• Aucun résultat trouvé

ON THE GROWTH FROM THE AMORPHOUS PHASE IN SEMICONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE GROWTH FROM THE AMORPHOUS PHASE IN SEMICONDUCTORS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00223112

https://hal.archives-ouvertes.fr/jpa-00223112

Submitted on 1 Jan 1983

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE GROWTH FROM THE AMORPHOUS PHASE IN SEMICONDUCTORS

J. Bourgoin, R. Asomoza

To cite this version:

J. Bourgoin, R. Asomoza. ON THE GROWTH FROM THE AMORPHOUS PHASE IN SEMICONDUCTORS. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-175-C5-177.

�10.1051/jphyscol:1983527�. �jpa-00223112�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6rnent au nOIO, Tome 44, octobre 1983 page C5-175

ON THE GROWTH FROM THE AMORPHOUS PHASE IN SEMICONDUCTORS

J . C . Bourgoin* and R. Asomoza

Centro de Investigaeion y de Estudios Avanzados deZ I.P.N., Departamento de Ingeneria Ezectrica, Apartado Postaz 14-740, 07000 Mexico D.F., Mexico

Resume

-

On developpe un modPle de croissance d'une phase ordonnee base sur l a c l i f f u s i o n des lacunes thermiques produi t e s t 1 'i n t e r f a c e avec 1 'amorphe.

I1 fournit pour Ge e t Si l a dependance exacte du taux de croissance pour l e s couches evaporees e t l e s couches implantees avec l a temperature, l ' e t a t de l ' o r i e n t a t i o n c r i s t a l l i n , l e dopage, l ' i o n i s a t i o n e t l a nature des ions implantes.

Abstract

-

A model of growth based on the diffusion of thermally generated vacancies t o the i n t e r f a c e i s developed which provides the exact dependence of the growth r a t e with temperature, crystal l i n e o r i e n t a t i o n , doping, ionisation and nature of implanted ions i n evaporated as well as implanted layers, f o r both Ge and S i .

I

-

Introduction

The aim of t h i s communication i s t o show t h a t t h e growth, being an i n t r i n s i c property of the material, i s related t o i t s fundamental c h a r a c t e r i s t i c s . Basically, we shall demonstrate t h a t t h e growth i s r e l a t e d t o self-diffusion and quenching phenomena i n c r y s t a l s which a r e d i r e c t l y connected t o the formation energy of the i n t r i n s i c defect present a t thermal equilibrium. This allows us t o j u s t i f y quantita- t i v e l y the variation of the growth r a t e with the temperature, the c r y s t a l l i n e orientation and various other parameters such as doping, ionization and l a s e r i r r a d i a t i o n . In turn, t h i s provides a proof t h a t the thermally induced defects i n semiconductors a r e vacancies and explains how self-diffusion and quenching data are related (1). Finally, we shall see how t h e difference of growth behaviour between evaporated and implanted layers necessarily implies ( 2 ) t h a t implanted layers a r e not amorphous b u t disordered ( i . e . contain vacancy c l u s t e r s ) .

I1

-

The growth in semiconductors

Due t o i t s potential i n t e r e s t s , the growth of semiconductors from the s o l i d (amorphous) phase has been extensively studied ( f o r a compilation of the references see r e f . 2 ) . However, the way atomic rearrangement i s induced a t the c r y s t a l l i n e - amorphous i n t e r f a c e has n o t been determined and the activation energy Q associated w i t h the growth r a t e Vg has not been j u s t i f i e d . Moreover, the discrepancy between the growth behaviour (see Table 1 ) i n evaporated and implanted layers ( a variation of Q by a f a c t o r of .L 2 in both Ge and S i ) has not been explained,

In the next section, we describe a model which j u s t i f i e s quantitatively these activation energies and t h e i r difference i n evaporated and implanted layers, f o r both S i and Ge. Then, i n section IV, we b r i e f l y discuss how such model provides the exact dependence o f Vg with the c r y s t a l l i n e orientation and explains the variation of V with the nature and concentration of the doping (as well as with ionization and Yaser i r r a d i a t i o n ) , and with the nature of the implanted ions.

*Permanent a d d r e s s : Groupe d e Physique d e s s o l i d e s d e l f E . N . S . , U n i v e r S i t 6 P a r i s V I I , Tour 2 3 , 2 p l a c e J u s s i e u , 75251 P a r i s Cedex 05, F r a n c e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983527

(3)

JOURNAL DE PHYSIQUE

Table I

A c t i v a t i o n energies Q ( e V ) associated w i t h t h e growth r a t e i n Ge and S i evaporated (QE) and implanted (QI) l a y e r s and comparison o f these energies w i t h a c t i v a t i o n energies associated w i t h s e l f - d i f f u - s i o n (QSD) and quenching (QQ). A c o m p i l a t i o n o f t h e references can

be found i n r e f . 2 f o r QE and QI and i n r e f . 3 f o r QSD and QQ.

I11

-

Model o f growth

Examination o f Tab1 e I shows t h a t , w i t h i n experimental accuracy, t h e a c t i v a t i o n energies QE associated w i t h V i n evaporated l a y e r s , f o r b o t h Ge and S i , i s equal t o the a c t i v a t i o n energy associafed w i t h s e l f - d i f f u s i o n . Therefore, s e l f - d i f f u s i o n i s t h e l i m i t i n g process o f the growth : growth occurs when vacancies c r e a t e d t h e r m a l l y m i g r a t e t o t h e i n t e r f a c e , thus a l l o w i n g t h e jump o f an atom from t h e amorphous t o

the c r y s t a l l i n e phase. The growth r a t e Vg i s then p r o p o r t i o n a l t o t h e p r o b a b i l i t y t o form a vacancy times t h e Boltzman f a c t o r associated w i t h t h e m i g r a t i o n :

- -

where 6 , V, E and EF are r e s p e c t i v e l y t h e i n t e r a t o m i c distance, t h e atomic v i b r a t i o n - a l frequency,?he m i g r a t i o n and f o r m a t i o n o f t h e vacancy ( 4 ) . Since EF + Em = QSD, we have : QE = QSD. Such model f i t s the v a r i a t i o n o f V versus temperature u s i n g

reasonable entropy f a c t o r s (2). g

What about t h e growth i n implanted l a y e r s ? An implanted l a y e r , o r i g i n a l l y c r y s t a l l i n e o r even amorphous, contains n e c e s s a r i l y vacancy c l u s t e r s formed f o l l o w i n g t h e cascade o f displacements produced by t h e implanted i o n s . I n t h a t case, vacancies o r i g i n a t e from these c l u s t e r s because, as shown i n r e f . 1, t h e f o r m a t i o n energy o f a vacancy o r i g l ' n a t i n g from a c l u s t e r surface i s s m a l l e r : 0.5 E

.

Thus, t h e a c t i v a t i o n energy associated w i t h the growth o f implanted l a y e r i s Q1 = 6.5 QE s i n c e Em i s v e r y small compared t o EF (vacancies m i g r a t e w e l l below room temperature). T h i s s i t u a t i o n i s s i m i l a r t o t h e s ~ t u a t i o n encountered i n a quench : c o o l i n g induces t h e sursatura- t i o n o f vacancies and r e s u l t s i n vacancy c l u s t e r s ; indeed, as shown i n Table I : QI = QQ, t h e a c t i v a t i o n energy associated w i t h quenching.

Thus, t h e model j u s t i f i e s q u a n t i t a t i v e l y Q and QE f o r b o t h Ge and Si; t h e d i f f e r e n c e between QI and QE i s a r e s u l t from t i e f a c t t h a t implanted l a y e r s c o n t a i n vacancy c l u s t e r s , i . e . i's, d ~ s o r d e r e d and n o t amorphous.

I Y

-

Consequences

The model i s a b l e t o do more than t o p r o v i d e the exact values o f Q and QI i n b o t h Ge and S i

.

As i t i s developed elsewhere, i t accounts f o r t h e depen$ence o f V w i t h t h e v a r i o u s parameters so f a r s t u d i e d ( a c o m p i l a t i o n o f the corresponding references i s i n r e f . 2), thus p r o v i d i n g several o t h e r p r o o f s o f i t s v a l i d i t y .

(4)

IV.1

-

orie3t_atio!-depex?dence

According t o the model, V i s proportional t o t h e distance s between growth planes and inversely proportiona? t o the density of atoms in these planes. The calculation (2) provides the exact experimental variation of V with the c r y s t a l l i n e orientation. Only, f o r orientation close t o t h e (111) d i r e c t i o j , i s t h e calculated r a t e larger than the experimental one. This i s not surprising since, f o r such orien- t a t i o n , the i n t e r f a c e i s perturbed by the easy reconstruction between (111) dangling bonds.

Iv.2

- Oeee!de_nc_~ -on_-the_-!a_t_urs-of - the-Ime1a_!t_ei-io!!s

Because migrating vacancies can be trapped by impurities (such as 0 t o form A centers) or voids (formed by implanted r a r e gases), i t i s not surprising t h a t oxygen andotherimpurities, a s well a s r a r e gases, decrease the r a t e of growth.

IV.3

-

Dopj!g-dependence

Self-diffusion i s dependent on t h e nature and concentration of the dopant because the migration energy of the vacancy varies strongly with i t s charge s t a t e , function of the Fermi level position. The growth r a t e varies accordingly. This explains q u i t e readily the enhancement of Vg under ionization, such as the ones produced by electron o r l a s e r i r r a d i a t i o n ( i n t h i s l a s t case i t i s not possible t o predict quantitatively the variation of V g because the increase of temperature i s not well known).

V

-

Conclusion

In conclusion, we have demonstrated t h a t the growth i n semiconductors i s induced by thermally generated vacancies. This simple model provides the exact values of t h e activation energies associated with the growth r a t e Vg i n both Ge and S i , f o r both evaporated and implanted layers and i s i n complete agreement with s e l f - diffusion and quenching data. I t explains the c r y s t a l l i n e orientation dependence of V i t s variation with doping, ionization and nature of the implanted ions. Finally, i?'shows t h a t implanted layers a r e not amorphous but contain vacancy c l u s t e r s .

References

1. BOURGOIN J.C., unpublished.

2. BOURGOIN J.C. and ASOMOZA R, t o be published in Phys. Rev. Letters.

3. LANNOO M. and BOURGOIN J.C., Point Defects i n Semiconductors, I

-

Theoretical Aspects (Springer, Berlin, 1981) chaps. 6 and 7.

4. I t i s shown i n r e f . 1 t h a t vacancies a r e the thermally generated defects because self-diffusion and quenching data cannot be reconciled i f the defects a r e i n t e r s t i t i a l s .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to