• Aucun résultat trouvé

Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction

N/A
N/A
Protected

Academic year: 2021

Partager "Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatSciVerseScienceDirect

Industrial

Crops

and

Products

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Valorization

of

Citrus

limon

residues

for

the

recovery

of

antioxidants:

Evaluation

and

optimization

of

microwave

and

ultrasound

application

to

solvent

extraction

Farid

Dahmoune

a

,

Lila

Boulekbache

a

,

Kamal

Moussi

a

,

Omar

Aoun

a

,

Giorgia

Spigno

b,∗

,

Khodir

Madani

a

aLaboratoryofBiomathematics,Biochemistry,BiophysicsandScientometrics,AbderrahmaneMiraUniversityofBejaia,06000Bejaia,Algeria bInstituteofOenologyandFoodEngineering,UniversitàCattolicadelSacroCuore,ViaEmiliaParmense84,29122Piacenza,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received11March2013

Receivedinrevisedform17June2013 Accepted4July2013

Keywords: Citruslimonpeels Optimization

Microwaveassistedextraction Ultrasoundassistedextraction Phenoliccompounds

a

b

s

t

r

a

c

t

Ultrasoundassistedextraction(UAE)andmicrowave-assistedextraction(MAE) wereoptimized (by responsesurfacemethodology,RSM)andcomparedfortherecoveryoftotalphenoliccompounds(TPC expressedasgallicacidequivalents(GAE))fromCitruslimonpeels.TheoptimizedresultforMAEwas48% ethanolasextractionsolvent,28:1mL/gofsolvent:solidratio,123sand400Wforirradiationtimeand power.TheoptimizedresultforUAEwas63.93%ethanolasextractionsolvent,40mL/gofliquid/solid ratio,15.05minofholdingtimeand77.79%foramplitude.MaximumpredictedTPCrecoveriesunder theoptimizedconditionsforMAEandUAEwere15.74and15.08mgGAE/grespectively,whichwere closetotheexperimentalvaluesof15.78±0.8and15.22±0.88mgGAE/g,indicatingsuitabilityofthe employedmodelandthesuccessofRSMinoptimizingtheextractionconditions.Theantioxidantactivity determinedbytheDPPHandreducingpowertestsconfirmedthesuitabilityofMAEforthepreparation ofantioxidant-richplantextracts.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Citrusisthemostimportantfruitcropintheworld.The

pro-ductionofcitrusfruitshasbeenincreasingenormouslyinthelast

fewdecades,goingfromanaverageof48milliontonsayearinthe

period1970–1979,tomorethan100milliontonsin2004–2005

(DugoandDiGiacomo,2002;González-Molinaetal.,2010).Citrus

fruitsarecultivatedinmorethan100countriesallovertheworld,

mainlyintropicalandsubtropicalareas,wherefavorablesoiland

climaticconditionsprevail(DugoandDiGiacomo,2002).

Amongfruitandvegetables,citrusfruitsarereportedtobea

veryrichsourceofhealthpromotingsubstances(Artés-Hernández

etal.,2007).Althoughtheirhealth-relatedpropertieshavealways

beenassociatedwiththeircontentofvitaminC,ithasrecentlybeen

shownthatflavonoidsalsoplayaroleinthisrespect.Inancient

medicineCitruslimon(C.limonBurm)andmelissa(Melissa

offici-nalisL.)havelongbeenusedasnaturalinsectrepellents(Oshaghi

etal.,2003).

∗ Correspondingauthor.Tel.:+390523599181;fax:+390523599232. E-mailaddresses:farid.dahmoune@yahoo.fr(F.Dahmoune),

lilaboulekbachemakhlouf@yahoo.fr(L.Boulekbache),moussikamal@yahoo.fr

(K.Moussi),aoun.omar@yahoo.fr(O.Aoun),giorgia.spigno@unicatt.it(G.Spigno),

madani28dz2002@yahoo.fr(K.Madani).

Citrusisanimportantcropmainlyusedinfoodindustriesfor

freshjuiceproduction.Peels,themainwastefractionofcitrusfruits,

represent roughly halfof the fruitmass and have been widely

studiedbecausetheycontainnumerousbiologicallyactive

com-poundsincludingnaturalantioxidantssuchasphenolicacidsand

flavonoids(Hayatetal.,2009,2010).

Thefirststepforbothanalysisandexploitation ofmedicinal

plant bioactive constituents is their extraction from the

cellu-larmatrix.The“ideal”extractionmethodshouldbequantitative,

non-destructive, and time saving.Besides conventional solvent

extractionprocessescommonlyusedfortherecoveryof

pheno-lic compounds (Proestos et al., 2006), non-conventional, more

rapidandautomatedmethodshavebeenrecentlyused,e.g.

super-criticalfluidextraction(SFE),pressurizedliquidextraction(PLE),

microwave-assisted extraction (MAE) and ultrasound assisted

extraction(UAE)(Aybasteretal.,2013;Liazidetal.,2007).

Actu-ally,thestateoftheartinthesefieldshasshownthatultrasound

andmicrowaveradiationcouldacceleratetheextractingprocess

improvingbioactivecompoundsextraction,particularlyphenolic

compounds(Garofuli ´cetal.,2013; Mu ˜niz-Márquezetal.,2013;

MorelliandPrado,2012;Lietal.,2011).

MAEisattractivebecauseitallowsforrapidheatingof

aque-oussamplesandpresentsadvantagesoverconventionalextraction

techniques,suchasimprovedefficiency,reducedextractiontime,

lower solvent consumption, higher selectivity toward target

0926-6690/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

moleculesandhigherlevelofautomation(Hanetal.,2011;Singh etal.,2011;Zhangetal.,2008).Inadditionoftheseadvantages,a

widerrangeofsolventscanbeusedinMAE,asthetechniqueisless

dependentonsolventaffinity(YangandZhai,2010).

UAE is particularly attractive for its simplicity, low cost of

equipment(Carreraetal.,2012),efficiencyinextractinganalytes

fromdifferentmatrices(HerreraanddeCastro,2005),lowenergy

requiredandreducedsolvent-andtime-consumingmethod(Xia

etal.,2011).Theenhancementoftheextractionprocessby

ultra-soundsisattributedtothedisruptionofthecellwalls,reductionof

theparticlesizeandtheincreaseofthemasstransferofthecell

con-tenttothesolventcausedbythecollapseofthebubblesproduced

byacousticcavitation(Xiaetal.,2011;Rodriguesetal.,2008).

Toourbestknowledge,noliteraturereportexistsonthe

opti-mization and comparison of MAE and UAE procedure for the

extractionoftotalphenoliccompounds(TPC)fromC.limonpeels.

Therefore,theobjectivesofthecurrentstudywereto:

• investigatetheeffectsofdifferentparametersontheextraction

efficiency(intermsofrecoveryandantioxidantactivityoftotal

phenoliccompounds)byMAEandUAEprocesses;

• optimize the MAE and UAE conditions by response surface

methodology(RSM);

• comparetheoptimizedMAEandUAEresultswithareference

ConventionalSolventExtractionprocedure(CSE).

2. Materialsandmethods

2.1. Plantmaterial

ThefruitsamplesofC.limonwerecollectedintheareaofSidi

Aich(Bejaia,Algeria),washedwithdistilledwaterandpeeledoff

withhands.Peelsweredriedforabout15daysatroomtemperature

inaventilateddarkroomtoprotecttheactivecompoundscontent

fromlightoxidation.Driedpeelsweregroundwithanelectrical

grinder(IKAmodelA11Basic,Germany),thepowderwaspassed

throughstandard125␮msieveandonlythefractionwithparticle

size<125␮mwasused.Thepowderwasstoredinairtightbags

untiluse.Thewateractivity(aw)wasdeterminedbyHygroPalm

AWandwas0.25±0.02at23◦C.

2.2. Reagents

Sodiumcarbonate(Na2Co3),Folin–Ciocalteau’sphenolreagent

and disodium hydrogen phosphate (Na2HPO4) were obtained

from Prolabo (made in CE) and 1,1-diphenyl-2-picryl-hydrazil

(DPPH)fromSigmaAldrich(Germany).Gallicacid,ferricchloride

(FeCl3·6H2O), potassiumferricyanide (C6N6FeK3), trichloroacetic

acidandsodiumdihydrogenphosphate(NaH2PO4)werepurchased

fromBiochem-chemopharma(UK).Allsolventsusedwereof

ana-lyticalgradeandpurchasedfromProlabo(CE).

2.3. Experimentalwork

For optimization of theMAE and UAE procedure, the

influ-encesoftheprocessparameterswerefirstlyseparatelyinvestigated

insingle-factorexperimentstolimitthetotalexperimentalwork

(Tables1and2).Whenonevariablewasnotstudied,itwaskept

constant. In the MAE trials, the constant values for irradiation

time,solvent-to-solidratioandethanolconcentrationwere120s,

20mL/gand50%,respectively.Microwavepowerwassetat500W

inthetrialstoinvestigatetheinfluenceofsolventtypeandethanol

concentration,andat400Winthetrialstoinvestigatethe

influ-enceofsolvent-to-solidratio.IntheUAEtrials,theconstantvalues

ofsonicationtime,solvent-to-solidratioandethanol

concentra-tionwere10min,40mL/gand50%.Radiationamplitudewassetat

50%inthetrialstoinvestigatetheinfluenceofethanol

concentra-tionandsonicationtime,andat60%inthetrialstoinvestigatethe

influenceofsolvent-to-solidratio.

Onthebasis ofthesingle-factor experimentalresults,major

influence factors were selected. Then, an RSM based on a

Box–BehnkenDesign(BBD)forMAEandCentralComposite

Rotat-able Design (CCRD) for UAE was conducted to optimize both

processes(Tables3and4)(Vázquezetal.,2012;Wuetal.,2013).

Regressionanalysisofthedatatofitasecond-orderpolynomial

equation(quadraticmodel)wascarriedoutaccordingtothe

fol-lowinggeneralequation(Eq.(1))whichwas,then,usedtopredict

theoptimumconditionsofextractionprocess.

Y=B0+



k i=1BiXi+



k i=1BiiX 2+



k i>1BiiXiXj+E (1)

whereYrepresentstheresponsefunction(inourcasetheTPC

yield);B0isaconstantcoefficient;Bi,BiiandBijarethecoefficients

ofthelinear,quadraticandinteractiveterms,respectively,andXi

andXjrepresentthecodedindependentvariables.Accordingtothe

analysisofvariance,theregressioncoefficientsofindividual

lin-ear,quadraticandinteractiontermsweredetermined.Inorderto

visualizetherelationshipbetweentheresponseand

experimen-tallevelsofeach factorandtodeducetheoptimumconditions,

theregressioncoefficientswereusedtogenerate3-Dsurfaceplots

fromthefittedpolynomialequation.Thefactorlevelswerecoded

as−1(low),0(centralpointormiddle)and1(high),respectively.

Thevariableswerecodedaccordingtothefollowingequation(Eq.

(2)):

xi=XiX−X0 (2)

wherexiisthe(dimensionless)codedvalueofthevariableXi;X0is

thevalueofXatthecenterpointandXisthestepchange.

Analysisofvariancewasperformedfortheresponsevariable

usingthefullmodelwhereP-values(partitionedintolinearand

interactionfactors)indicatedwhetherthetermsweresignificant

ornot.Toverifytheadequacyofthemodels,additionalextraction

trialswerecarriedoutattheoptimalconditionspredictedwiththe

RSMand theobtainedexperimentaldatawerecomparedtothe

valuespredictedbytheregressionmodel.

Efficiencyofthetwonon-conventionalmethods(MAEandUAE)

wascomparedbasedontheTPCrecoveryandthequalityofthe

recoveredphenolic compoundsin terms of antioxidantactivity

(accordingtoDPPHassayandFereducingability)whichwas

mea-suredonlyontheextractsobtainedundertheoptimumconditions

selectedbyRSM.

OptimizedMAEandUAEconditionswerethencomparedtoa

referenceCSEprocedure.

Finally, in order to investigate the influence of ultrasound,

microwaveandmacerationonthemicrostructureofthesamples

powder, thepeel powder samples (before and after the

differ-ent extraction processes) were observed by scanning electron

microscopy(SEM).

2.3.1. Microwaveassistedextraction

Adomesticmicrowaveoven(NN-S674MF,Samsung,Malaysia)

with cavity dimensions of 22.5cm×37.5cm×38.6cm and

2450kHz working frequency was used. The apparatus was

equippedwitha digitalcontrol systemfor irradiationtime and

microwave power (the latter linearly adjustable from 200 to

1000W).Theovenwasmodifiedinordertocondensateintothe

samplethevaporsgeneratedduringextractiongivingaconstant

samplevolume.

Fortheextraction, onegramofthepeel powderwasplaced

in a 250mLvolumetric flaskcontaining theextractionsolvent.

(3)

Table1

Resultsofsingle-factorexperimentsformicrowaveassistedextraction.Resultsarereportedasmeans±S.D.Samelettersinthesamecolumnrefertomeansnotstatistically differentaccordingtoANOVAandTukey’stest.TPC,totalphenolsyieldreferredtodryweight(dw)ofC.limonpeels;GAE,gallicacidequivalents.

Solvent Ethanolconcentration Irradiationtime Microwavepower Solvent-to-solidratio Type TPCyield (mgGAE/gdw) (%v/v) TPCyield (mgGAE/gdw) (s) TPCyield (mgGAE/gdw) (W) TPCyield (mgGAE/gdw) (mL/g) TPCyield (mgGAE/gdw) Water 7.38±1.19b 20 10.43 ±1.28bc 90 10.04±0.95c 300 10.65±1.30b 15 12.20±0.46c 50%MeOH 8.50±0.89b 40 12.11±0.62ab 120 13.68±0.24a 400 13.68±0.34a 20 13.68±0.14b 50%EtOH 12.30±0.47a 50 13.30±0.47a 150 12.88±0.30ab 500 12.30±0.39ab 25 14.72±0.39a 50%Acetone 9.18±0.44b 60 10.95±0.16bc 180 11.86±0.81b 600 12.09±0.23ab 30 13.50±0.27b 80 9.95±0.81c 210 11.58±0.27bc 240 11.44±0.90bc Table2

Resultsofsingle-factorexperimentsforultrasoundassistedextraction.Resultsarereportedasmeans±S.D.Samelettersinthesamecolumnrefertomeansnotstatistically differentaccordingtoANOVAandTukey’stest.TPC:totalphenolsyieldreferredtodryweight(dw)ofC.limonpeels.GAE,gallicacidequivalents.

Ethanolconcentration Sonicationtime Amplituderadiation Solvent-to-solidratio

(%) TPCyield(mgGAE/gdw) (min) TPCyield(mgGAE/gdw) (%) TPCyield(mgGAE/gdw) (mL/g) TPCyield(mgGAE/gdw)

30 12.02±0.53b 5 12.30±0.60b 20 12.03±1.20c 20 11.09±1.20b

50 14.10±0.21a 10 14.16±0.42a 40 13.16±0.71bc 30 12.11±0.60b

70 13.20±0.41ab 15 15.11±0.31a 60 14.90±0.83a 40 14.88±0.30a

100 12.11±1.12b 20 12.21±0.36b 80 14.51±0.22ab 50 15.02±0.51a

100 14.00±0.33abc

ovenoperation.Dependingonthetrial,adifferentsolvent,

irradi-ationtime,microwavepowerandsolvent-to-solidratiowereused

(Tables1and3).Attheendofmicrowaveirradiation,thevolumetric

flaskwasallowedtocooltoroomtemperature.

Afterextraction, theextractwasrecovered byfiltrationin a

BüchnerfunnelthroughWhatmanNo.1paper,andcollectedina

volumetricflask.Theextractwasstoredat(4◦C)untiluseand

ana-lyzedfortheTPCand,fortheextractobtainedundertheoptimum

conditionsbyRSM,alsofortheantioxidantactivity.

2.3.2. Ultrasoundassistedextraction

Anultrasonicapparatus(SONICSVibracell,VCX130PB,Stepped

microtipsandprobes,No.630-0422)wasusedforUAEwith

work-ingfrequencyfixedat20kHz.

For theextraction, onegramof thepeel powderwasplaced

ina250mLamberglassbottlecontainingtheextractionsolvent.

Thesuspensionwasexposedtoacousticwavesundervariations

ofethanolconcentration,irradiationtime,amplitudeand

liquid-to-solid ratio(Tables 2 and4).The temperaturewascontrolled

Table3

Box–Behnkendesignwiththeobservedresponsesandpredictedvaluesforyieldoftotalphenoliccompounds(TPC)referredtodryweight(dw)ofC.limonpeelsusing microwaveassistedextraction.GAE,gallicacidequivalents.

Run X1–ethanolconcentration(%v/v) X2–time(s) X3–power(W) X4–ratio(mL/g) TPCyield(mgGAE/gdw)

Experimental Predicted 1 50 120 400 25 15.00±0.83 14.97 2 60 150 400 25 13.49±1.48 13.48 3 50 90 400 30 14.19±0.90 14.23 4 50 120 300 20 13.72±0.88 13.76 5 60 120 300 25 12.49±0.99 12.70 6 50 120 500 20 14.05±1.49 14.17 7 50 150 400 20 14.05±1.41 14.22 8 50 120 400 25 14.98±0.93 14.97 9 50 150 500 25 13.44±0.99 13.57 10 40 120 400 20 14.33±0.93 14.49 11 60 120 400 20 13.65±0.95 13.75 12 50 90 500 25 13.49±1.79 13.59 13 50 120 300 30 13.74±1.11 13.98 14 40 90 400 25 14.30±1.06 13.97 15 50 150 400 30 14.51±0.99 14.76 16 60 90 400 25 12.91±0.88 12.93 17 50 90 400 20 14.23±1.32 14.36 18 50 90 300 25 12.92±0.95 12.99 19 60 120 400 30 13.84±1.25 14.01 20 50 150 300 25 13.25±0.83 13.40 21 40 150 400 25 13.93±1.25 13.82 22 40 120 400 30 14.40±1.14 14.64 23 50 120 500 30 14.61±1.11 14.35 24 40 120 500 25 13.58±0.83 13.77 25 50 120 400 25 14.93±0.88 14.97 26 40 120 300 25 13.40±0.97 13.34 27 60 120 500 25 13.38±1.20 12.99

(4)

Table4

CentralCompositeRotatableDesignwiththeobservedresponsesandpredictedvaluesforyieldoftotalphenoliccompounds(TPC)referredtodryweight(dw)ofC.limon peelsusingultrasoundassistedextraction.GAE,gallicacidequivalents.

Run X1–time X2–amplitude X3–solvent TPCyield(mgGAE/gdw)

Experimental Predicted 1 5 30 30 12.92±1.20 13.21 2 15 30 30 11.09±0.32 11.27 3 5 70 30 14.15±0.53 14.18 4 15 70 30 12.49±0.45 12.71 5 5 30 70 13.01±0.15 12.72 6 15 30 70 13.69±1.02 13.59 7 5 70 70 14.38±0.36 14.13 8 15 70 70 15.82±0.96 15.47 9 10 50 50 15.01±0.89 14.91 10 10 50 50 14.51±0.16 14.91 11 10 50 50 15.01±1.60 14.91 12 10 50 50 14.91±0.99 15.01 13 10 50 50 15.92±1.23 14.57 14 17.35 50 50 14.58±0.52 13.57 15 2.65 50 50 14.91±0.86 15.67 16 10 79.4 50 15.48±0.36 12.28 17 10 20.6 50 13.67±0.45 13.95 18 10 50 79.4 13.32±0.12 13.26 19 10 50 20.6 12.82±1.22 13.25

continuouslyandkeptatroomtemperaturebycirculatingexternal

coldwaterbath.Aftertheextraction,theextractwasrecoveredand

analyzedasreportedforMAEinSection2.3.1.

2.3.3. Conventionalsolventextraction

Fortheconventionalextraction,onegramsofsamplepowder

wereplacedinaconicalflask,and50mLof50%(v/v)ethanolwere

added.Themixturewaskeptinathermostaticwaterbath(mod.

WNB22Memmert,Germany)withshakingspeedof110strokesper

minute,at60◦Cfor2h,accordingtothemethodrecommendedby

Spignoetal.(2007).Theextractwasthenrecoveredandanalyzed

asreportedforMAEinSection2.3.1.

2.4. Analyticaldeterminations

2.4.1. Totalphenoliccontent(TPC)

Totalphenoliccontentoftheextractswasdeterminedaccording

totheFolin–Ciocalteuassay(Jaramillo-Floresetal.,2003).Briefly,

100␮Loftheextract(opportunelydilutedindistilledwater)was

mixedwith750␮Lof10-folddilutedFolin–Ciocalteaureagent.The

solutionwasmixedandincubatedatroomtemperaturefor5min.

After5min,750␮Lof7.5%sodiumcarbonate(Na2CO3)wereadded.

Afterincubationat25◦Cfor90min,theabsorbanceofthe

sam-plewasmeasuredat725nmagainstablank(madeasreportedfor

thesamplebutwith100␮Lofdistilledwater)byusingaUV–vis

Spectrophotometer(SpectroScan50,UK).

Gallicacidhydratewasusedasstandardforthecalibrationcurve

toexpresstheTPCconcentrationofthesampleasmg/Lofgallic

acidequivalents(GAE).TPCyieldwasthencalculatedbasedonthe

sampleconcentration,extractvolumeandpeelpowderdryweight,

accordingtothefollowingequation(Eq.(3)):

TPCYield=mgGAE/L·Lextract

gpeelpowder

(3)

2.4.2. AntioxidantactivitybyDPPHassay

Theelectrondonationabilityoftheextracts(CSEsamplesand

MAEandUAEsamplesobtainedunderoptimizedcondition)was

measured by bleaching of the purple-colored solution of

1,1-diphenyl-2-picrylhydrazylradical(DPPH)accordingtothemethod

ofDudonnéetal.(2009).

DPPHradicalshaveanabsorptionmaximumat515nm,which

disappearswithreductionbyanantioxidantcompound.ADPPH•

solutioninabsolutemethanol(60␮M)wasprepared,and3mLof

thissolutionweremixedwith0.1mLofpeelsextractdilutedin

distilledwater(dilutionswerebasedontheTPCinordertohave

100,200,300,400and500␮g/mL).Thesampleswereincubatedfor

20minat37◦Cinawaterbathand,then,thedecreaseinabsorbance

at515nmwasmeasured.

Theantioxidantcapacitywasexpressedaspercentageof

inhi-bitionofDPPHradical(%DPPHinhibition)calculatedaccordingto

thefollowingequation(Eq.(4)):

%DPPHinhibition=Abscontrol−Abssample

Abscontrol ×

100 (4)

whereAbscontrolistheabsorbanceofDPPHradical+distilledwater;

Abssample is the absorbance of DPPH radical+sample extract at

20min.Fromdataelaboration (%inhibition plotted versustotal

phenolsconcentration),theconcentrationofTPCrequiredtoreach

50%radicalinhibition(IC50)wascalculated.

2.4.3. Antioxidantactivityasironreducingpower

Thereducingpoweroftheextracts(CSEsamplesandMAEand

UAEsamplesobtainedunderoptimizedcondition)wasevaluated

asthecapacityofreducingFe3+toFe2+accordingtothemethod

ofShon(2003).Todeterminethereducingpower,four

concentra-tionsofpeelextract(50,100,150and200␮gGAE/mLobtained

dilutingwithdistilledwater)wereaddedseparatelyto2.5mLof

phosphatebuffer(0.2M,pH6.6)and2.5mLof1%potassium

fer-ricyanide.The mixturewasincubatedat50◦C for20min.After

thistime, thereactionwasterminatedbyadding 2.5mLof10%

trichloroaceticacidandthemixturewascentrifugedat650×gfor

10min.Thesupernatantwasmixedwith5mLofdistilledwater

and1mLof0.1%ferricchloride(FeCl3),andthenabsorbancewas

measuredat700nm.Highabsorbancevalueshowshighreducing

activity(Panetal.,2010).

2.4.4. Scanningelectronmicroscopy(SEM)analysis

ThepowderbeforeandafterextractionwasobservedunderSEM

(Quanta200,FEIcompany)formorphologicalcharacterization(Lou

etal.,2010).Foursamplesofpowders(untreatedandresiduesafter

(5)

werecollectedanddrieduntilconstantmassinovenat60◦Cbefore

SEManalysis.

Sampleparticleswerefixedonthespecificcarbonfilmsupport,

andtheirshape and surfacecharacterswere observedbyusing

GSEDdetectorwithenvironmentalmode(ESEM).

2.5. Statisticalanalysis

Eachextractiontrialand alltheanalyseswerecarriedoutin

triplicate and allthe data in this paper have been reportedas

means±S.D.InfluenceofeachfactorontheTPCyieldinthe

single-factor experiment for both the MAE and UAE was statistically

assessedbyANOVAandTukey’sposthoctestwith95%confidence

level.

DataobtainedfromtheBBDandCCRDtrialsfortheMAEand

UAE,respectively,werestatisticallyanalyzedusingANOVAforthe

responsevariableinordertotestthemodelsignificanceand

suit-ability.P<0.05 andP<0.01weretakenassignificantandhighly

significantlevel,respectively.

TheJMP (Version 7.0, SAS)and Design-Expert (Trialversion

8.0.7.1)softwarewereusedtoconstructtheBBDand CCRDand

toanalyzealltheresults.

3. Resultsanddiscussion

3.1. Microwaveassistedextraction

3.1.1. Single-factorexperiments

Table1showstheresultsofthesingle-factorexperiments

car-riedoutforpreliminaryoptimizationofMAE.

Atthebeginningofthis study,aneffectofsolventtype was

investigated. Theinvestigated solvents arethe mostcommonly

employedsolventsinphenolicextractionfrombotanicalmaterials

(Inglettetal.,2010;Spignoetal.,2007).Typeofsolvent

signifi-cantlyinfluencedtheTPCyield,withaqueousethanolbeingthe

bestoneandwater,acetoneandaqueousmethanolgiving

compa-rableresultswhichmaybeattributedtothedifferenceindielectric

propertiesofthesolvent.Waterhasthehighestdielectricconstant

(ε=80.4) and the lowest dissipation factor (tan=1570), hence,

therateatwhichwaterabsorbsmicrowaveenergyishigherthan

therateatwhich thesystemcandissipatetheheat,these

phe-nomenaaccountforthe“superheating”effectwhichoccurswhen

waterisused(Proestos andKomaitis,2008).Furthermore,since

theFolinassayusedtoquantifyTPCactuallymeasuresthe

reduc-ingpowerofthecompounds,theFolinresultsareinfluencedby

theoxidative status ofthe sample,therefore lowervalues may

suggestthatintenseheatinghascauseddegradationofthe

bioac-tivecompounds.However,mixturesofhighandlowmicrowave

absorbingsolventscanbeexploitedtoproduceoptimumresults.

Forthetestedaqueoussolvents,theethanol/watersystemhasthe

highestboilingpoint.Thisallowedcarryingoutextractionathigher

temperaturesresultinginimprovedextractionefficienciesdueto

increasedmasstransfercoefficients ofTPC andreduced surface

tensionandsolventviscositywhichimprovesamplewettingand

matrixpenetration.Thisisinagreementwithresultsreportedby

Panetal.(2003).Aqueousethanolwasthenselectedasthesolvent

fortheRSMtrialsandforthenextsingle-factortrials.

Inagreementwithotherliteratureresults(Spignoetal.,2007;

Pan et al., 2003), TPC yield increased with increasing ethanol

concentrationupto50%(v/v)andthendecreasedforhigher

con-centrations.ThemaximumTPCyieldwasobtainedwithethanol

50%(eventhoughstatisticallyequaltoethanol40%)whichwas

fixedforthenextsingle-factorexperiments,while,basedonthe

statisticalanalysis reportedin Table1,the concentrationrange

40–60%wasselectedfortheRSMtrials.

AlsoirradiationtimesignificantlyinfluencedtheTPCyield,with

120–150s as the best values, with apparentthermal

degrada-tionofphenoliccompoundsatlongerirradiationtimes(Proestos

andKomaitis,2008;Proestosetal.,2006).Basedontheseresults,

120swasselectedforthenextsingle-factortrials,whiletherange

90–150swasselectedfortheRSMtrials.

MicrowavepowersignificantlyinfluencedtheTPCyieldinthe

tested conditions (Table 1). However, the yield increased with

increasing microwave power from 300 to 400W and then it

remainedconstantorslightlydecreasedforhigherpowers(average

valuesat500and600Wwerestatisticallynotdifferentfromboth

valuesat300and400W).Itmustbeunderlinedthattheoperating

temperaturecouldnotberegulatedintheusedequipmentandthat

foraconstantsamplesizetemperatureincreaseswithmicrowave

power(SpignoandDeFaveri,2009).Sinceithasbeenreportedthat

themaineffectofmicrowaves,andinmanycasestheonly,isthe

heatingeffect(Kappeetal.,2013),theobtainedresultswere

prob-ablyduetoanenhancementofphenolsrecoveryduetoaheating

effect,withconsequentincreaseofmasstransferphenomena,upto

acertainmicrowavepowervalueand,then,tothermaldegradation

ofbioactivecompoundsathigherpowers.

Therange300–500WwasselectedfortheRSMstudy,whilethe

400Wpowerwasusedforthelastsingle-factortrials.

Thesolvent-to-solidratiosignificantlyinfluencedtheTPCyield,

showingthesametrendasreportedbySpignoandDeFaveri(2009).

Infact,inthepresentstudy,theratiowasincreasedkeeping

con-stantthesolidweight,therefore,thepositiveeffectofanincreased

volumeduetoalargerconcentrationgradienttodrivethemass

transfer,is,atacertainpoint,compensatedbyalowerheatingdue

toreducedmicrowavepenetrationinthesample.Furthermore,the

solventvolumemustbesufficienttoensurethattheentiresample

isimmersed,especiallywhenhavingasamplethatwillswell

dur-ingtheextractionprocess(EskilssonandBj ¨orklund,2000).Based

onstatisticalanalysis,therange20–30mL/gwasselectedforthe

RSMoptimization.

3.1.2. OptimizationbyRSM

TheTPCyieldsobtainedinthetrialsoftheBBDarereportedin

Table3,whileTable5reportsthestatisticalanalysisofthe

regres-sionmodel(Eq.(1)).Neglectingthenon-significantterms(P>0.01)

thefollowingpredictiveequationwasobtained:

Y =14.91−0.35X1−0.23X3+0.13X4+0.23X1X2+0.22X3X4

−0.72X120.6X220.97X32 (5)

Itcanbeseenthatirradiationtime(X2)didnotinfluencethe

extractionyieldbutitsinteractionwithethanoldidit.The

inter-actionpowerandsolvent-to-solidratiowashighlysignificantsuch

asthequadratictermsforethanol,timeandmicrowavepower.

Eq.(5)wasusedtoobtaintheresponsesurfacesforallthe

pos-siblevariablesinteractions(Fig.1),wheremaximalTPCyieldcould

beobtainedat optimal-valuesas combination oftwo variables,

withthethird and fourthvariables keptconstantat zerolevel.

Consequently,thequadraticexperimentalmodelhadastationary

point,andthepredictiveTPCyieldwasthemaximalvalueinthe

stationarypoint(Panetal.,2012).Confirming theresultsofthe

single-factortrials,theTPCyieldreachedamaximumlevelwhen

irradiationtime,ethanolconcentrationandextractionpowerwere

setatmediumlevels(0codedvalues),whilethesolvent-to-solid

ratioshowedaverylimitedinfluencewhichwasapparentlyin

con-trastwithsingle-factorexperiments.However,inthe20–30mL/g

solvent-to-solidratiorangeselectedfortheRSMoptimization,the

single-factorresultshadshownasignificantincreaseinTPCyield

fromthe20to25ratioand,then,asignificantreductionfromthe

(6)

Fig.1.ResponsesurfaceanalysisforthetotalphenolicyieldfromC.limonpeelswithmicrowaveassistedextractionwithrespecttoirradiationtimeandethanolpercentage (A);solvent-to-solidratioandethanolpercentage(B);microwavepowerandethanolpercentage(C);solvent-to-solidratioandmicrowavepower(D);solvent-to-solidratio andirradiationtime(E);microwavepowerandirradiationtime(F).

(7)

Table5

Analysisofmeansquaredeviationofthequadraticmodelterms(Eq.(1))appliedtotheexperimentalvaluesoftotalphenolicyieldsobtainedwithmicrowaveassisted extraction.df,degreesoffreedom.

Source Sumofsquares df F-value P-valueProb>F

Model 0.0550 14 39.7721 <0.0001 Significant X1–ethanol 0.0079 1 79.8241 <0.0001 X2–time 0.0001 1 2.0073 0.1820 X3–power 0.0034 1 34.0340 <0.0001 X4–ratio 0.0010 1 10.6458 0.0068 X1X2 0.0012 1 12.4428 0.0042 X1X3 0.0008 1 7.7829 0.0164 X1X4 2.0028E−05 1 0.2025 0.6607 X2X3 0.0002 1 2.1162 0.1714 X2X4 0.0003 1 3.1018 0.1036 X3X4 0.0009 1 9.5278 0.0094 X12 0.0153 1 154.6386 <0.0001 X22 0.0104 1 105.3051 <0.0001 X32 0.0271 1 274.5798 <0.0001 X42 0.0001 1 1.3568 0.2667 Residual 0.0012 12

Lackoffit 0.0012 10 20.2406 0.0580 Notsignificant

Pureerror 1.16E−05 2

Cortotal 0.0550 26

obtainedwiththe20ratio,whichcanexplainthelimitedinfluence

observedintheRSMstudy.Optimal conditionsresultedin

irra-diationtime120s,extractionpower400W,solvent-to-solidratio

28:1and48%ethanolconcentrationwithapredictedTPCyieldof

15.74mgGAE/g.MAEwascarriedoutattheseoptimalconditions

obtainingaTPCyieldof15.78±0.80mgGAE/g,veryclosetothe

valuepredictedbythemodel.

Results arein agreementwith otherliterature works which

underlined the influence of ethanol concentration, microwave

powerand irradiationtime on theextractionof phenolic

com-poundsfromvegetabletissues(Songetal.,2011;Sutivisedsaketal.,

2010).

3.2. Ultrasoundassistedextraction

3.2.1. Single-factorexperiments

Table2showstheresultsofthesingle-factorexperiments

car-riedoutforpreliminaryoptimizationofUAE.

Theeffectofethanolconcentrationwassignificantwitha

max-imumTPCyieldat50%ethanol/water.Thisisinagreementwith

Wangetal.(2008)andwiththeresultsobtainedwithMAE.

Theethanolconcentrationrangeof30–70%wasselectedforthe

RSMtrials,whilethe50%forthenextsingle-factortrials.

Withregardtoextractiontime,theTPCyieldincreased

signifi-cantlyupto10–15min.Resultsindicatedthatextractionofactive

compoundsfromthepeelsextractwereaccomplishedafter10min.

Overmuchsonicationtimewould increaseenergysupply which

is needed torelease thetarget compounds but can also

accel-eratedegradationof phenoliccompounds (Carreraet al.,2012).

Similarobservationswerereportedby Hossainetal. (2012)for

theoptimizationofUAEofantioxidantcompoundsfrom

marjo-ram(Origanummajorana).Sonicationtimerangeof5–15minwas

selectedfortheRSMtrials,whiletimeof10minwasusedforthe

nextsingle-factortrials.

Asitconcernstheradiationamplitude,TPCyieldwasconstantat

20and40%amplitudeand,then,increasedandremainedconstant

foramplitudebetween60and100%,asalsoreportedbyHossain

etal.(2012).Increasingradiationamplitudemayfavorthe

disrup-tionoftheplantcellwallduetocavitationphenomena,thereby

increasingthecontactsurfaceareabetweensolidandliquidphase,

enhancingsolventpenetrationintotheplantmaterialand

facili-tatingthereleaseofsolutes(Jermanetal.,2010;Maetal.,2009).

However,all reactions, including theformation of free radicals

which canbescavenged byphenoliccompounds (Jermanetal.,

2010),arepromotedwhenhighamplitudesareused(Stanisavljevi ´c

etal.,2009).

In this study, operating temperature during UAE was kept

constantatroomtemperature;thereforeanyheatingeffectwas

excluded.

A30–70%amplituderangewasselectedfortheRSMtrials,while

the60%wasusedforthelastsingle-factortrials.

Finally,theTPCyieldaugmentedsignificantlywiththeincrease

ofliquid/solidratioupto40mL/gwhichwas,then,fixedforthe

RSMtrials.

3.2.2. OptimizationbyRSM

TheTPCyieldsobtainedinthetrialsoftheCCRDarereportedin

Table4.

Regression coefficients and analysisof theregression model

are summarized inTable 6withindicationthat themodel had

adequatelyrepresentedtherealrelationshipbetweenthechosen

parameters(LiyanapathiranaandShahidi,2005).

Neglectingthenon-significantterms(P>0.01),thefinal

predic-tiveequationforUAEwas(Eq.(6)):

Y(TPC)=14.750.71X2+0.57X3+0.7X1X31.02X32 (6)

Toinvestigatetheinteractiveeffectsofoperationalparameters

anddetermineoptimallevelsofthevariables,three-dimensional

surface plots wereconstructedaccording toEq.(6) as for MAE

(Fig.2).Theplots showclearly thegreat effectof ethanol

con-centrationonTPCyield,asalsoobservedbyotherauthorswho

investigatedandoptimizedbyRSMtheUAEofphenolic

antiox-idants fromdifferent plantmaterials(Morelli and Prado,2012;

Rodriguesetal.,2008).

Summarizing,ethanolconcentrationandextractionamplitude

weretwocrucialfactorsinUAE,withsignificanteffectoftheir

cor-respondinglineartermsandalsoofthequadratictermforethanol

concentration.TimedidnotinfluencetheTPCyieldaslinearterm,

butitdidasinteractivefactorwithethanolconcentration.Thiswas

apparentlyincontrastwiththesingle-factorexperiments,

accord-ingtowhichtimewasaninfluentfactor.However,inthe5–15min

time range selectedfor theRSMoptimization,thesingle-factor

resultshadshownasignificantincreaseinTPCyieldonlyfrom5

to10min,whichcanexplainthelimitedinfluenceobservedinthe

(8)

Fig.2.ResponsesurfaceanalysisforthetotalphenolicyieldfromC.limonpeelswithultrasoundassistedextractionwithrespecttoultrasoundamplitudeandextraction time(A);ethanolpercentageandextractiontime(B);ethanolpercentageandultrasoundamplitude(C).

(9)

Table6

Analysisofmeansquaredeviationofthequadraticmodelterms(Eq.(1))appliedtotheexperimentalvaluesoftotalphenolicyieldsobtainedwithultrasoundassisted extraction.df,degreesoffreedom.

Source Sumofsquares df F-value P-valueProb>F

Model 24.7117 9 11.3956 0.0011 Significant X1–time 0.2792 1 1.1589 0.3131 X2–amplitude 6.2710 1 26.0264 0.0009 X3–ethanol 3.9580 1 16.4271 0.0037 X1X2 0.1081 1 0.4486 0.5218 X1X3 3.9340 1 16.4271 0.0037 X2X3 0.0946 1 0.3926 0.5484 X12 0.4289 1 1.7804 0.2188 X22 0.7978 1 3.3114 0.1063 X32 9.0160 1 37.4189 0.0003 Residual 1.9275 8

Lackoffit 1.2508 5 1.1090 0.4978 Notsignificant

Pureerror 0.6767 3

Cortotal 28.4531 18

FromthemodeltheoptimalconditionsofUAEwere:63.93%

ethanol concentration,15.05minat 77.79% amplituderadiation

withapredictedyieldof15.08mgGAE/g.UAEwascarriedoutunder

theseconditionsgivingarealrecoveryof15.22±0.88mgGAE/g

(notstatisticallydifferentfromtheMAEyield).

3.3. ComparisonbetweenMAE,UAEandCSE

Thetwoalternativeextractiontechnologies,MAEandUAE,were

comparedwitheachotherandwithCSEconsideringtheTPCyield

alongwiththeantioxidantactivityoftheextracts.Selectionofan

extractionmethodwouldmainlydependontheadvantagesand

disadvantagesoftheprocessessuchasextractionyield,complexity,

productioncost,environmentalfriendlinessand safety(Lietal.,

2010).

TheCSEgaveaTPCyieldof15.03±0.12mgGAE/gdwwhichwas

notstatisticallydifferentthanMAEandUAEyields.MAEshould

bepreferredbasedonthelowersolventconsumptionand

extrac-tiontime(SpignoandDeFaveri,2009;Lietal.,2011;Upadhyay

et al., 2012).However, in this study, operating temperature in

theUAEwaskeptconstantatroomtemperature,excludingany

heatingeffectwichmightpositevelyornegativelyinfluecethe

phe-nolsrecoverydependingontheappliedamplitude.Furthermore,a

punctualenergycostanalysisshouldberequiredtocomparethe

twotechniquesfromtheenergyconsumptionpointofview.

0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 % D P PH Inhibitio n µg GAE/mL

MAE UAE CSE

Fig.3.DPPHactivity(as%DPPHinhibition)asafunctionoftotalphenol concentra-tion(asgallicacidequivalents(GAE))ofmicrowaveassisted(MAE)andultrasound assisted(UAE)extracts(obtainedunderRSMoptimizedconditions)comparedto conventionalsolventCSEextract.Errorbarsindicate±S.D.

Fromthepointofviewofthequalityoftheextracts,theDPPH

test showed again MAE as the best technology(Fig.3)due to

thesignificantlylowerIC50(203.59±5.59␮gGAE/mL)thanUAE

(268.24±10.62␮gGAE/mL)whichwas,onitsturn,significantly

lowerthanCSE(298.82±8.60␮gGAE/mL).

AlsotheFRAPtestsshowedahigheractivityfortheMAEextract

(Fig.4).

TheloweractivityofUAEandCSEextractcouldberesultedfrom

extendedextractiontime,henceexposuretounfavorable

condi-tionssuchaslightandoxygen.Moreover,itiscommonlyknown

thatultrasonicationcouldinducefree radicalsformation within

theliquidmedium,thuscausingoxidationanddegradationofthe

activecompounds(Hayatetal.,2009).

SEMobservationoftheresidueafterMAE,UAEandCSE(Fig.5)

showedthat,incomparison withtheuntreatedsample, solvent

extractionproducedcellchangesinallsamples,althoughtheextent

ofdamagediffered(AspéandFernández,2011).

Itiswellknownthatultrasoundsdisruptplantcellsvia

cavi-tationphenomena(Kongetal.,2010),butUAEdidnotseriously

affectthesampleinthepresent studyifcompared toCSE.This

suggeststhatthedriedC.limonpeelsparticlesarehighlyresistant

toultrasound energy(Aspéand Fernández,2011).Onthe

oppo-site,microwaveheatingcausedahighercellulardamagehelping

therapidrelease ofsolutesintothesolventsandenhancingthe

well-knownmainheatingeffectofmicrowaves.

0 0.2 0.4 0.6 0.8 1 1.2 0 50 100 150 200 250 Absorbance at 7 00nm µg GAE/mL

MAE UAE CSE

Fig.4. Ironreducingpower(absorbanceat700nm)asafunctionoftotal phe-nolconcentration(asgallicacidequivalents(GAE))ofmicrowaveassisted(MAE) andultrasoundassisted(UAE)extracts(obtainedunderRSMoptimizedconditions) comparedtoconventionalsolvent(CSE)extract.Errorbarsindicate±S.D.

(10)

Fig.5.ScanningelectronmicroscopeimagesofC.limonpeelspowderbefore(A)andafterextractionbyconventionalsolventextraction(B),microwaveassistedextraction (C)andultrasoundassistedextraction(D).

4. Conclusions

Theresponsesurfacemethodologywassuccessfullyemployed

tooptimizetotalphenolicyieldfromdriedC.limonpeels,according

todifferentnon-conventionalsolventextractionprocesses(MAE

andUAE).Theappliedsecond-orderpolynomialmodelgavea

sat-isfactorydescriptionoftheexperimentaldatashowingthatthe

TPCyieldwasmostaffectedbyethanolconcentration,extraction

powerandliquid–solidratioforMAE,and bysonication

ampli-tudeandethanolconcentrationforUAE.TheproposedMAEmethod

appearedtobebetterthanbothUAEandCSEallowingforhigher

recovery yield and specific antioxidant activity with a shorter

workingtimeandalowersolventconsumption.SEMobservation

suggestedthattheseresultswereduetomoreintensetissue

degra-dationundermicrowaveirradiation.

References

Artés-Hernández,F.,Rivera-Cabrera,F.,Kader,A.A.,2007.Qualityretentionand potentialshelf-lifeoffresh-cutlemonsasaffectedbycuttypeandtemperature. PostharvestBiol.Technol.43,245–254.

Aspé,E.,Fernández,K.,2011.Theeffectofdifferentextractiontechniqueson extrac-tionyield,totalphenolic,andanti-radicalcapacityofextractsfromPinusradiata Bark.Ind.CropsProd.34,838–844.

Aybaster,Ö.,Is¸ik,E.,S¸ahin,S.,Demir,C.,2013.Optimizationofultrasonic-assisted extractionofantioxidantcompoundsfromblackberryleavesusingresponse surfacemethodology.Ind.CropsProd.44,558–565.

Carrera,C.,Ruiz-Rodríguez,C.,Palma,M.,Barroso,C.G.,2012.Ultrasoundassisted extractionofphenoliccompoundsfromgrapes.Anal.Chim.Acta32,100–104.

Dudonné,S.,Vitrac,X.,Coutière,P.,Mérillon,M.,Woillez,J.M.,2009.Comparative studyofantioxidantpropertiesandtotalphenoliccontentof30Plantextracts ofindustrialinterestusingDPPH,ABTS,FRAP,SOD,andORACassays.J.Agric. FoodChem.57,1768–1774.

Dugo,G.,DiGiacomo,A.,2002.Citrus–TheGenusCitrus(MedicinalAndAromatic Plants–IndustrialProfiles).CRCTaylor&Francis,London.

Eskilsson,C.S.,Bj ¨orklund,E.,2000.Analytical-scalemicrowave-assistedextraction. J.Chromatogr.A902,227–250.

Garofuli ´c,I.E.,Dragovi ´c-Uzelac,V.,Jambrak,A.R.,Juki ´c,M.,2013.Theeffectof microwaveassistedextractionontheisolationofanthocyaninsandphenolic acidsfromsourcherryMarasca(Prunuscerasusvar.Marasca).J.FoodEng.117, 437–442.

González-Molina,E.,Dominguez-Perles,R.,Moreno,D.A.,Garcia-Viguera,C.,2010.

NaturalbioactivecompoundsofCitruslimonforfoodandhealth.J.Pharm. Biomed.51,327–345.

Han,C.,Liu,C.,Zhou,Y.,Xia,X.,Zhu,Z.,Lei,X.,Shen,Y.,2011.Microwave-assisted extractionanddeterminationofcyanuricacidresidueininfantformula sam-plesbyliquidchromatography–tandemmassspectrometry.FoodChem.127, 875–879.

Hayat,K.,Hussain,S.,Abbas,S.,Farooq,U.,Ding,B.,Xia,S.,Jia,C.,Zhang,X.,Xia, W.,2009.Optimizedmicrowave-assistedextractionofphenolicacidsfrom cit-rusmandarinpeelsandevaluationofantioxidantactivityinvitro.Sep.Purif. Technol.70,63–70.

Hayat,K.,Zhang,X.,Chen,H.,Xia,S.,Jia,C.,Zhong,F.,2010.Liberationandseparation ofphenoliccompoundsfromcitrusmandarinpeelsbymicrowaveheatingand itseffectonantioxidantactivity.Sep.Purif.Technol.73,371–376.

(11)

Herrera,M.C.,deCastro,M.D.,2005.Ultrasound-assistedextractionofphenolic compoundsfromstrawberriespriortoliquidchromatographicseparationand photodiodearrayultravioletdetection.J.Chromatogr.A1100,1–7.

Hossain,M.B.,Brunton,N.P.,Patras,A.,Tiwari,B.,O’Donnell,C.P.,Martin-Diana,A.B., Barry-Ryan,C.,2012.Optimizationofultrasoundassistedextractionof antioxi-dantcompoundsfrommarjoram(OriganummajoranaL.)usingresponsesurface methodology.Ultrason.Sonochem.19,582–590.

Inglett,G.E.,Rose,D.J.,Chen,D.,Stevenson,D.G.,Biswas,A.,2010.Phenolic con-tentandantioxidantactivityofextractsfromwholebuckwheat(Fagopyrum esculentumMöench)withorwithoutmicrowaveirradiation.FoodChem.119, 1216–1219.

Jaramillo-Flores,M.E.,González-Cruz,L.,Cornejo-Mazón,M.,Dorantes-Alvarez,L., Gutiérrez-López,G.F.,Hernández-Sánchez,H.,2003.Effectofthermaltreatment ontheantioxidantactivityandcontentofcarotenoidsandphenoliccompounds ofcactuspearcladodes(Opuntiaficus-indica).FoodSci.Technol.Int.9,271–278.

Jerman,T.,Trebˇse,P.,MozetiˇcVodopivec,B.,2010.Ultrasound-assistedsolidliquid extraction(USLE)ofolivefruit(Oleaeuropaea)phenoliccompounds.FoodChem. 123,175–182.

Kappe,C.O.,Pieber,B.,Dallinger,D.,2013.Microwaveeffectsinorganicsynthesis: mythorreality?Angew.Chem.Int.Ed.52,1088–1094.

Kong,Y.,Zu,Y.G.,Fu,Y.J.,Liu,W.,Chang,F.R.,Li,J.,Chen,Y.H.,Zhang,S.,Gu,C.B., 2010.Optimizationofmicrowave-assistedextractionofcajaninstilbeneacidand pinostrobinfrompigeonpealeavesfollowedbyRP-HPLC-DADdetermination.J. FoodCompos.Anal.23,382–388.

Liazid,A.,Palma,M.,Brigui,J.,Barroso,C.G.,2007.Investigationonphenolic com-poundsstabilityduringmicrowave-assistedextraction.J.Chromatogr.A1140, 29–34.

Li,H.,Deng,Z.,Wu,T.,Liu,R.,Loewen,S.,Tsao,R.,2011.Microwave-assisted extrac-tionofphenolicswithmaximalantioxidantactivitiesintomatoes.FoodChem. 130,928–936.

Li,J.,Zu,Y.G.,Fu,Y.J.,Yang,Y.C.,Li,S.M.,Li,Z.N.,Wink,Z.N.,2010.Optimizationof microwave-assistedextractionoftriterpenesaponinsfromdefattedresidueof yellowhorn(XanthocerassorbifoliaBunge.)kernelandevaluationofits antioxi-dantactivity.Innov.FoodSci.Emerg.11,637–643.

Liyanapathirana,C.,Shahidi,F.,2005.Optimizationofextractionofphenolic com-poundsfromwheatusingresponsesurfacemethodology.FoodChem.93,47–56.

Lou,Z.,Wang,H.,Zhu,S.,Zhang,M.,Gao,Y.,Ma,C.,Wang,Z.,2010.Improved extrac-tionandidentificationbyultraperformanceliquidchromatographytandem massspectrometryofphenoliccompoundsinburdockleaves.J.Chromatogr. A1217,2441–2446.

Ma,Y.Q.,Chen,J.C.,Liu,D.H.,Ye,X.Q.,2009.Simultaneousextractionofphenolic compoundsofcitruspeelextracts:effectofultrasound.Ultrason.Sonochem. 16,57–62.

Morelli,L.L.,Prado,M.A.,2012.Extractionoptimizationforantioxidantphenolic compoundsinredgrapejamusingultrasoundwitharesponsesurface method-ology.Ultrason.Sonochem.19,1144–1149.

Mu ˜niz-Márquez, D.B.,Martínez-Ávila, G.C.,Wong-Paz,J.E., Belmares-Cerda,R., Rodríguez-Herrera,R.,Aguilar,C.N.,2013.Ultrasound-assistedextractionof phenoliccompoundsfromLaurusnobilisL.andtheirantioxidantactivity. Ultra-son.Sonochem.20,1149–1154.

Oshaghi,M.,Ghalandari,R.,Vatandoost,H.,Shayeghi,M.,Kamali-nejad,M., Tourabi-Khaledi,H.,Abolhassani,M.,Hashemzadeh,M.,2003.Repellenteffectofextracts andessentialoilsofCitruslimon(Rutaceae)andMelissaofficinalis(Labiatae) againstmainmalariavector,Anophelesstephensi(Diptera:Culicidae).Iran.J. PublicHealth32,47–52.

Pan,G.,Yu,G.,Zhu,C.,Qiao,J.,2012.Optimizationofultrasound-assisted extrac-tion(UAE)offlavonoidscompounds(FC)fromhawthornseed(HS).Ultrason. Sonochem.19,486–490.

Pan,P.,He,C.,Wang,H.,Ji,X.,Wang,K.,Liu,P.,2010. Antioxidantactivityof microwave-assistedextractofBuddleiaofficinalisanditsmajoractive compo-nent.FoodChem.121,497–502.

Pan,X.,Niu,G.,Liu,H.,2003.Microwave-assistedextractionofteapolyphenolsand teacaffeinefromgreentealeaves.Chem.Eng.Process.42,129–133.

Proestos,C.,Komaitis,M.,2008.Applicationofmicrowave-assistedextractionto thefastextractionofplantphenoliccompounds.LWT–FoodSci.Technol.41, 652–659.

Proestos,C.,Sereli,D.,Komaitis,M.,2006.Determinationofphenoliccompoundsin aromaticplantsbyRP-HPLCandGC–MS.FoodChem.95,44–52.

Rodrigues,S.,Pinto,G.A.,Fernandes,F.A.,2008.Optimizationofultrasound extrac-tionofphenoliccompoundsfromcoconut(Cocosnucifera)shellpowderby responsesurfacemethodology.Ultrason.Sonochem.15,95–100.

Shon, M., 2003. Antioxidants and free radical scavenging activity of Phelli-nusbaumii(Phellinus ofHymenochaetaceae)extracts.Food Chem.82,593– 597.

Singh,A.,Sabally,K.,Kubow,S.,Donnelly,D.J.,Gariepy,Y.,Orsat,V.,Raghavan,G.J.S., 2011.Microwave-assistedextractionofphenolicantioxidantsfrompotatopeels. Molecules16,2218–2232.

Song,J.,Li,D.,Liu,C.,Zhang,Y.,2011.Optimizedmicrowave-assistedextractionof totalphenolics(TP)fromIpomoeabatatasleavesanditsantioxidantactivity. Innov.FoodSci.Emerg.12,282–287.

Spigno,G.,Tramelli,L.,DeFaveri,D.M.,2007.Effectsofextractiontime,temperature andsolventonconcentrationandantioxidantactivityofgrapemarcphenolics. J.FoodEng.81,200–208.

Spigno,G.,DeFaveri,D.M.,2009.Microwave-assistedextractionofteaphenols:a phenomenologicalstudy.J.FoodEng.93,210–217.

Stanisavljevi ´c,I.T.,Veliˇckovi ´c,D.T.,Todorovi ´c,Z.B.,Lazi ´c,M.L.,Veljkovi ´c,V.B.,2009.

Comparisonoftechniquesfortheextractionoftobaccoseedoil.Eur.J.LipidSci. Technol.111,513–518.

Sutivisedsak,N.,Cheng,H.N.,Willett,J.L.,Lesch,W.C.,Tangsrud,R.R.,Biswas,A., 2010.Microwave-assistedextractionofphenolicsfrombean(Phaseolusvulgaris L.).FoodRes.Int.43,516–519.

Upadhyay,R.,Ramalakshmi,K.,JaganMohanRao,L.,2012.Microwave-assisted extractionofchlorogenicacidsfrom greencoffeebeans.Food Chem.130, 184–188.

Vázquez,G.,Fernández-Agulló,A.,Gómez-Castro,C.,Freire,M.S.,Antorrena,G., González-Álvarez, J., 2012. Response surface optimization of antioxidants extractionfromchestnut(Castaneasativa)bur.Ind.CropsProd.35,126–134.

Wang,J.,Sun,B.,Cao,Y.,Tian,Y.,Li,X.,2008.Optimisationofultrasound-assisted extractionofphenoliccompoundsfromwheatbran.FoodChem.106,804–810.

Wu,Z.,Li,H.,Tu,Y.,Zhan,Y.,2013.Extractionoptimization,preliminary character-ization,andinvitroantioxidantactivitiesofcrudepolysaccharidesfromfinger citron.Ind.CropsProd.44,145–151.

Xia, Q.E., Ai,X.X., Zang,S.Y., Guan, T.T.,Xu, X.R., Li, R.B., 2011. Ultrasound-assistedextractionofphillyrinfromForsythiasuspensa.Ultrason.Sonochem.18, 549–552.

Yang,Z.,Zhai,W.,2010.Optimizationofmicrowave-assistedextractionof antho-cyaninsfrompurplecorn(ZeamaysL.)cobandidentificationwithHPLC–MS. Innov.FoodSci.Emerg.11,470–476.

Zhang,B.,Yang,R.,Liu,C.Z.,2008.Microwave-assistedextractionofchlorogenicacid fromflowerbudsofLonicerajaponicaThunb.Sep.Purif.Technol.62,480–483.

Figure

Fig. 1. Response surface analysis for the total phenolic yield from C. limon peels with microwave assisted extraction with respect to irradiation time and ethanol percentage (A); solvent-to-solid ratio and ethanol percentage (B); microwave power and ethano
Fig. 2. Response surface analysis for the total phenolic yield from C. limon peels with ultrasound assisted extraction with respect to ultrasound amplitude and extraction time (A); ethanol percentage and extraction time (B); ethanol percentage and ultrasou
Fig. 3. DPPH activity (as % DPPH inhibition) as a function of total phenol concentra- concentra-tion (as gallic acid equivalents (GAE)) of microwave assisted (MAE) and ultrasound assisted (UAE) extracts (obtained under RSM optimized conditions) compared to
Fig. 5. Scanning electron microscope images of C. limon peels powder before (A) and after extraction by conventional solvent extraction (B), microwave assisted extraction (C) and ultrasound assisted extraction (D).

Références

Documents relatifs

( 2.11.1 ﺔﻴﺳﺎﺳﻷا ةرﺎﻬﻤﻟا مﻮﻬﻔﻣ : رﺎﻃإ ﰲ ﲔﻌﻣ ضﺮﻐﺑ يدﺆﺗ ﱵﻟا ﺔﻓدﺎﳍا ﺔﻳروﺮﻀﻟا تﺎﻛﺮﳊا ﻞﻛ مﺪﻘﻟا ةﺮﻛ ﰲ ﲏﻌﺗ ﺎوﺪﺑ وأ ةﺮﻜﻟﺎﺑ تﺎﻛﺮﳊا ﻩﺬﻫ ﺖﻧﺎﻛ ءاﻮﺳ٬ مﺪﻘﻟا

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This shows that in open systems like random lasers investigated here, the conven- tional description of lasing modes in terms of quasimodes of the passive cavity is limited to values

ضﱰﻔﺗ نأ ﻊﻤﺘ ا ﺑ ﲏﻌﻳو ،تﺎﺴﺳﺆﳌا ﻞﻳوﺪﺗ ﺔﻴﻠﻤﻋ ﰲ ﲑﺒﻛ ﻞﻜﺸﺑ ﺮﺛﻮﻳ ﺔﺴﺳﺆﳌا ﻪﺑ ﺶﻴﻌﺗ يﺪﻟا ﻊﻤﺘ ﺎ عﻮﻤﳎ ﺎﻨﻫ ،ﺎﻣ دﺎﺼﺘﻗﻻ ﺔﻧﻮﻜﳌا تﺎﺴﺳﺆﳌا تﺎﻌﻤﺘ او ﻊﺳاو قﺎﻄﻧ ﻰﻠﻋ ﻦﻜﳝ ﺎ أ ﻰﻠﻋ ﻒﻨﺼﺗ

8 :لولأا لصفلا ةٌمحملا هقوقحب هعتمتو ةقاعلإا وذ صخشلا موهفم ديشي يمخادلاو يلودلا ىوتسملا ىمع ايعيرشتو اييقف لادجو افلبتخا ةقاعلإا يذ صخشلا ؼيرعت

Chaque groupe d’âge à une distance précise à réaliser dans un même style de nage tout en respectant l’intensité de nage et le repos entre les deux (02) répétitions..

Comparison of a set of assembled transcriptomes of nymphoid neotenic reproductives was per- formed from 13 colonies belonging to 3 related termite species based on high

Host plant range of a fruit fly community (Diptera: Tephritidae): does fruit composition influence larval performance?...