

+ y

['It - E D (1 - = ) I ( 6 )

t h e d i r e c t and d i f f u s e components o f s o l a r r a d i - a t i o n p e r u n i t a r e a according t o ASHRAE procedure

(ASHRAE 1975). The d i r e c t component i s given by where

a = s u r f a c e s o l a r a b s o r p t i v i t y

Idir = Idn c o s ( i ) E = r a d i a n t i n t e r c h a n g e f a c t o r f o r a h o r i z o n t a l s u r f a c e f a c i n g t h e sky (assumed t o be 0.9, 0 . 5 and 0 . 1 f o r f l a t , suburban and urban

= Idn{ [ s i n ( & ) sin(R) +cos(G)cos(~)cos(h)]cos(q) b u i l d i n g s i t e s , r e s p e c t i v e l y )

D = d i f f e r e n c e between i n c i d e n t long-wave sky

-

[ s i n ( 6 ) c o s ( R )

-

cos(6) sin(R)cos(h)]sin(q)cos(a) r a d i a t i o n and r a d i a t i o n e m i t t e d by a h o r i - z o n t a l s u r f a c e f a c i n g t h e sky

- c o s ( & ) s i n ( h ) s i n ( q ) s i n ( a )

1

(2) (63.1 w/m2 (20 Btu/hr f t 2 ) was used) where i = i n c i d e n c e a n g l e a = s u r f a c e azimuth a n g l e (measured c o u n t e r - clockwise from s o u t h ) q = s u r f a c e t i l t a n g l e (measured from t h e h o r i zonta 1) L = l a t i t u d e 6 = d e c l i n a t i o n a n g l e h = hour a n g l e . The d i f f u s e component of s o l a r r a d i a t i o n i s given by H = c o e f f i c i e n t of h e a t t r a n s f e r by long-wave r a d i a t i o n and convection (assumed t o b e c o n s t a n t and e q u a l t o 17 w/m2 K,

3 Btu/hr f t 2 R).

I n a d d i t i o n t o t h e t h i r t y - n i n e d a t a s e t s mentioned above, t h e mean ( e m ) , a m p l i t u d e (8,) and phase (p) of t h e main s i n u s o i d a l component f o r t h e ground s u r f a c e s o l - a i r temperature func- t i o n ( f o r t h e same t h i r t e e n c i t i e s and t h r e e c o n s e c u t i v e y e a r s ) a r e s t o r e d i n t h e b l o c k d a t a s u b r o u t i n e SOLBLK. em, 0, and p a r e used a s i n p u t t o t h e below grade basement and h e a t l o s s model. They were o b t a i n e d from a F o u r i e r a n a l y s i s of h o u r l y v a l u e s of ground s u r f a c e s o l - a i r tempera- t u r e computed from Eq. (6) by s e t t i n g a = 1

-

R, cos(q) = 1, E = 0 . 9 , by u s i n g measured v a l u e s f o r t h e t o t a l s o l a r r a d i a t i o n i n c i d e n t on t h e ground s u r f a c e , and by assuming a l i n e a r v a r i a t i o n o f H with wind speed (V)

where t h e r a t i o of d i f f u s e v e r t i c a l sky r a d i a t i o n t o d i f f u s e h o r i z o n t a l r a d i a t i o n , Y, i s o b t a i n e d from T h r e l k e l d (1962) Y = 0.55 + 0 . 4 3 7 c o s ( i ) + 0 . 313cos2 ( i ) c o s ( i )

2

- 0 . 2 and t h e i n t e n s i t y of d i f f u s e ground r a d i a t i o n i s given by + c o s (6) c o s ( t ) c o s ( h ) ] The t o t a l r a d i a t i o n I t = ( I d i r + I d i f ) i s e s s e n t i a l t o t h e computation of s u r f a c e s o l - a i r t e m p e r a t u r e from t h e following e q u a t i o n (ASHRAE 1977) :

CALCULATIONS OF BELOW-GRADE BASEMENT HEAT LOSS The f i n i t e d i f f e r e n c e program TRUMP (Edwards 1968) was used t o i n v e s t i g a t e t h e importance of v a r i a b l e s a f f e c t i n g h e a t flow from t h e below- grade p o r t i o n of basements. The f o l l o w i n g f a c t o r s were found t o b e important:

- amount of w a l l below grade,

-

mean thermal p r o p e r t i e s of c o n c r e t e and s o i l ,

- mean and fundamental s i n u s o i d a l component of ground s u r f a c e s o l - a i r temperature,

-

depth and temperature of w a t e r t a b l e ,

-

e x t e n t and thermal r e s i s t a n c e of i n s u l a t i o n ,

- p e r i m e t e r and shape of basement.

F a c t o r s such a s f r e e z i n g and thawing, tempera- t u r e dependence of thermal p r o p e r t i e s , snow cover, p o s i t i o n of i n s u l a t i o n , and d i u r n a l and weekly t r a n s i e n t s were found t o have a second o r d e r e f f e c t on c a l c u l a t e d h e a t l o s s f o r a h e a t i n g season. Since most of t h e important p a r a m e t e r s

(7)

a r e seldom known a c c u r a t e l y , a s i m p l i f i e d a l g o r i t h m Gfw = s t e a d y - s t a t e h e a t conductance between was s e l e c t e d r a t h e r t h a n i n c o r v o r a t i n g a f i n i t e .., basement f l o o r and w a t e r t a b l e d i f f e r e n c e o r f i n i t e element approach. The h e a t

flow from t h e basement was assumed t o b e t h e sum of G f g c = c o s i n e component of dynamic h e a t conductance between basement f l o o r and

-

s t e a d y - s t a t e h e a t flow t o ground s u r f a c e a t mean annual s o l - a i r temperature,

- p e r i o d i c heat flow t o ground s u r f a c e with temper- a t u r e f l u c t u a t i o n equal t o fundamental s i n u s o i d a l component of s o l - a i r temperature, and

-

s t e a d y - s t a t e h e a t flow t o water t a b l e a t mean annual deep ground temperature.

The basement i n t e r i o r s u r f a c e temperature was assumed c o n s t a n t throughout t h e h e a t i n g season. The components f o r w a l l and f l o o r were t r e a t e d s e p a r a t e l y t o s i m p l i f y comparison with t h e TRUMP f i n i t e d i f f e r e n c e r e s u l t s . Thus, i n ENCORE-CANADA t h e h o u r l y v a l u e s of h e a t flow through basement w a l l s (Qw) and f l o o r (Qf) a r e computed w i t h t h e

s u b r o u t i n e BTLOSS according t o t h e f o l l o w i n g formulae

ground s u r f a c e

G = s i n e component of dynamic h e a t conduc- f g s t a n c e between basement f l o o r and ground

s u r f a c e .

The f u n c t i o n 0 ( t ) = 0, + e a [ s i n ( 2 a / n + p ) ] d e s c r i b e s t h e p e r i o d i c boundary c o n d i t i o n f o r temperature a t t h e ground s u r f a c e . The f i r s t two terms on t h e r i g h t hand s i d e s of Eqs. (8) and (9) r e p r e s e n t s t e a d y - s t a t e h e a t flow

from

t h e basement t o the ground s u r f a c e and t o t h e water t a b l e , r e s p e c t i v e l y . The remaining terms represent the dynamic h e a t flow between basement and pound s u r f a c e . The dynamic heat flow between basement and water t a b l e i s n e g l e c t e d . The conductances Gwg, Gww, Gwgc, G w g s , Gfg9 Gfw, Gfgc and Gfgs a r e computed once f o r a p a r t i c u l a r basement i n t h e s u b r o u t i n e BASMNT. I n o r d e r t o a r r i v e a t t h e s e e i g h t conductances, a v e r s i o n of t h e method d e s c r i b e d by Boileau and L a t t a (1968) i s used.

2lT 2lT

+ [ G w g c ~ ~ ~ ( n t + p) + G s i n ( ? t +p)]Ba (8) AIR INFILTRATION CALCULATIONS wgs

The a i r i n f i l t r a t i o n c a l c u l a t i o n s a r e based on t h e model d e s c r i b e d i n d e t a i l by Konrad e t a 1 (1978). This model i s l i m i t e d t o e i g h t d i f f e r e n t b u i l d i n g height-to-width and l e n g t h - t o - w i d t h

Qf

= Gfg(om

-

gin) + G f w (ewt

-

gin)

r a t i o s . The leakage opening of each b u i l d i n g component ( c e i l i n g , walls, windows and doors)

i s

2 l ~ 2.rr r e p r e s e n t e d b y s e v e r a l holes e q u a l l y spaced along

+ [Gfgccos (T t + p) + G sin(f;- t + p ) ] e a

f gs (9) pressure a t t h e ground l e v e l (P1) i s known, t h e the h e i g h t o f the component. I f t h e indoor

Where mass E l m r a t e o f a i r {Gj) through t h e j - t h h o l e

t = hour of t h e y e a r ( 0

5

t

5

n) can be computed f r o m n = number o f hours i n a y e a r (n = 8760 f o r

o r d i n a r y y e a r , n = 8784 f o r l e a p year)

J

Owt = water t a b l e temperature -n .

J c .v2 1 1

G . = a p ( ~ P + ; [++g hj (---)I - P (101 0. = c o n s t a n t basement i n t e r i o r s u r f a c e temper-

I n I

11

o i' ' o

I

a t u r e

0 m = mean annual ground s u r f a c e s o l - a i r temperature

0 = amplitude o f fundamental F o u r i e r s i n e a

component of ground s u r f a c e s o l - a i r temperature f u n c t i o n

p = phase o f fundamental F o u r i e r s i n e component o f ground s u r f a c e s o l - a i r temperature f u n c t i o n

G

= s t e a d y - s t a t e h e a t conductance between base- Wg ment w a l l s and ground s u r f a c e

= s t e a d y - s t a t e h e a t conductance between base- ment w a l l s and water t a b l e

G = c o s i n e component of dynamic h e a t conductance Wgc between basement w a l l s and ground s u r f a c e G = s i n e component o f dynamic h e a t conductance

Wgs between basement w a l l s and ground s u r f a c e

where s = + 1 f o r a i r i n f i l t r a t i o n , and =

-

1 f o r a i r e x f i l t r a t i o n p = d e n s i t y o f indoor a i r i f s =

-

1, and = d e n s i t y o f outdoor a i r i f s = + 1 R . = r e s i s t a n c e t o a i r leakage of j - t h h o l e 1

n: = flow exponent f o r a i r flow through j - t h h o l e

P = outdoor atmospheric p r e s s u r e a t ground l e v e l

R = g a s c o n s t a n t f o r a i r

c = wind p r e s s u r e c o e f f i c i e n t where j - t h h o l e j i s l o c a t e d (depends on wind d i r e c t i o n and

b u i l d i n g o r i e n t a t i o n ) G = s t e a d y - s t a t e h e a t conductance between base-

(8)

g = g r a v i t a t i o n a l a c c e l e r a t i o n h . = h e i g h t of j - t h h o l e above ground I 0 = outdoor a i r t e m p e r a t u r e 0 0 . = i n d o o r a i r temperature. 1

Using t h e mathematical model o f t h e f u r n a c e , smoke p i p e , b a r o m e t r i c damper and chimney o u t l i n e d by Konrad e t a 1 (1978), t h e program ( s u b r o u t i n e s FRNACE, INFILT, FLOWS, PCOEF, WIND, CHMNEY, FFACT and PRESSR) computes t h e mass flow r a t e of g a s e s i n t h e chimney (Gc) a s a f u n c t i o n of f u r n a c e load f a c t o r f o r any assumed v a l u e o f t h e indoor p r e s s u r e a t ground l e v e l . The t r u e p r e s s u r e i s computed by an i t e r a t i v e procedure from t h e mass b a l a n c e e q u a t i o n f o r a i r flow through m h o l e s and t h e gas flow i n t h e chimney, i . e . ,

The a i r i n f i l t r a t i o n load, Li, v a r i e s w i t h o u t - door a i r temperature, indoor a i r temperature, wind speed, wind d i r e c t i o n and f u r n a c e o p e r a t i o n . I t i s computed by m u l t i p l y i n g t h e sum o f a l l p o s i t i v e Gj I S b y ( 0 i - 0,) and b y t h e s p e c i f i c h e a t of a i r

a t temperature ( 0 i + 0,)/2.

HEAT TRANSFER CALCULATIONS The z-transform method

ENCORE-CANADA employs t h e z-transform method t o compute:

-

h e a t t r a n s f e r r e d through c e i l i n g , w a l l s , windows and doors,

-

h e a t gained b y indoor a i r from occupants, l i g h t s , domestic h o t w a t e r and e l e c t r i c a l a p p l i a n c e s , and

- h e a t i n g demand and room a i r temperature i n c l u d i n g e f f e c t s of t h e r m o s t a t c o n t r o l system.

The z-transform method i s c l o s e l y r e l a t e d t o t h e c l a s s i c a l Laplace t r a n s f o r m a t i o n . The method i s

perhaps e a s i e s t t o understand i n t h e c o n t e x t of sampled d a t a feedback c o n t r o l systems f o r which i t was o r i g i n a l l y developed (Truxal 1955). I t s a p p l i - c a t i o n t o h e a t t r a n s f e r problems i n b u i l d i n g s i s & s c r i b e d by M i t a l a s (1978)

.

When a c o n t i n u o u s f u n c t i o n of time, i ( t ) , i s sampled a t r e g u l a r time i n t e r v a l s , T, t h e r e s u l t i n g f u n c t i o n , i l ( t ) , can b e d e s c r i b e d i n terms of t h e u n i t impulse f u n c t i o n , u o ( t ) , a s f o l l o w s : I f b o t h i n p u t , i ( t ) , and o u t p u t , o ( t ) , of a l i n e a r , i n v a r i a b l e system a r e e x p r e s s e d i n terms of t h e i r z-transforms, I ( z ) and O(z) r e s p e c t i v e l y , then t h e r a t i o K(z) = O ( z ) / I ( z ) i s a z-transform f u n c t i o n f o r t h e system. I f K(z) i s known, t h e response t o any g i v e n i n p u t is o b t a i n e d by forming t h e product K(z) I (z)

.

To determine K(z)

,

one f i n d s t h e impulse response of t h e system e x p r e s s e d a s a polynomial i n z, a s f o l l o w s :

where t h e c o e f f i c i e n t s , k(nT), a r e c a l l e d r e s p o n s e f a c t o r s and p = m. I f t h e response decays t o z e r o

with time, p can b e a s s i g n e d a f i n i t e v a l u e b y t r u n c a t i n g t h e polynomial. I n p r a c t i c e , it i s sometimes impossible t o f i n d t h e impulse r e s p o n s e s i n c e i t i s a s s o c i a t e d with i n f i n i t e h e a t f l u x . I n such c a s e s a t r i a n g u l a r p u l s e of u n i t a r e a i s used a s i n p u t t o f i n d t h e response f a c t o r s (Kimura 1977; Stephenson and M i t a l a s 1967). K(z) can always b e transformed i n t o t h e r a t i o of two poly- nomials (Mitalas 1978) simply by m u l t i p l y i n g Eq. (14) by a polynomial q u o t i e n t which e v a l u a t e s t o 1, i . e . ,

I t i s o f t e n convenient f o r simple computations t o s e t j = 1 and w r i t e K(z) i n t h e form

where wl i s c a l l e d Common R a t i o and i s d e f i n e d by The z-transform of i ( t ) i s o b t a i n e d from t h e

Laplace t r a n s f o r m o f i t ( t ) by s u b s t i t u t i n g z f o r exp(Ts)

.

I t i s given by

w = l i m . k (nT)

(9)

7

444

Whether given i n t h e form o f Eqs. (14), (15) o r immediate e f f e c t on t h e indoor a i r t e m p e r a t u r e . ( 1 6 ) , i n g e n e r a l , K(z) can always b e thought of a s The d e l a y depends on t h e t y p e of i n t e r i o r f i n i s h , t h e r a t i o of two polynomials, i . e . , K(z)=N(z)/D(z)

.

f u r n i s h i n g s and c o n s t r u c t i o n . I t is p o s s i b l e t o Given t h e c o e f f i c i e n t s Ni and Di of t h e numerator d e r i v e z - t r a n s f e r f u n c t i o n s f o r t h i s system i n and denominator, r e s p e c t i v e l y , t o g e t h e r w i t h a t h e form given by Eq. (16) and a s a f u n c t i o n o f s e r i e s of sampled v a l u e s i(nT) and o(nT) o f an mass p e r u n i t f l o o r a r e a (ASHRAE 1977; M i t a l a s e x c i t a t i o n and a response r e s p e c t i v e l y , except f o r 1972). The following c o e f f i c i e n t s a r e s t o r e d i n

t h e c u r r e n t v a l u e of t h e r e s p o n s e o(qT), t h e l a t t e r t h e s u b r o u t i n e WALLGL f o r f o u r d i f f e r e n t v a l u e s

-

can b e s o l v e d by e q u a t i n g t h e c o e f f i c i e n t s of t h e o f mass p e r u n i t f l o o r a r e a : h i g h e s t power of z on both s i d e s of t h e e q u a t i o n : 146 kg/m2 342 kg/m2 635 kg/m2 976 kg/m2 C d (30 l b / f t 2 ) (70 l b / f t 2 ) (130 l b / f t 2 ) (200 l b / f t 2 ) O(z)D(z) = I(z)N(z) (18) I f N(z) has p + l c o e f f i c i e n t s and D(z) h a s q + l v 0 0.703 0.681 0.676 0.676 c o e f f i c i e n t s , one o b t a i n s v -0.523 1 -0.551 -0.606 -0.646 1 o(qT) = - { i ( 0 ) N p + i ( T ) N +

...

+ i [ ( p - l ) T ] N 1 + w 1 -0.82 -0.87 -0.93 -0.97

Do

P- 1

Note t h a t v l = 1 + w l

-

vo. Based on Eq. (19),

+ i(pT)N 0

-

o(0)D - O ( T ) D ~ - ~

-

...

-

9 t h e amount of h e a t t r a n s f e r r e d t o o r removed from t h e indoor a i r by a w a l l s u r f a c e d u r i n g t h e

p r e s e n t hour i s computed i n t h e s u b r o u t i n e WALLGL

-

~ [ ( q - l l ~ l ~ ~ ) (19) according t o

Heat t r a n s f e r through w a l l s and c e i l i n g Ls(o) = voQ(0) + v1Q(l) - w1LS(l) (21)

A t y p i c a l wall c o n s t r u c t i o n i s shown i n F i g . 1.

The i n n e r and o u t e r l a y e r s of a i r and t h e a i r s p a c e

a r e assumed t o have a thermal r e s i s t a n c e (R1 and Heat t r a n s f e r through d o o r s R6) b u t no thermal c a p a c i t y . The o t h e r l a y e r s a r e The h e a t flow through doors i s c a l c u l a t e d s p e c i f i e d by t h e i r t h i c k n e s s (T), thermal conduc- assuming s t e a d y - s t a t e c o n d i t i o n s . The s t e a d y - t i v i t y (K), d e n s i t y (D) and s p e c i f i c h e a t ( S ) . s t a t e h e a t flow through a door of a r e a Ad and There i s no r e s t r i c t i o n on t h e number of l a y e r s . thermal conductance Ud due t o t h e d i f f e r e n c e The s o l - a i r t e m p e r a t u r e , B ( t ) , a t t h e between e x t e r i o r s o l - a i r temperature, 8 ( 0 ) , and e x t e r i o r s u r f a c e i s given by Eq. ( 6 ) . The h e a t i n d o o r r e f e r e n c e temperature, Or, i s g i v e n by: flow, Q ( t ) , a t t h e i n s i d e s u r f a c e of t h e wall i s

r e l a t e d t o t h e temperature d i f f e r e n c e 8 ( t ) - 8, by

a z - t r a n s f e r f u n c t i o n . A method t o o b t a i n t h e Qd(0) = UdAd[e(0) - or] (22) t r a n s f e r f u n c t i o n a s a r a t i o of two polynomials i n

z i s d e s c r i b e d by Stephenson and M i t a l a s (1971) and

M i t a l a s (1968). ENCORE-CANADA r e q u i r e s n c o e f f i - Note t h a t Ud must b e g i v e n f o r t h e H used i n c i e n t s , a i and b i , (ASHRAE 1977; M i t a l a s and Eq. ( 6 ) . The h e a t t r a n s f e r r e d t o o r removed from A r s e n e a u l t 1972) t o compute t h e h e a t flow during t h e indoor a i r by a door s u r f a c e d u r i n g t h e t h e p r e s e n t hour, Q(O), g i v e n t h e h e a t flows during p r e s e n t hour i s computed i n t h e s u b r o u t i n e DOORGL p r e v i o u s h o u r s (Q(i)

,

i

2

0) and t h e outdoor tem- from an e q u a t i o n s i m i l a r t o (21)

p e r a t u r e d u r i n g p r e s e n t and previous hours ( 8 ( i ) ,

i 0 ) The number of p r e v i o u s hours f o r which

d a t a a r e r e q u i r e d depends on t h e number of Ld(0) = vOQd(0) + v l Q d ( l )

-

w1Ld(l) (23)

c o e f f i c i e n t s (24 i s t h e upper l i m i t i n ENCORE-

CANADA). n i s l a r g e f o r massive w a l l s , small f o r where t h e t r a n s f e r f u n c t i o n c o e f f i c i e n t s vo, v l l i g h t walls. On t h e b a s i s of Eq. (19), Q(0) i s and w l a r e i d e n t i c a l t o t h o s e f o r w a l l s .

computed from .

.

Heat t r a n s f e r through windows

n n

Heat t r a n s f e r through windows o c c u r s b y t h e Q ( o ) =

1

a i A ( @ ( i )

-

8,)

-

1

bi Q ( i ) (20) combined mechanism of long-wave r a d i a t i o n , conduc-

i = O i=l t i o n , convection and b y t r a n s m i s s i o n and a b s o r p -

t i o n of s o l a r r a d i a t i o n . Consider a window g l a z i n g system w i t h o r without i n t e r i o r shading. where A i s t h e n e t w a l l a r e a . The c o e f f i c i e n t s bi The s o l a r h e a t g a i n through such a window d u r i n g a r e dimensionless; t h e c o e f f i c i e n t s a i a r e i n w a t t s t h e p r e s e n t hour can b e computed from t h e s o l a r p e r s q u a r e metre degree Kelvin ( B r i t i s h thermal h e a t g a i n f a c t o r , SHGF(0)

,

u n i t s p e r hour s q u a r e f o o t degree Rankine). The a i

must b e computed under t h e assumption t h a t H = l / R 1 Qs(0) = AwSwSHGF(0) = AwSw{Idif (0) [tdif +adif F l +

= 17 w/m2 K ( 3 Btu/hr f t 2 R).

The h e a t Q(0) which a p p e a r s on t h e i n s i d e w a l l

+ Idir(0)

itdir

+ Udir ~ 1 )

s u r f a c e during t h e c u r r e n t hour, does n o t have an (24)

(10)

where

A = window s u r f a c e a r e a

W

and previous hour, t h e h e a t t r a n s f e r r e d t o t h e i n - door a i r from a window s u r f a c e

is

o b t a i n e d by t h e t r a n s f e r f u n c t i o n method a s

S = window shading c o e f f i c i e n t ( r a t i o of

W

s o l a r h e a t g a i n through g l a z i n g system t o s o l a r h e a t g a i n through double- s t r e n g t h s i n g l e pane window g l a s s under i d e n t i c a l c l i m a t i c c o n d i t i o n s ) Idif = i n t e n s i t y o f d i f f u s e s o l a r r a d i a t i o n from Eq. (3) Idir = i n t e n s i t y of d i r e c t s o l a r r a d i a t i o n from Eq. (2) tdif = 0.8 = t r a n s m i s s i v i t y f o r d i f f u s e r a d i - a t i o n of s i n g l e 0.3175 cm (1/8 i n ) t h i c k o r d i n a r y window pane ( M i t a l a s and Stephenson 1962; Stephenson 1965) tdir = t r a n s m i s s i v i t y f o r d i r e c t r a d i a t i o n of

s i n g l e window pane

adif = 0.054 = a b s o r p t i v i t y f o r d i f f u s e r a d i a - t i o n of s i n g l e window pane (Mitalas and Stephenson 1962; Stephenson 1965) a = a b s o r p t i v i t y f o r d i r e c t r a d i a t i o n of

dir s i n g l e window pane

F = inward-flowing f r a c t i o n of absorbed s o l a r r a d i a t i o n f o r s i n g l e window pane (given by r a t i o of o u t s i d e s u r f a c e thermal r e s i s t a n c e t o t o t a l r e s i s t a n c e ; e s t i m a t e d t o b e 1 / 3 ) The t r a n s m i s s i v i t y and a b s o r p t i v i t y f o r d i r e c t s o l a r r a d i a t i o n a r e f u n c t i o n s of t h e c o s i n e of t h e i n c i d e n c e a n g l e (ASHRAE 1977; Stephenson 1965) ( i f tdir < 0.0, s e t t = 0.0) d i r (25) + 8.57881 c o s 3 ( i ) -8.38135 cos4 ( i )

The h e a t t r a n s f e r r e d through a window o f thermal

-

conductance Uw due t o indoor/outdoor temperature

d i f f e r e n c e i s given by a n e q u a t i o n s i m i l a r t o (22) f o r doors

Lw(0) i s computed i n t h e s u b r o u t i n e WNDWGL. The t r a n s f e r f u n c t i o n c o e f f i c i e n t s vo, vl and w l a r e i d e n t i c a l t o t h o s e f o r wall s u r f a c e s . The s o and s1 c o e f f i c i e n t s f o r a window without shading ( i . e . no b l i n d s , c u r t a i n s o r drapes) a r e s t o r e d i n t h e s u b r o u t i n e WNDWGL f o r f o u r v a l u e s o f mass p e r u n i t f l o o r a r e a

When t h e window has i n t e r i o r shading ( b l i n d s , c u r t a i n s o r d r a p e s ) ,

so

= vo and sl = v l , and t h e v a l u e s of S, and Uw a r e changed. When t h e window has a c l o s e d s h u t t e r on t h e e x t e r i o r ,

S,

= s o = 0.0, t h e thermal conductance, Uw, i s changed and t h e e x t e r i o r s u r f a c e s o l - a i r temperature, 0 (0)

,

i s

computed from Eq. (6) a s f o r w a l l s u r f a c e s ( i . e . w i t h a I t i n c l u d e d ) .

I n t e r n a l h e a t g a i n due t o l i g h t s The h e a t t r a n s f e r r e d t o indoor a i r by l i g h t s r e p r e s e n t s a s i g n i f i c a n t p o r t i o n o f t h e e l e c t r i c a l power s u p p l i e d s i n c e e l e c t r i c l i g h t s have f a i r l y low e f f i c a c y . Some of t h e energy i s d i s s i p a t e d by convection, and a s i g n i f i c a n t p a r t by r a d i a t i o n

(Kimura 1977; M i t a l a s 1973; and 1973-74). The t r a n s f e r f u n c t i o n method y i e l d s t h e following formula f o r t h e computation of c o n v e c t i v e and r a d i a n t h e a t g a i n from l i g h t s :

where Qu(l) and Qu(2) a r e t h e e l e c t r i c a l energy i n p u t t o l i g h t s one and two hours ago, r e s p e c - t i v e l y . The v a l u e s f o r Qu a r e given i n a schedule i n t h e ENCORE-CANADA i n p u t d a t a . Notice t h a t &(O) does n o t appear on t h e r i g h t hand s i d e of Eq. (29), i n d i c a t i n g a long d e l a y between t h e energy i n p u t t o l i g h t s d u r i n g t h e p r e s e n t hour and t h e consequent r i s e i n indoor a i r temperature. Lu(0) i s computed i n t h e s u b r o u t i n e IGAIN2, where t h e z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s , y l and y2, a r e s t o r e d f o r f o u r d i f f e r e n t v a l u e s of mass p e r u n i t f l o o r a r e a

I

where t h e window e x t e r i o r s u r f a c e temperature, 0(0), 146 kg/m2 342 kg/m2 635 kg/m2 976 kg/m2 i s computed from Eq. (6) with a I t s e t t o z e r o

( s o l a r r a d i a t i o n i s a l r e a d y accounted f o r i n Eq. (30 l b / f t 2 ) (70 l b / f t 2 ) (130 l b / f t 2 ) (200 l b / f t 2 ) ( 2 4 ) ) . Note t h a t Uw must b e g i v e n f o r t h e H used

i n Eq. (6)

.

y1 0.5 0.5 0 . 5 0 . 5

Given t h e v a l u e s o f Qs and Qc f o r t h e p r e s e n t

(11)

The w l c o e f f i c i e n t s a r e i d e n t i c a l t o t h o s e used f o r water i n a f u l l tank can s t o r e i s Qs and i s given h e a t t r a n s f e r through w a l l s , doors and windows. by

The c o e f f i c i e n t s J1 and J 2 i n Eq. (29) a r e normally s e t e q u a l t o 1 f o r l i g h t s t h a t a r e turned on o r o f f s t r i c t l y according t o a given schedule. However, l i g h t s may a l s o be t u r n e d on o r o f f a c c o r d i n g t o t h e a v a i l a b i l i t y of s u n l i g h t . Thus, J 2 = 0 i f t h e r e was s u n l i g h t two hours ago; J1 = 0 i f t h e r e was s u n l i g h t one hour ago.

I n t e r n a l h e a t g a i n due t o occupancy and a p p l i a n c e s - The h e a t g e n e r a t e d by occupants, Qo, i s t r a n s - f e r r e d t o t h e surroundings p a r t l y by r a d i a t i o n , p a r t l y by convection. The h e a t t r a n s f e r r e d by convection produces an almost i n s t a n t a n e o u s r i s e i n surrounding a i r temperature. I f t h e f r a c t i o n of h e a t t r a n s f e r r e d by r a d i a t i o n i s r (0.5 i s a reasonable v a l u e ) , t h e f r a c t i o n t r a n s f e r r e d by convection i s

where p i s t h e d e n s i t y and C i s t h e s p e c i f i c h e a t

of water a t temperature (BoU: + Bin)/2. I f t h e

-

volume of h o t water demand during t h e p r e s e n t hour i s v(O), t h e amount of h e a t , qd(O), r e q u i r e d t o r a i s e i t s temperature from Bin t o Bout i s p v ( 0 ) x

Cp (gout

-

B i n ) . The make-up h e a t r e q u i r e d i s

-

given by

where q S ( l ) i s t h e amount o f h e a t l e f t from t h e previous hour and qg(0) r e p r e s e n t s t h e standby l o s s from t h e tank (CSA 1973) and t h e d i s t r i b u t i o n l i n e s (Schultz and Goldschmidt 1978).

Loc(o) = ( 1 - r ) Q O ( 0 ) (30) I f E l

'

qm(0), h e a t e r element No. 1 produces

e(0) = q,,,(O) amount o f h e a t and t h e tank w i l l b e The g a i n due t o r a d i a n t h e a t t r a n s f e r from completely f i l l e d with h o t water, i . e . , %(O) = Q s . occupants f o r t h e p r e s e n t hour i s given by an

equation s i m i l a r t o (29) f o r l i g h t s I f E l < q,,,(O) and E2

2

q m ( 0 ) , h e a t e r No. 1 t u r n s o f f . and h e a t e r No. 2 w i l l meet t h e demand ( i . e . , qs(0) = Qs) by g e n e r a t i n g e(0) = qm(0) L o r ( 0 ) = r [ u l Q o ( l ) + U2Q0(2)1

-

WILor(l) (31) amount of h e a t . I f E2 < q,,,(O), t h e demand cannot

be met f o r t h i s hour and o n l y e ( 0 ) = E 2 amount of Notice t h e one hour delay between e x c i t a t i o n and h e a t i s generated, i . e . , qs(0) = Qs - qm(0) + E2.

response. By adding Eqs. (30) and (31) one

o b t a i n s t h e t o t a l h e a t g a i n due t o occupancy a s This procedure i s implemented i n t h e s u b r o u t i n e HOTWR t o a r r i v e a t t h e t o t a l e l e c t r i c a l energy, Lo(0) = ( 1 - r)Qo(0) + r [ u l Q o ( l ) + u2Qo(2)1

-

e(O), consumed by t h e h o t water system d u r i n g t h e

p r e s e n t hour. I t i s assumed t h a t

-

w L (1)

1 o r (32) Qh(0) = [e(O)

-

q R ( 0 ) 1 / 2 + qg(0) p o r t i o n of e(O)

c a u s e s t h e indoor a i r temperature t o r i s e . The h e a t t r a n s f e r mechanism is assumed t o b e i d e n t i c a l The r a d i a n t component of h e a t gain during previous

t o t h a t f o r occupants and e l e c t r i c a l a p p l i a n c e s .

hour i s simply Thus, t h e i n t e r n a l h e a t gain, Lh (0) ,

from t h e domestic h o t w a t e r system i s computed from Eq. (34) Lor(l) = Lo(l)

-

Loc(l) = Lo(l)

-

( l - r ) Q o ( l ) (33) (Qh r e p l a c e s Qo) by t h e s u b r o u t i n e IGAIN1.

and hence, by s u b s t i t u t i n g i n Eq. (32), one o b t a i n s THERMOSTAT CONTROL SYSTEM The n e t h e a t l o s s o r h e a t g a i n d u r i n g t h e Lo(0) = ( 1

-

r ) Q o ( 0 ) + [wl(l

- '1

+ r u l l Q o ( l ) + p r e s e n t hour, Ln(0), i s given by

The t r a n s f e r f u n c t i o n c o e f f i c i e n t ul i s i d e n t i c a l

+ Lw(0) + LU(O) + LO(O) + Le(0) + Lh(0)

t o S O and u2 i s i d e n t i c a l t o s l f o r h e a t t r a n s f e r (37)

through windows. Lo(0) i s computed by t h e sub-

- .

r o u t i n e IGAIN1. where t h e components a r e

4 Heat g a i n from e l e c t r i c a l a p p l i a n c e s and equip-

ment, Le(0), i s t r e a t e d i n t h e same manner a s h e a t gain from occupants.

Heating from domestic h o t water system Most small r e s i d e n t i a l - t y p e b u i l d i n g s i n Canada have a n e l e c t r i c h o t water h e a t e r which c o n s i s t s of a tank of volume V and an upper and lower h e a t e r element with maximum o u t p u t of El and E2, r e s p e c - t i v e l y . The incoming c o l d water i s a t temperature B i n and t h e h o t water l e a v i n g t h e tank i s a t tem- p e r a t u r e Bout. The maximum amount o f h e a t t h e

Qw

: basement f l o o r , Eq. (8) Qf : basement w a l l s , Eq. (9) Li : a i r i n f i l t r a t i o n

LS : w a l l s and c e i l i n g / r o o f system, Eq. (21)

Ld : doors, Eq. (23)

Lw : windows, Eq. (28)

LU : l i g h t s , Eq. (29) Lo : occupants, Eq. (34) Le : e l e c t r i c a l a p p l i a n c e s

(12)

Lh : h o t w a t e r system.

The n e t e f f e c t o f indoor temperature v a r i a t i o n d u r i n g a h e a t i n g season on basement h e a t l o s s e s

(Qw

and Qf) i s n e g l e c t e d i n ENCORE-CANADA. The

components Lu, Lo, Le and Lh can b e c o n s i d e r e d independent o f indoor temperature v a r i a t i o n s . How-

c ever, t h e components L i , Ls, Ld and Lw, which a r e

4 computed w i t h r e s p e c t t o a c o n s t a n t indoor 4 r e f e r e n c e t e m p e r a t u r e , O r , a r e f u n c t i o n s o f indoor/ outdoor temperature d i f f e r e n c e . T h e r e f o r e t h e e f f e c t o f i n d o o r temperature v a r i a t i o n cannot b e n e g l e c t e d . A z - t r a n s f e r f u n c t i o n which r e l a t e s t h e d e v i a - t i o n of indoor a i r temperature, B i , from t h e r e f e r e n c e temperature, O r , t o t h e n e t amount of h e a t added t o o r removed from t h e indoor a i r can be d e r i v e d from h e a t b a l a n c e c o n s i d e r a t i o n s and t h e thermal c h a r a c t e r i s t i c s of t h e b u i l d i n g e n c l o s u r e (ASHRAE 1977; M i t a l a s 1972). The t r a n s f e r f u n c t i o n has t h e form of Eq. (16) w i t h p = 1, and t h e

c o e f f i c i e n t wl i s i d e n t i c a l t o t h e one used i n Eqs. ( 2 1 ) , ( 2 3 ) , (28), (29) and ( 3 4 ) . The c o e f f i c i e n t s vo, v l and v2 a r e c a l c u l a t e d from

They were d e r i v e d f o r u n i t f l o o r a r e a under t h e assumption o f n e g l i g i b l e a i r i n f i l t r a t i o n and conductance between i n d o o r a i r and e x t e r i o r

surroundings. Equations (38) t o (40) a d j u s t t h e

normalized c o e f f i c i e n t s f o r a s p e c i f i c s i t u a t i o n (ASHRAE 1977; M i t a l a s 1972).

Let t h e e x c i t a t i o n be t h e d e v i a t i o n of indoor a i r temperature from t h e r e f e r e n c e temperature, B i ( t )

-

Or, and l e t t h e r e s p o n s e b e t h e a l g e b r a i c sum of t h e h e a t demand, E ( t ) , and t h e n e t h e a t l o s s o r h e a t g a i n , L n ( t ) . A p p l i c a t i o n of Eq. (19) y i e l d s a r e l a t i o n s h i p between h e a t demand and i n - door a i r temperature

By d e n o t i n g

v1 = glA + w [ K + I ( 1 ) ]

1 a s (39) one can r e w r i t e Eq. (41) a s

where

g . = normalized room a i r t r a n s f e r f u n c t i o n

1

c o e f f i c i e n t s ( i = 0, 1, 2)

A = f l o o r s u r f a c e a r e a

Kas = t o t a l thermal conductance between indoor

a i r and s u r r o u n d i n g s (computed i n t h e sub- r o u t i n e FCFACT)

I ( j ) = a i r i n f i l t r a t i o n h e a t i n g l o a d p e r u n i t indoor/outdoor temperature d i f f e r e n c e , j h o u r s ago.

The normalized room a i r t r a n s f e r f u n c t i o n c o e f f i - c i e n t s , go, g l and g 2 , a r e s t o r e d i n t h e s u b r o u t i n e

DEMAND f o r f o u r d i f f e r e n t v a l u e s of mass p e r u n i t f l o o r a r e a

S i n c e b o t h E(0) and e i ( 0 ) a r e unknown, a n o t h e r independent r e l a t i o n s h i p between h e a t demand and indoor temperature d u r i n g t h e p r e s e n t hour i s r e q u i r e d . T h i s i s provided by t h e mathematical model of t h e t h e r m o s t a t c o n t r o l system.

A simple t h e r m o s t a t , which i s s e t a t tempera- t u r e BS, f u n c t i o n s a s shown i n F i g . 2 where t h e h e a t o u t p u t , E, of t h e h e a t i n g system i s p l o t t e d a g a i n s t t h e indoor a i r t e m p e r a t u r e , Bi. A band, Bb, about t h e s e t p o i n t , €Is, d e t e r m i n e s when t h e h e a t i n g system i s t u r n e d on o r o f f .

When t h e temperature f a l l s below

es

-

%/2,

t h e h e a t i n g system t u r n s on; when t h e t e m p e r a t u r e r i s e s above Os + 8b/2, t h e h e a t i n g system t u r n s o f f . During a 1 h p e r i o d t h e t h e r m o s t a t may go through s e v e r a l on/off c y c l e s . Consequent1 y, t h e o n / o f f c y c l e s of a t h e r m o s t a t c o n t r o l system can- n o t be simulated i n hour- by -hour c a l c u l a t i o n s .

I n s t e a d , t h e s i m p l i f i e d r e p r e s e n t a t i o n shown i n F i g . 3 i s u s e d . I t i s based on t h e o b s e r v a t i o n t h a t w i t h i n t h e t h e r m o s t a t band, 8b, t h e t o t a l amount o f h e a t produced i s p r o p o r t i o n a l t o t h e indoor a i r t e m p e r a t u r e .

Mathematically, t h e p r o p o r t i o n a l band thermo- s t a t c o n t r o l system i s r e p r e s e n t e d a s f o l l o w s :

(13)

E(0) = S e i ( 0 ) + Eo(0) t e s t s , however, can o n l y prove t h e r e l a t i v e v a l i d i t y of t h e program r e s u l t s . Absolute v a l i d i t y remains t o be determined by comparison e s ( o )

- d

eb

5

ei(o)

5

e s ( 0 ) +

f

9, (44b) with measurements. l o c a t e d i n Ottawa i s c u r r e n t l y being u n d e r t a k e n by C o l l e c t i o n of d a t a from houses

t h e D i v i s i o n of Building Research o f t h e N a t i o n a l Research Council of Canada.

E(0) = 0 . 0 e i ( o ) > es(o) +

f

e

b ( 4 4 ~ ) The u s e f u l n e s s of t h e r e s u l t s of a computer s i m u l a t i o n of b u i l d i n g energy consumption is where t h e s l o p e , S, and t h e v e r t i c a l i n t e r c e p t , d i r e c t l y r e l a t e d t o t h e l i m i t a t i o n s bf t h e mathe- Eo(0), a r e g i v e n by ( s e e F i g . 3) m a t i c a l model and t h e accuracy o f t h e a v a i l a b l e i n p u t d a t a . More o f t e n than n o t , b u i l d i n g s c i e n c e

r e l i e s on crude e s t i m a t e s o f t h e p r o p e r t i e s of Emax

s = - -

b u i l d i n g m a t e r i a l and environmental c o n d i t i o n s . Ob (45) I n a d d i t i o n , complicated s t o c h a s t i c p r o c e s s e s such a s weather, s o l a r r a d i a t i o n , s o l - a i r t e m p e r a t u r e and and i n t e r n a l b u i l d i n g environment, a r e d i f f i c u l t

t o model without s i m p l i f y i n g assumptions. When a n assumption proves t o b e i n a p p r o p r i a t e , a more E 0 (0) =

4

Emax

-

S e s ( 0 ) (46) d e t a i l e d , p o s s i b l y more complicated, mathematical

model h a s t o b e adopted. r e s p e c t i v e l y . Equations (43) and (44a, b, c ) c a n

be s o l v e d s i m u l t a n e o u s l y f o r ei(0) and E(0) t o g i v e

The indoor a i r temperature, 8 i ( O ) , and t h e h e a t s u p p l i e d by t h e h e a t i n g system d u r i n g t h e p r e s e n t hour, E(O), a r e computed a c c o r d i n g t o Eqs.

(47a, b , c ) i n t h e s u b r o u t i n e DEMAND. Note t h a t

e i ,

es,

Z, Eo and E v a r y w i t h t i m e . The t h e r m o s t a t s e t t i n g s ,

es,

a r e s p e c i f i e d f o r e v e r y hour of t h e day by a schedule i n t h e ENCORE-CANADA i n p u t d a t a .

CONCLUSIONS

The s e t of mathematical procedures used by t h e ENCORE-CANADA computer program has been d e s c r i b e d . T r i a l r u n s w i t h ENCORE-CANADA produced r e s u l t s t h a t e x h i b i t expected behaviour

.

Such computational

ENCORE-CANADA was w r i t t e n w i t h t h e i n t e n t t o s t u d y a s many a s p o s s i b l e of t h e f a c t o r s t h a t i n f l u e n c e energy consumption i n small r e s i d e n t i a l - t y p e b u i l d i n g s . This n e c e s s i t a t e d a d e t a i l e d , n u m e r i c a l l y s t a b l e model and, consequently, a l e n g t h y computer program. The amount of arithme- t i c computing time r e q u i r e d p e r s i m u l a t i o n of a h e a t i n g season i s a t p r e s e n t o f t h e o r d e r of one hour on an IBM 360/67 computer, w i t h a b o u t 5 / 6 t h of t h e time being s p e n t by i n f i l t r a t i o n c a l c u l a - t i o n s . I t i s expected t h a t i f more e f f i c i e n t numerical methods a r e adopted f o r i n f i l t r a t i o n c a l c u l a t i o n s , t h e computing time f o r one simula- t i o n would b e 10 t o 15 minutes.

The d e r i v a t i o n s given a r e based on a n o i l - f i r e d f u r n a c e h e a t i n g system w i t h warm a i r d i s t r i - b u t i o n ; t h e b u i l d i n g i s assumed t o have no i n t e r - n a l p a r t i t i o n s . ENCORE-CANADA, however, c a n a l s o s i m u l a t e e l e c t r i c a l l y h e a t e d , p a r t i t i o n e d b u i l d - i n g s . In t h i s c a s e many o f t h e program a l g o r i t h m s a r e s i m p l i f i e d and computing t i m e s a r e reduced.

ACKNOWLEDGEMENTS

The a u t h o r s wish t o e x p r e s s t h e i r g r a t i t u d e t o G.P. M i t a l a s f o r h i s generous a s s i s t a n c e through- o u t t h i s r e s e a r c h work. The basement h e a t l o s s model and a s s o c i a t e d s u b r o u t i n e s were o r i g i n a l l y produced by C . J . S h i r t l i f f e who c o n t r i b u t e d m a t e r i a l t o t h e s e c t i o n on basement h e a t l o s s c a l c u l a t i o n s . The TRUMP f i n i t e d i f f e r e n c e compu- t a t i o n s were c a r r i e d o u t b y W.C. Brown.

This paper i s a c o n t r i b u t i o n from t h e D i v i s i o n o f Building Research, National Research Council of Canada and i s p u b l i s h e d with t h e a p p r o v a l of t h e D i r e c t o r of t h e D i v i s i o n .

REFERENCES

ASHRAE 1975. Procedure f o r determining h e a t i n g and c o o l i n g l o a d s f o r computerizing energy c a l c u l a t i o n s ; a l g o r i t h m s f o r b u i l d i n g h e a t t r a n s f e r s u b r o u t i n e s , compiled and p u b l i s h e d by ASHRAE Task Group on Energy Requirements f o r Heating and Cooling of B u i l d i n g s , p. 17-32.

(14)

ASHRAE 1976. Handbook, 1976 Systems Volume, American S o c i e t y o f H e a t i n g , R e f r i g e r a t i n g and A i r - C o n d i t i o n i n g Engineers, p . 43.8.

ASHRAE 1977. Handbook and Product D i r e c t o r y ,

Fundamentals, American S o c i e t y o f H e a t i n g ,

R e f r i g e r a t i n g and A i r - C o n d i t i o n i n g Engineers, Ch. 25 and 26.

AYRES, J .M. 1977. P r e d i c t i n g b u i l d i n g energy

r e q u i r e m e n t s

-

t h e computer dilemma, Heating/

P i p i n g / A i r c o n d i t i o n i n g , 49, p . 44-50.

BOILEAU, G .G., and LATTA, J .A., 1968."Calculation of

basement h e a t l o s s e s , " N a t i o n a l Research Council of Canada, D i v i s i o n o f B u i l d i n g Research, Tech. Paper 292, Ottawa, (NRC 10477). CSA 1973. Canadian S t a n d a r d s A s s o c i a t i o n , S t a n d a r d C191-1973, Performance r e q u i r e m e n t s f o r e l e c t r i c s t o r a g e - t a n k w a t e r h e a t e r s , Canadian S t a n d a r d s A s s o c i a t i o n Inc

.

,

178 Rexdale Blvd., Rexdale, Ont., M9W 1R3.

EDWARDS, A . L . 1968. "TRUMP: A computer program f o r

t r a n s i e n t and s t e a d y s t a t e t e m p e r a t u r e d i s t r i b u - t i o n s i n m u l t i d i m e n s i o n a l systems,"Lawrence R a d i a t i o n Laboratory, U n i v e r s i t y of C a l i f o r n i a ,

Livermore, (UCRL-14754-REV. I ) , ( D i s t r i b u t e d by:

C l e a r i n g h o u s e f o r F e d e r a l S c i e n t i f i c and T e c h n i c a l I n f o r m a t i o n , U .S. Department o f Commerce, S p r i n g f i e l d , V i r g i n i a .) KIMURA, K.-1. 1977. S c i e n t i f i c Basis o f A i r C o n d i t i o n i n g . Applied S c i e n c e P u b l i s h e r s L t d . , London.

KONRAD, A . , LARSEN, B .T., and SHAW, C . Y . 1978.

"Programmed computer model o f a i r i n f i l t r a t i o n i n s m a l l r e s i d e n t i a l b u i l d i n g s w i t h o i l f u r n a c e , " p r e s e n t e d a t T h i r d I n t e r n a t i o n a l Symposium on t h e Use o f Computers f o r Environmental

Engineering R e l a t e d t o B u i l d i n g s , Banff, A l b e r t a , Canada.

LARSEN, B .T., 1976. " D i g i t a l s i m u l a t i o n o f energy consumption i n r e s i d e n t i a l b u i 1 d i n g s ; t p r e s e n t e d a t t h e I n t e r n a t i o n a l CIB Symposium on Energy C o n s e r v a t i o n i n t h e B u i l t Environment, B u i l d i n g

Research S t a t i o n , Garston, England, ~ p r i l 6-8, -

1976.

LARSEN, B .T., 1977. "Energy consumption of r e s i d e n - t i a l b u i l d i n g s ; The Computer Program ENCORE," P a r t 2, Documentation, Norwegian B u i l d i n g Research I n s t i t u t e , Computer Program L i b r a r y , Program No. 12, O s l o .

MITALAS, G.P., 1968. C a l c u l a t i o n o f t r a n s i e n t

h e a t flow through w a l l s and r o o f s , ASHRAE

T r a n s a c t i o n s , 74, P a r t 11, p . 182. MITALAS, G.P., 1972. T r a n s f e r f u n c t i o n method of c a l c u l a t i n g c o o l i n g l o a d s , h e a t e x t r a c t i o n and s p a c e t e m p e r a t u r e , ASHRAE J o u r n a l , 14, 12, p . 54-56. MITALAS, G .P., 1973. C a l c u l a t i n g c o o l i n g l o a d caused b y l i g h t s , ASHRAE J o u r n a l , 15, 6 , p . 37-40.

MITALAS, G.P., 1973-74. Cooling l o a d caused by

l i g h t s , T r a n s . Can. Soc. Mech. Eng., 2, 3,

p . 169-174.

MITALAS, G.P., 1976. Net a n n u a l h e a t l o s s f a c t o r method f o r e s t i m a t i n g h e a t r e q u i r e m e n t s of

b u i l d i n g s , Building Research Note No. 117,

D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council o f Canada, Ottawa.

MITALAS, G.P., 1978. Comments on t h e z - t r a n s f e r f u n c t i o n method f o r c a l c u l a t i n g h e a t t r a n s f e r i n b u i l d i n g s , ASHRAE T r a n s a c t i o n s , 84, P a r t 1.

MITALAS, G

.

P

.

,

and ARSENEAULT, J .G

.

,

1972.

"FORTRAN IV program t o c a l c u l a t e z - t r a n s f e r f u n c t i o n s f o r t h e c a l c u l a t i o n of t r a n s i e n t h e a t t r a n s f e r through w a l l s and r o o f s , " N a t i o n a l Research Council o f Canada, D i v i s i o n o f Build-

i n g Research, Computer Program No. 33, Ottawa.

MITALAS, G.P. and STEPHENSON, D . G . , 1962.

"Absorption and t r a n s m i s s i o n o f thermal r a d i a - t i o n by s i n g l e and double g l a z e d windows," N a t i o n a l Research Council of Canada, D i v i s i o n of B u i l d i n g Research, Research Paper No. 173, Ottawa. [NRC 7104).

SCHULTZ, W .W., and GOLDSCHMIDT, V .W., 1978.

E f f e c t of d i s t r i b u t i o n l i n e s o n s t a n d - b y l o s s o f s e r v i c e w a t e r h e a t e r , ASHRAE T r a n s a c t i o n s , 84, P a r t 1.

STEPHENSON, D.G

.,

1965. Equations f o r s o l a r h e a t

g a i n through windows, S o l a r Energy, IX, 2,

p . 81-86.

STEPHENSON, D . G . , and MITALAS, G .P., 1967.

Cooling load c a l c u l a t i o n s by thermal r e s p o n s e

f a c t o r method, ASHRAE T r a n s a c t i o n s , Vol. 73,

P a r t , 1 p . 111.1

-

I11 1 . 7 .

STEPHENSON, D . G . , and MITALAS, G.P., 1971.

C a l c u l a t i o n o f h e a t conduction t r a n s f e r func- t i o n s f o r m u l t i - l a y e r s l a b s , ASHRAE Transac- t i o n s , Vol. 77, P a r t 11, p . 117-126.

THRELKELD, J .L

.

,

1962. Thermal Environmental

Engineering, Ch. 14, S o l a r R a d i a t i o n , F i g . 14.18, P r e n t i c e H a l l I n c . ,

TRUXAL, J . G . , 1955. Automatic Feedback C o n t r o l

(15)

F I G U R E 1 T Y P I C A L W A L L C O N S T R U C T I O N F I G U R E 3 7 450 O U T S I D E I I 1 I

1

I

( I N S I D E SURFACE I 1 I I SURFACE O F W A L L I I

I

I

I

I

1 O F W A L L 8 ( t ) I

I

E I

I

1 1

I

I

1

I

I I

8

C O N S T . S O L - A I R I

I

I I

I

TEMP. i l l R3 T~

7

T I !'bl REFERENCE TEMP.

I ' 1 I

I

1 1 I Q ( r ) 4 b I I K 2 I l K 4 I K 5 I I 1 1 ~ 2

1

I

~ 4 1 ~ 5 1 I J

I

I

L

,

5 4

1

s 5 I I 1 I 5 2

1

1 A I R I

I

AIRSPACE

I

1 I A I R F I L M IF 1 L M I

,*

P R O P O R T I O N A L B A N D T H E R M O S T A T C O N T R O L A C T I O N ( N O T T O S C A L E ) E

*

E m m y

---

F=--= 2

--=,---

'-

----

- -

,

-1 I I L I I 1 IA 1 I I I I I I I

v

I I I I &- ;--

j

====s====2======

o o i F I G U R E 2 I L L U S T R A T I O N O F A S I M P L E T H E R M O S T A T C O N T R O L b A C T I O N ( N O T T O S C A L E ) I E A E 0 1 2 E m a x

P\

E o =

-

-

s

8,

\ \ \

'.

\ \ Z \ \ \ - I \ \ \ \ + E m a x E m o x Emox

-

- _ _ - - - I SLOPE

-

5 =

-

-

2 b

>

D 'i t

Références

Documents relatifs

[r]

Under certain conditions of heavy snowfall with temperatures near or above 0°C, and with rainfall, or high heat loss from below, sliding has been known to damage or shear chimneys

A sample of SNe with both early lightcurve data and U-band spectra would allow a direct comparison between pre-peak λ(uNi) absorption and the amount of shallow Ni predicted from

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

Figure 80 hygIRC 1-D Results, 99.9% confidence grade, and averaged results for total water content on the interior surface of the Benchmark 4

Thus, supramolecular interaction forces can be obtained over a wide range of loading rates in AFM-based SMFS experiments by controlling the temperature of the medium and calculating

SHOCC, a sub-hourly occupancy-based control model, provides building energy simulation programs, such as ESP-r, access to advanced behavioural models, such as the Lightswitch2002

Using femtosecond laser technology, we accelerate the rate of rotation from 0 to 6 THz in 50 ps, spinning chlorine molecules from near rest up to angular momentum states J ⬃ 420..