• Aucun résultat trouvé

CHEMOMECHANICAL EFFECTS IN ZnO

N/A
N/A
Protected

Academic year: 2021

Partager "CHEMOMECHANICAL EFFECTS IN ZnO"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00219051

https://hal.archives-ouvertes.fr/jpa-00219051

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHEMOMECHANICAL EFFECTS IN ZnO

J. Ahearn, J. Mills, A. Westwood

To cite this version:

J. Ahearn, J. Mills, A. Westwood. CHEMOMECHANICAL EFFECTS IN ZnO. Journal de Physique

Colloques, 1979, 40 (C6), pp.C6-173-C6-176. �10.1051/jphyscol:1979635�. �jpa-00219051�

(2)

JOURNAL DE PHYSIQUE CoZZoque C6, suppZ6ment au n06, tome 40, juin 2979, page C6-273

J.S. Ahearn, J. J. M i l l s , and A. R. C. Westwood

Martin Marietta Laboratories, Baltimore, Mary Zand, U. S. A.

Resume.- Un t r a v a i l a n t e r i e u r a montre que des m i l i e u x a s u r f a c e a c t i v e , pouvaient i n f l u e n c e r l a dure- t G de s o l i d e s non-metalliques t e l s que l e c h l o r u r e dlargent, 1 'o x i d e de magnesium, I 'alumine, l e q u a r t z e t l e s verres Na,O-CaO. Un maximum de durete a p p a r a i t specifiquement, quand l e ~ o t e n t i e l de ces s o l i d e s e s t n u l . On a a t t r i b u e a c e t t e " c o r r @ l a t i o n - c " , l a s i g n i f i c a t i o n que l a charge de l a sur- face p o u v a i t i n f l u e n c e r de faqon importance l a durete. A f i n d'examiner directement c e t t e o o s s i b i l i t e , on a donc mesure, dans une c e l l u l e e l e c t r o l y t i q u e , l a micro durete e t l a t a i l l e des rosaces de d i s l o - c a t i o n s u r l e s surfaces (0001) e t {1010} de l ' o x y d e de z i n c , en f o n c t i o n du p o t e n t i e l applique du pH de 1 ' e l e c t r o l y t e e t du temps, chacun de ces f a c t e u r s m o d i f i a n t 1 ' 6 t a t de surface. Les r e s u l t a t s i n d i - quent qu'un maximum de durete apparait, pour l e s deux surfaces d'oxyde de zinc, non oas quand l a char- ge de l a surface e s t n u l l e (comme on s ' y a t t e n d a i t ) mais p l u t d t quand e l l e e s t legerement o o s i t i v e (courbure de l a bande vers l e bas). Comme l e s i n t e r ~ r e t a t i o n s a n t e r i e u r e s de l a cause de l a " c o r r e l a - t i o n - ~ " apparaissent maintenant inappropriees pour ZnO, on propose un a u t r e mecanisme m e t t a n t en j e u un @change de charges au voisinage des d i s l o c a t i o n s en mouvement, e n t r e l e s niveaux donneurs e t l a bande de conduction.

Abstract.- Past work has shown t h a t s u r f a c e - a c t i v e environments can i n f l u e n c e t h e hardness o f such non- metal1 i c s o l i d s as s i l v e r c h l o r i d e , magnesium oxide, alumina, quartz, and soda-1 ime glass. S o e c i f i c a l - 1 y , a maximum i n hardness occurs when t h e 5-potenti a1 o f these s o l i d s i s zero. T h i s " q - c o r r e l a t i o n "

has been taken t o i m p l y t h a t s u r f a c e charge can markedly i n f l u e n c e hardness. To examine t h i s ~ o s s i b i - l i t y d i r e c t l y , t h e r e f o r e , t h e microhardness and s i z e o f d i s l o c a t i o n r o s e t t e s on the (0001) and {10101 surfaces on ZnO were measured as a f u n c t i o n o f a p ~ l i e d ~ o t e n t i a l , e l e c t r o l y t e oH, and time i n an elec- t r o l y t i c c e l l -- a l l o f which a l t e r surface charge. The r e s u l t s i n d i c a t e t h a t , f o r b o t h ZnO surfaces, a maximum i n hardness i s produced n o t when t h e surface charge i s zero -- as e x ~ e c t e d -- b u t r a t h e r when t h e surface i s s l i g h t l y p o s i t i v e l y charged (downward band bending). Since e a r l i e r i n t e r p r e t a t i o n s o f t h e cause o f the "5- c o r r e l a t i o n " now appear t o be i n a p p r o p r i a t e f o r ZnO, an a l t e r n a t i v e mechanism i n v o l v i n g charge exchange between donor l e v e l s and t h e conduction band near moving d i s l o c a t i o n s i s suggested.

1. I n t r o d u c t i o n and approach.- The occurrence o f a maximum i n hardness a t zero c p o t e n t i a l has been de- monstrated f o r a number o f non-metall i c m a t e r i a l s , i n c l u d i n g AgCl /I/, YgO /2/, AI203/3/, q u a r t z /4-5/, soda-lime glass /6-lo/, and S i /11/. However, though several suggestions /4/ have been offered t o e x p l a i n t h i s " < - c o r r e l a t i o n u , no d e t a i l e d understanding has y e t been achieved. One f e a t u r e common t o r e c e n t sug- gestions i s t h a t s u r f a c e - a c t i v e species adsorbed from d i l u t e e l e c t r o l y t e s a f f e c t t h e charge of t h e s o l i d surface, which i s revealed by changes i n t h e 5 p o t e n t i a l . T h i s a l t e r a t i o n o f surface charge a, then, e i t h e r a f f e c t s t h e charge on p o i n t d e f e c t s o r d i s l o c a t i o n s , o r changes t h e P e i e r l s s t r e s s . Since these f a c t o r s i n f l u e n c e d i s l o c a t i o n behavior, near- surface d i s l o c a t i o n m o b i l i t y i s a l t e r e d /2/.

To examine t h e v a l i d i t y of t h i s b a s i c concept we have r e c e n t l y examined t h e v a r i a t i o n o f hardness, H, w i t h a f o r t h e model m a t e r i a l , ZnO, f o r which t h e r e 1 a t i o n s l i i p s between o and near-surface e l e c t r o n i c band s t r u c t u r e a r e reasonably w e l l understood /12/.

I n t h i s c o n t r i b u t i o n , we summarize t h e r e s u l t s of

t h i s work.

To c o n t r o l a, t h e t e s t c r y s t a l was made a wor- k i n g e l e c t r o d e i n an e l e c t r o l y t i c c e l l , and t h e ap- p l i e d p o t e n t i a l v a r i e d a p p r o p r i a t e l y . For ZnO i n con- c e n t r a t e d e l e c t r o l y t e s , t h e e l e c t r i c a l p i c t u r e i s as -

f o l l o w s /13/ : Under s u f f i c i e n t anodic b i a s , t h e charge i s n e g a t i v e a t t h e surface, t h e bands bend up and t h e space charge r e g i o n i s depleted. The sur- face charge may be increased t o zero and then made p o s i t i v e by a p p l y i n g l e s s anodic bias. Thus, band bending i s control'led by t h e a p p l i e d p o t e n t i a l and t h i s , i n t u r n , allows c o n t r o l l e d a l t e r a t i o n o f t h e c a r r i e r d e n s i t y i n t h e conduction and valence bands, and occupancy o f d i s l o c a t i o n and d e f e c t l e v e l s i n the space charge l a y e r . The i n f l u e n c e o f these chan- ges on mechanical p r o p e r t i e s i s then s t u d i e d v i a microhardness measurements. To e l i m i n a t e any possi- b l e i n f l u e n c e o f t h e < - p o t e n t i a l , an e l e c t r o l y t e o f h i g h c o n c e n t r a t i o n was used, namely 1M KC1. This caused t h e double l a y e r t o be compressed t o t h e p o i n t t h a t t h e s l i p p i n g plane c o i n c i d e d w i t h t h e o u t e r Helmholtz plane. Hence, c 2 0 a t a1 1 values o f pH.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979635

(3)

C 6 - 1 7 4 JOURNAL DE PHYSIQUE

To determine t h e a p p l i e d v o l t a g e necessary t o produce a

=

0, i . e . t h e f l a t band p o t e n t i a l (FBP), t h e capaci tance-vol tage (C-V) technique used by Dewald /13/ was employed. The FB? was determined by measuring C, p l o t t i n g 1 / C 2 vs. V, and e x t r a p o l a t i n g t h e s t r a i g h t l i n e t o 1/c2 = 0. F o r f u r t h e r experimen- t a l d e t a i l s , see reference /12/.

2. Observations and discussion.- Data from (0001) surfaces a r e presented i n f i g u r e 1 f o r pH = 8.5 and

11.5. I n b o t h instances, a maximum i n hardness occurs a t - - l o 0 mV. The existence of t h i s maximum was con- f i r m e d by e t c h p i t s t u d i e s o f t h e e x t e n t o f d i s l o c a - t i o n motion, L, around hardness i n d e n t a t i o n s . I n t h i s case, L was a minimum a t - - I 0 0 mV.

B I A S VOLTAGE RELATIVE TO CALOMEL (mV)

fl::; rface

Fig. 1 : Hardness o f t h e (0001) ZnO surface vs.bias v o l t a g e i n an e l e c t r o l y t i c c e l l . I n d e n t a t i o n t i m e = 10 s, l o a d 10 g. (Ref. /15/).

240

220

The v a r i a t i o n s i n hardness o f a (1070) surface w i t h b i a s v o l t a g e a t pH = 8.5, 9.5 and 11.5 a r e shown i n f i g u r e 2. I n a d d i t i o n t o t h e hardness maximum o c c u r r i n g at, f o r example, -350 mV f o r a pH of 8.5, t h e r e appears t o be a maximum i n o v e r a l l hardness a t pH = 9.5. This r e s u l t may be r a t i o n a l i z e d from c o n s i d e r a t i o n s of t h e pH-dependence of ZnO s o l ubi 1 i -

ty. D i s s o l u t i o n may be enhanced near a hardness i m - p r e s s i o n bv l o c a l mechanical s t r a i n .

pH

=

8.5

- 10 g Load

-

BIAS VOLTAGE RELATIVE TO CALOMEL tmV1

200 -

180 -

I I

-

I I

Fig. 2 : Hardness o f t h e (1070) ZnO surface vs.bias v o l t a g e i n 1 Y KC:. I n d e n t a t i o n t i m e = 10

S,

l o a d 10 g pH = 8.5, /12/, pH = 9.5 and 11.5 ( r e f . /15/).

T h i s would enlarge t h e impression and lower t h e ap- parent hardness. Since the pH i n f l u e n c e s t h e disso- l u t i o n r a t e , and a minimum i n s o l u b i l i t y i s expected a t pH = 9.5, t h e zero p o i n t o f charge of ZnO /14/, any d i s s o l u t i o n e f f e c t should be l e a s t i n s o l u t i o n s o f t h i s pH, and t h e "average hardness" w i l l appear t o be l e s s f o r ZnO surfaces exposed t o environments o f pH = 9.5, as observed.

The p r i n c i p a l r e s u l t s o f t h e ZnO experiments a r e summarized i n t a b l e I.

Table I : ZnO i n 1 Y KC1

--

- --

Predicted Range Surface Electrolyte Position of of Vnax fmn Charge FBP

PH Hmax (my) Excharlge H e 1 (mV1 (mV)

These, and t h e data o f f i g u r e s , 1 and 2 demonstrate

t h a t the microhardness o f a ZnO c r y s t a l can be s i g n i -

f i c a n t l y changed by a l t e r i n g i t s s u r f a c e charge v i a

an a p p l i e d p o t e n t i a l . Thus, t h e existence o f a r e l a -

t i o n s h i p between surface charge and hardness, pre-

sumed i n e a r l i e r work o f chemomechanical e f f e c t s ,

i s now v e r i f i e d f o r t h e ZnO-aqueous e l e c t r o l y t e sys-

(4)

J . S . Ahearn et al. C6-175

tem.

O f more p a r t i c u l a r i n t e r e s t , however, i s the o b s e r v a t i o n t h a t the data o f t a b l e I r e v e a l t h a t ma- xima i n hardness, Hmax, occur not a t t h e FBP, b u t a t p o t e n t i a l s producing a s l i g h t l y p o s i t i v e surface charge on b o t h (0001) and (10IO) surfaces. Thus, a l - though t h e r e s u l t s c o n f i r m t h e importance o f surface charge i n chemomechanical e f f e c t s , they do not - - a t l e a s t f o r ZnO -- c o n f i r m t h e < - c o r r e l a t i o n as e a r l i e r conceived, namely t h a t hardness maxima occur when

< = 0

= o .

As a b a s i s f o r developing an e x p l a n a t i o n f o r t h i s somewhat unexpected r e s u l t , i t i s u s e f u l t o ap- p r e c i a t e what t h e e l e c t r o n i c s t r u c t u r e o f ZnO i s li- k e l y t o be under a p p l i e d p o t e n t i a l s employed i n our experiments. Consideration o f t h e l i k e l y e l e c t r o n i c s t r u c t u r e o f ZnO r e v e a l s t h a t both z i n c i n t e r s t i t i a l donor l e v e l s and t h e conduction band near t h e c e n t e r of t h e B r i l lo u i n zone may w e l l change occupancy under s p e c i f i e d a p p l i e d voltages near t h e FBP. Accordingly, t h e f o l l o w i n g "charge exchange" hypothesis has been proposed /12/ t o e x p l a i n t h e r e s u l t s .

F i r s t , assume t h a t both conduction and valence bands are d i s t o r t e d near a d i s l o c a t i o n , F i g u r e 3(a).

This d i s t o r t i o n m i g h t r e s u l t from : ( i ) a p o s i t i v e l y o r n e g a t i v e l y charged d i s l a c a t i o n w i t h a surrounding screening c l o u d o f conduction e l e c t r o n s o f i n t e r s t i - t i a l z i n c i o n s ; ( i i ) c o u p l i n g o f t h e s t r a i n f i e l d around t h e d i s l a c a t i o n and t h e energy bands through t h e d e f o r n a t i o n p o t e n t i a l , o r ( i i i ) t h e p i e z o e l e c t r i c e f f e c t s . Now i f , f o r example, a d i s l o c a t i o n induces an upward band d i s t o r t i o n , then motion o f the d i s l o - c a t i o n w i l l a l i o r e q u i r e movement o f t h e band d i s t o r - t i o n . Under f l a t band conditions, o n l y rearrangement o f t h e conduction e l e c t r o n s would be i n v o l v e d when t h e d i s l o c a t i o n moves, and so i t s motion would be r e l a t i v e l y easy, and t h e c r y s t a l would be r e l a t i v e - l y s o f t . As t h e hands a r e bent downward i n response t o environmental changes, however, and EC and Ed (see f i g u r e 3) approach EF, t h e Zn+ donors away from t h e d i s l a c a t i o n become n e u t r a l i z e d . Therefore, d i s - l o c a t i o n motion now n e c e s s i t a t e s e x c i t a t i o n o f e l e c - t r o n s from t h e n e u t r a l donor l e v e l s t o unoccupied l e v e l s i n t h e conduction band, f i g u r e 3(b). Such ex- c i t a t i o n r e q u i r e s about 50 meV/danor ( t h e energy bet- ween t h e conduction band edge and t h e Zn+ donor l e - v e l ) . The consequence should be a decrease i n d i s l o - c a t i o n m o b i l i t y and a concomitant i n c r e a s e i n hard- ness, because t h i s a d d i t i o n a l amount o f energy must be s u p p l i e d b e f o r e d i s l o c a t i o n motion can occur.

With f u r t h e r downard band bending, i l l u s t r a t e d

i n f i g u r e 3(c), e s s e n t i a l l y a l l o f t h e donors i n the space charge l a y e r become n e u t r a l i z e d .

a) Flat Bands: A l l Donors Ionized

.

+ + Ec

++ +++ 50mV +++++++

++++++Ed

Spatial 225 mV

Position of

Dislocation 1

EF b) Positive Surface Charge: Donors Near Dislocation Ionized

Charge k k c h a n g e

' donors

donors NEUTRAL 1 ON lZED I donors NEUTRAL Direction ot Dislocation Motion c) Increased Positive Surface Charge: All Donors Neutralized

Fig. 3 : Schematic o f t h e d i s t o r t i o n i n e l e c t r o n i c l e v e l s i n t h e neighborhood o f a basal d i s l o c a t i o n near t h e edge of t h e conduction band.

Now t h e d i s l o c a t i o n may again move w i t h o u t e x c i t i n g donors. Hence, d i s l o c a t i o n m o b i l i t y w i l l be l e s s f o r t h e s i t u a t i o n i l l u s t r a t e d i n f i g u r e 3 ( b ) than those shown i n f i g u r e s 3(a) o r ( c ) .

A s i m i l a r l i n e o f argument can be developed when t h e d i slocation-induced band d i s t o r t i o n i s down- ward.

The degree of environmentally-induced band ben-

d i n g necessary t o produce a maximum i n hardness de-

pends on t h e l o c a l d i s t o r t i o n o f t h e conduction bands,

AE, shown i n f i g u r e 3 (a). And t o p r e d i c t the p o s i -

t i o n o f Hmax on t h e p o t e n t i a l a x i s , i t i s necessary

t o assume a value f o r AE. Agreement between theory

and experiment can be achieved by s e l e c t i n g AE =

200 meV f o r t h e presumed n e g a t i v e l y charged basal

(5)

C6-176 J O U R N A L DE PHYSIQUE

(6 t y p e ) d i s l o c a t i o n s c o n t r o l l i n g t h e hardness of t h e (1070) s u r f a c e , and -50 meV f o r t h e presumed unchar- ged p r i s m a t i c d i s l o c a t i o n s c o n t r o l l i n g t h e hardness o f (0001) s u r f a c e s /12,15/.

Acknowledgements.- The experimental a s s i s t a n c e o f 3s. D.A. K a l i v o d a i s g r e a t l y a p p r e c i a t e d . T h i s work was supported i n p a r t by t h e U.S. N a t i o n a l Science Foundation under Grant DMR 75-05443.

References

/1/ Heins, R. W. and S t r e e t , N., Soc. Pet. Eng. J.

5, (1965) 177.

-

/2/ Macmillan, N.H., H u n t i n g t o n , R.D. and Westwood, A.R.C., P h i l o s . Mag., 3 (1973) 923.

/3/ !4estwood, A. R.C., Macmi l l a n , N.H. and Kalyoncu, R.S., J. Am. Ceram. Soc., 56 (1973) 258.

/4/ Westwood, A.R.C. and n4acmillan, N.H., i n Science o f Hardness T e s t i n g (Chapman and H a l l ) 1973, p. 377.

/5/ Ryncarz, A. and Laskowski , J. , Powder Technolo- gy, 18 (1977) 179.

/6/ Westwood, A. R.C. and Huntington, R. D., IV-Yech.

Behavior o f M a t e r i a l s (Japan Soc. Mat. S c i . ) , 1972, p. 383.

/7/ Fox, P.G. and Smith, A. J., Symp. on S t r e n g t h o f Glass (Soc. Glass Technology, Univ. Sussex, U.K.) March 1974.

/8/ M a l i n , M. and Vedam, K. , J. Appl. Phys. 9

(1977) 1155.

/9/ Adams, R., Warwick, U.K. P r i v a t e communication.

To be p u b l i s h e d ( A p r i l , 1978).

/ l o / C u t h r e l l , R.E., J. Appl. Phys. - 49 (1978) 432.

/11/ Yost, S.B. and W i l l i a m s , W.S., Presented a t 7 9 t h Annual f l e e t i n g , Am. Ceram. Soc. ( A p r i l , 1977) ; J. Am. Ceram. Soc. 61 (1978) 61.

/12/ Ahearn, J. S. , Mi 11 s, J. J. and !destwood, A. R. C. ,

J. Appl. Phys., 49 (1978) 96 ; l o c . c i t . , 9

(1978) 614.

/13/ Dewald, J. F., B e l l Syst. Tech. J., 39 (1960) 6 15.

/14/ B l o k , L. and de Bruyn, P.L., J. C o l l o i d I n t e r - f a c e S c i . , 3;? (1970) 518.

/15/ Ahearn, J.S., l i l l s , J.J. and Westwood, A.R.C.,

Proc. I n t l . Conf. on T r i b o l o g y , Boston (1978)

t o be p u b l i s h e d .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to